
Minimum Multicut
Vazirani: Chapter 18

Let G = (V, E) be an undirected weighted graph with
weightsce > 0 for all edgese ∈ E.

Let {(s1, t1), (s2, t2), . . . , (sk, tk)} bek specified pairs of
vertices. Amulticut is a set of edges whose removal sep-
arates all of the pairs. The problem is to find a minimum
weight multicut inG.

If we could solve this problem in polynomial time then
we could also solve themultiway cutproblem in polyno-
mial time. Since multiway-cut is known to be NP-hard,
this problem is also NP-Hard.

In this lesson we will see how to use the Primal-Dual
Schema to design a2-approximation algorithm for the
special case whenG is a tree. This case can be poly-
nomially reduced tominimal vertex cover(see Vazirani,
Exercise 18.1) so it is also NP-Hard.

If G is a tree then, for each(si, ti) there is auniquepath
connectingsi to ti. The minimum multicut removes at
least one edge from this path.
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For eache ∈ E let de ∈ {0, 1} be a variable such that
de = 1 iff e is in the multicut.

Let pi denote the set of edges on the unique path con-
nectingsi andti.

The integer LP corresponding to minimum multicut is

Minimize
∑

e∈E cede

subject to conditions
∀i ∈ {1, . . . , k},

∑
e∈pi

de ≥ 1

∀e ∈ E, de ∈ {0, 1}

The relaxation of the LP is
Minimize

∑
e∈E cede

subject to conditions
∀i ∈ {1, . . . , k},

∑
e∈pi

de ≥ 1

∀e ∈ E, de ≥ 0

We now introduce a variablefi corresponding to(si, ti).

Thedualof the relaxed LP is then

Maximize
∑k

i=1
fi

subject to conditions
∀e ∈ E,

∑
i:e∈pi

fi ≤ ce

∀ i ∈ {1, . . . , k}, fi ≥ 0
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Maximize
∑k

i=1
fi

subject to conditions
∀e ∈ E,

∑
i:e∈pi

fi ≤ ce

∀ i ∈ {1, . . . , k}, fi ≥ 0

This dual can be thought of as describing themulticom-
modity flowproblem. In this problem there arek differ-
ent commodities with theith commodity needing to be
shipped fromsi to ti. The object is to maximize the to-
tal amount shipped. The constraint is that the sum of the
flows routed through any particular edge is at mostce.

The maximum integer multicommodity flowproblem is
the multicommodity flow problem with the further re-
strictions that thefi are all integers. Note that in this
problem we may assume that theci are all integers as
well; if they are not, we can round them down to⌊ci⌋
without changing the maximum.

We will use the primal dual schema to derive an algo-
rithm that simultaneously finds a multicut and an integer
multicommodity flow that are within a factor of two of
each other. This will give a2-approximation algorithm
for the minimum multicut problemand a 1/2 “approx-
imation algorithm”for the maximum integer multicom-
modity flow one.
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Primal:
Minimize

∑
e∈E cede

subject to conditions
∀i ∈ {1, . . . , k},

∑
e∈pi

de ≥ 1

∀e ∈ E, de ≥ 0

Dual:

Maximize
∑k

i=1
fi

subject to conditions
∀e ∈ E,

∑
i:e∈pi

fi ≤ ce

∀ i ∈ {1, . . . , k}, fi ≥ 0

Edgee ∈ E will be saturated
if total flow throughe is ce.

The complimentary slackness conditions will then be:

Primal:∀e ∈ E, de 6= 0, ⇒
∑

i:e∈pi
fi = ce.

This meansany edge picked in the multicut must be sat-
urated

Relaxed Dual:∀i, fi 6= 0 ⇒
∑

e∈pi
de ≤ 2.

This meansat most two edges can be picked from a path
carrying non-zero flow
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We start by rooting the treeG at an arbitrary vertex
Depthof v ∈ V will be length of path fromv to the root.
Foru, v ∈ V ,

let lca(u, v) be thelowest common ancestorof u andv.

Let e1, e2 be two edges on the same path from a vertex to
the root. Ife1 occurs beforee2 on this path,e1 is deeper
thane2.

Algorithm starts with an emptymulticut (satisfies pri-
mal c.s. conditions)andempty flow (feasible). It then
iteratively improves feasibility of primal solution and op-
timality of dual solution. The edges in the multicut so far
will be kept in a listD.

