Additional Notes on Matrix Manipulation

Last Updated 25/09/06

These notes are a quick review of the linear algebra and matrix facts needed for the study of linear programming.

In what follows A will be an $m \times n$ matrix.

- 1. If m = n and A has rank m, then A^{-1} exists
 - *A* is called nonsingular.
 - Equivalent to $det(A) \neq 0$.
 - $A^{-1}A = I_m$. (I_m is the $m \times m$ identity matrix.)

Example:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{bmatrix}$$

1

2. If n > m and A has rank m:

Assume w.l.o.g. that first m columns of A are linearly independent (otherwise just swap columns), i.e., A can be represented as [B|J], where B is an $m \times m$ nonsingular matrix. Then

 $B^{-1}A = [I_m \,|\, B^{-1}J].$

Example:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 0 & 1 \end{bmatrix}$$
$$B^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{bmatrix}, \quad J = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Then

$$B^{-1}A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 & -2 & -3 \end{bmatrix} = [I_m | B^{-1}J].$$

Given an $m \times n$ matrix A and an m-vector b, consider the solution of Ax = b,

1. If m = n and A has rank m, then A^{-1} exists, so $x = A^{-1}b$

Example:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 2 \\ 3 \\ 6 \end{bmatrix}$$
$$x = A^{-1}b = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 3 \\ -6 \end{bmatrix}.$$

2. If n > m and A has rank m, then WLOG, A = [B|J], where B is an $m \times m$ nonsingular matrix. We then have,

$$B^{-1}b = B^{-1}Ax = [I_m|B^{-1}J]x.$$

Define $\beta = B^{-1}b$, and $\alpha = -B^{-1}J = [\alpha_{ji}]$, where $1 \le j \le m$ and $m + 1 \le i \le n$. We then have,

$$x_j = \beta_j + \sum_{i=m+1}^n \alpha_{ji} x_i, \quad j = 1, ..., m$$

Example:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 2 \\ 3 \\ 6 \end{bmatrix}$$
$$B^{-1}b = \begin{bmatrix} 4 \\ 2 \\ 3 \\ -6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 & -2 & -3 \end{bmatrix} x.$$

In our example we solved

$$B^{-1}b = \begin{bmatrix} 4\\2\\3\\-6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1\\0 & 1 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 1 & 0\\0 & 0 & 0 & 1 & -3 & -2 & -3 \end{bmatrix} x$$

This can be rewritten as,

x_1	=	4		x_{5}		x_{6}		<i>x</i> 7
x_2	=	2		x_5				
x_{3}	=	3				<i>x</i> 6		
x_{4}	=	-6	+	$3x_5$	+	$2x_{6}$	+	3 <i>x</i> ₇