
Amortized Analysis: CLRS Chapter 17
Last revised: August 28, 2007

1

In amortized analysis we try to analyze the time re-
quired by a sequence of operations. There are many
situations in which, even though it is possible for an
individual operation to be very expensive, the average
cost of an operation (taken over all operations per-
formed) can be shown to be small.

Another way of saying this is that amortized analy-
sis guarantees the average case performance of each
operation in the worst case.

Note that this is very different from what is normally
meant by average-case analysis; there is no probabil-
ity at work here.

We will introduce the main ideas behind amortized
analysis through the study of two different problems:
stack operations with multipop and incrementing a bi-
nary counter.

2

Stack-operations

We allow three operations:

1. PUSH(S, x): Push x onto stack S.

2. POP(S): Pop top of S and returns popped item

3. MULTIPOP(S, k):
while S is not empty and k 6= 0

POP(S)
k := k − 1.

Note that PUSH(S, x) and POP(S) each take only O(1)

worst case time but MULTIPOP(S, k) can take up to n

time in the worst case, where n is the total number of
items in the stack.

Even though a MULTIPOP can take Θ(n) time it is
not hard to show that any sequence of n operations,
can use at most O(n) time.

3

Incrementing a Binary Counter

The following code increments a counter:

INCREMENT(A)
1 i← 0
2 while i < length[A] and A[i] = 1
3 do A[i]← 0
4 i← i + 1
5 if i < length[A]
6 then A[i]← 1

Counter value A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] Total cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22
13 0 0 0 0 1 1 0 1 23
14 0 0 0 0 1 1 1 0 25
15 0 0 0 0 1 1 1 1 26
16 0 0 0 1 0 0 0 0 31

An Increment operation can require as many as k =

length[A] bit flips. We claim, though, that any se-
quence of n Increments requires only O(n) bit flips.

4

3 different approaches to Amortized Analysis.

• Aggregate Analysis:
Let T (n) be the total cost of some sequence of n opera-
tions. In the worst case the average cost, or amortized cost
per operation, is T (n)/n. In this type of analysis, every op-
eration will have the same amortized cost.

• The Accounting Method:
Each operation is charged an amortized cost, which can be
different than actual cost.

Difference between actual cost and amortized cost is ex-
pressed in credits. Extra credits are placed in specific parts
of data structure. Lack of credits are made up by using
credits previously placed in data structure.

Different operations can have different amortized costs.
Sum of the amortized costs of a sequence of operations is
≥ total cost of the sequence

• The Potential Method:
The data structure is assigned a potential (energy) ≥ 0
based on its current configuration.

Potential of original configuration is usually 0.
The amortized cost of an operation will be the sum of its
actual cost plus the difference between the potential before
the operation and the potential after the operation.

Different operations can have different amortized costs.
Sum of the amortized costs of a sequence of operations is
≥ total cost of the sequence.

5

Aggregate Analysis: Stack-Operations

1. PUSH(S, x): Push x onto stack S.

2. POP(S): Pop top of S and returns popped item

3. MULTIPOP(S, k):
while S is not empty and k 6= 0

POP(S)
k := k − 1.

It is easy to see that any sequence of n PUSH, POP,
and MULTIPOP operations takes T (n) = O(n) time
so the average time per operation is T (n)/n = O(1).

We therefore can assign each operation in the se-
quence an amortized cost of O(1).

Note that there is no probability involved. As stated
amortized analysis guarantees the average case
performance of each operation in the worst case .

6

Aggregate Analysis: Incrementing a counter
Counter value A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] Total cost

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22
13 0 0 0 0 1 1 0 1 23
14 0 0 0 0 1 1 1 0 25
15 0 0 0 0 1 1 1 1 26
16 0 0 0 1 0 0 0 0 31

Every A[0] bit gets flipped.
Every 2nd A[1] bit gets flipped.
Every 4th A[2] bit gets flipped.
Every 8th A[3] bit gets flipped.
Every 2ith A[i] bit gets flipped.

So the total number of bits flipped after n increment
operations will be

k
∑

i=0

⌊

n

2i

⌋

≤ n
k

∑

i=0

1

2i
< 2n

7

Every A[0] bit gets flipped.
Every 2nd A[1] bit gets flipped.
Every 4th A[2] bit gets flipped.
Every 8th A[3] bit gets flipped.
Every 2ith A[i] bit gets flipped.