During an iteration it picks thedeepest unprocessed ver-
tex so far, v and greedily routes integral flow between
pairs that havev as theirlca. When no more flow can
be routed between these pairs at least one edge has been
saturated. All saturated edges are added toD.

After all vertices have been processedD will be a multi-
cut. D might contain extra edges, though. The algorithm
ends by working through the edges ofD in reverse order
in which they were added; if after the removal of an edge
D remains a multicut, the edge is removed fromD.
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Minimum Multicut/ Integer Multicommodity Flow (Trees)
1. ∀i fi = 0, D = ∅.
2. For all verticesv, in non-increasing order of depth, do:

For every pair(si, ti) with lca(si, ti) = v

Greedily route integral flow fromsi to ti
Add toD all edgese that were saturated in this iteration.

3. Lete1, e2, . . . , el be edges inD ordered by insertion time.
4. Forj = l downto1 do.

If D − {ej} is a multicut inG removeej from D.

5. Output flow and multicutD.

First note that the algorithm outputs a legal flow since it
starts with the empty (legal) flow and at every step main-
tains legality.

Next note that at the end of the algorithmD must contain
a multicut since at least one edge on the unique(si, ti)

path must have been added toD (WHY).
Now construct the integral0/1 solutionde = 1 iff e ∈ D.

Constructed primal and dual solutions are therefore both
feasible. Furthermore, since every edge picked in the
multicut was saturated, the solutions satisfy primal c.s.
conditions.∀e ∈ E, de 6= 0, ⇒

∑
i:e∈pi

fi = ce.
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Minimum Multicut/ Integer Multicommodity Flow (Trees)
1. ∀i fi = 0, D = ∅.
2. For all verticesv, in non-increasing order of depth, do:

For every pair(si, ti) with lca(si, ti) = v

Greedily route integral flow fromsi to ti
Add toD all edgese that were saturated in this iteration.

3. Lete1, e2, . . . , el be edges inD ordered by insertion time.
4. Forj = l downto1 do.

If D − {ej} is a multicut inG removeej from D.

5. Output flow and multicutD.

Constructed primal and dual solutions are both feasible
and satisfy the primal c.s. conditions.

Lemma: Let (si, ti) be a pair with non-zero flow and let
lca(si, ti) = v. Then at most one edge is picked in the
multicut from each of the two pathssi to v andv to ti.

This lemma implies that, for each(si, ti), at most two
edges fromD are on the path connectingsi to ti. Thus
the relaxed dual conditions

∀i, fi 6= 0 ⇒
∑

e:e∈pi

de ≤ 2

are all satisfied as well.
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Combining everything: sincede andfi are feasible solu-
tions that satisfy the relaxed c.s. conditions withα = 2

we have that
∑

i

fi ≤
∑

e

cede ≤ 2 ·
∑

i

fi

andD has weight within a factor of two optimal solution
of a minimum multicut.

This can also be read as

1

2

∑

e

cede ≤
∑

i

fi ≤
∑

e

cede

implying that the solution is also a1
2

“approximation”
algorithm for integral multicommodity flow as well.
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Lemma: Let (si, ti) be a pair with non-zero flow and let
lca(si, ti) = v. then at most one edge is picked in the
multicut from each of the two pathssi to v andv to ti.

Proof:We prove for thesi to v path. Proof forv to ti path
is the same.

Suppose at the end of the algorithm there are two edges
e, e′ ∈ D from the samesi to v pathwith e being deeper.
By definitione′ must remain inD all through step 4.

Consider the moment in step 4 whene is being tested.e
is not thrown away so there must be a pair(sj, tj) such
thate is the only edge on thepath betweensj andtj. Let
u = lca(sj, tj). Sincee′ is not onpath betweensj andtj
(why) u must be deeper thane′ and therefore deeper than
v.

This in turn implies that afteru was processedD must
have contained an edge from thepath betweensj andtj.
Call this edgee′′.

Now, since non-zero flow was routed fromsi to ti, e must
have been added toD during or after the iteration that
processedv. Sincev is an ancestor ofu, e is added after
e′′. But thene′′ must be inD when e is being tested,
contradicting fact that at this timee is only edge ofD
on thepath betweensj andtj.
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