Additional Notes on Matrix Manipulation

Last Updated 25/09/06
These notes are a quick review of the linear algebra and matrix facts needed for the study of linear programming.

In what follows A will be an $m \times n$ matrix.

1. If $m=n$ and A has rank m, then A^{-1} exists

- A is called nonsingular.
- Equivalent to $\operatorname{det}(A) \neq 0$.
- $A^{-1} A=I_{m} . \quad$ (I_{m} is the $m \times m$ identity matrix.)

Example:

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1
\end{array}\right], \quad A^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 0 & 0 & 1
\end{array}\right]
$$

2. If $n>m$ and A has rank m :

Assume w.l.o.g. that first m columns of A are linearly independent (otherwise just swap columns), i.e., A can be represented as $[B \mid J]$, where B is an $m \times m$ nonsingular matrix. Then

$$
B^{-1} A=\left[I_{m} \mid B^{-1} J\right]
$$

Example:

$$
\begin{aligned}
A & =\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1
\end{array}\right] \\
B^{-1} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

Then

$$
B^{-1} A=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -3 & -2 & -3
\end{array}\right]=\left[I_{m} \mid B^{-1} J\right] .
$$

Given an $m \times n$ matrix A and an m-vector b, consider the solution of $A x=b$,

1. If $m=n$ and A has rank m, then A^{-1} exists, so $x=A^{-1} b$

Example:

$$
\begin{gathered}
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
4 \\
2 \\
3 \\
6
\end{array}\right] \\
x=A^{-1} b=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
2 \\
3 \\
6
\end{array}\right]=\left[\begin{array}{r}
4 \\
2 \\
3 \\
-6
\end{array}\right] .
\end{gathered}
$$

2. If $n>m$ and A has rank m, then WLOG, $A=[B \mid J]$, where B is an $m \times m$ nonsingular matrix. We then have,

$$
B^{-1} b=B^{-1} A x=\left[I_{m} \mid B^{-1} J\right] x
$$

Define $\beta=B^{-1} b$, and $\alpha=-B^{-1} J=\left[\alpha_{j i}\right]$, where $1 \leq j \leq m$ and $m+1 \leq i \leq n$. We then have,

$$
x_{j}=\beta_{j}+\sum_{i=m+1}^{n} \alpha_{j i} x_{i}, \quad j=1, \ldots, m
$$

Example:

$$
\begin{aligned}
A & =\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right], \quad b=\left[\begin{array}{l}
4 \\
2 \\
3 \\
6
\end{array}\right] \\
B^{-1} b & =\left[\begin{array}{r}
4 \\
2 \\
3 \\
-6
\end{array}\right]=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -3 & -2 & -3
\end{array}\right] x .
\end{aligned}
$$

In our example we solved

$$
B^{-1} b=\left[\begin{array}{r}
4 \\
2 \\
3 \\
-6
\end{array}\right]=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -3 & -2 & -3
\end{array}\right] x
$$

This can be rewritten as,

$$
\begin{aligned}
& x_{1}=4-x_{5}-x_{6}-x_{7} \\
& x_{2}=2-x_{5}-3+3 x_{5}+2 x_{6}+3 x_{7} \\
& x_{3}=3+6+3 \\
& x_{4}=-6+3
\end{aligned}
$$