So the total number of bits flipped after n increment
operations will be

k
∑

i=0

⌊

n

2i

⌋

≤ n
k

∑

i=0

1

2i
< 2n

This means that every operation requires at most
2n/n bit flips on average, i.e., has an amortized
cost of O(1).

8

The Accounting method: Stack-Operations

In the Accounting method we assign each operation
an amortized cost ĉ, which can be different for the dif-
ferent operations.

Let c be the actual cost of some operation.

If ĉ > c then the algorithm places ĉ−c credits on items
in the data structure.

If ĉ < c then the algorithm must be able to take c − ĉ

credits off of the data structure at that time to pay for
the rest of the operation.

Essentially, earlier actual cheap (real cost) operations
are prepaying the expense of later more expensive
(real cost) operations.

Let ĉi be the given amortized cost of the ith operation
and ci its actual cost. Then

n
∑

i=1

ĉi ≥
n

∑

i=1

ci.

9

In the stack problem we use the following amortized
costs:

Operation Real Cost c Amortized Cost ĉ
PUSH(S, x) 1 2
POP(S) 1 0
MULTIPOP(S, k) min(k, |S|) 0

When doing a PUSH(S, x), 1 unit of amortized cost
cost pays for the actual PUSH(S, x) and the 1 remain-
ing unit of credit gets placed on the item in the stack
that was just pushed.

Whenever an item in the stack is (MULTI)POPed, it is
paid for by the unit of credit sitting on it.

It is easy to see that there are always credits available
to pay for a POP or MULTIPOP so the amortized costs
are well defined.

10

The Accounting method: Incrementing a Counter

Counter value A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] Total cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22
13 0 0 0 0 1 1 0 1 23
14 0 0 0 0 1 1 1 0 25
15 0 0 0 0 1 1 1 1 26
16 0 0 0 1 0 0 0 0 31

Note that every increment flips exactly one 0 to be a
1; every 1 that is flipped to be a 0 was originally made
into a 1 in a previous operation.

In this case we will charge every increment an amor-
tized cost of 2 units of which 1 unit will be charged for
flipping the one 0 to be a 1 and the other unit will be
left as a credit on the 1.
All of the flips of 1s into 0s will be paid for using
the credits already sitting on those bits.

11

The Potential Method

In the The Potential Method , we assign a Potential
Φ to the data structure. The potential can be thought
of as stored up energy, or credit, that can be used to
pay for expensive operations.

The difference between this and the accounting method
is that in the accounting method the credits were as-
signed to objects in the data structure while, in the po-
tential method, the potential is a function of the total
data structure,

12

The Potential Method (cont)

Starting with an initial data structure D0.
Let Di be the data structure after applying operation i

in a sequence to Di−1.

Φ maps every D to a real number Φ(D).

Let ci be the real cost of operation i.
The amortized cost ĉi of operation i is

ĉi = ci + Φ(Di)−Φ(Di−1).

The total amortized cost of n operations is then
n

∑

i=1

ĉi =
n

∑

i=1

(

ci + Φ(Di)−Φ(Di−1)
)

=
n

∑

i=1

ci + Φ(Dn)−Φ(D0)

If we define Φ so that ∀n,Φ(Dn) ≥ Φ(D0) we get
n

∑

i=1

ci ≤
n

∑

i=1

ĉi

so the amortized cost of a sequence of operations
upper-bounds the real cost.

13

The Potential Method: Stack Operations

Let Φ(D) be the number of items on stack D.
Starting with empty stack D0 gives us that
∀D,Φ(D) ≥ 0 = Φ(D0)

so the amortized cost of a sequence of operations
upper-bounds the real cost.

What are the amortized costs of the operations? As-
sume that Di−1 currently has s items on the stack.
We split into the cases that the ith operation is:

PUSH(S, x):
Φ(Di)−Φ(Di−1) = (s + 1)− s = 1.
Actual cost is ci = 1. Amortized cost is
ĉi = ci+Φ(Di)−Φ(Di−1) = 1+(s+1)−s = 2.

Multipop(S, k):
Set k′ = min(k, s), no. items popped off stack.
Φ(Di)−Φ(Di−1) = (s− k′)− s = −k′.
Actual cost is ci = k′. Amortized cost is
ĉi = ci + Φ(Di)−Φ(Di−1) = k′ − k′ = 0.

POP(S):
0, same as Multipop(S,1).

14

Combining, we get the same amortized costs as with
the accounting method:

Operation Real Cost c Amortized Cost ĉ
PUSH(S, x) 1 2
POP(S) 1 0
MULTIPOP(S, k) min(k, |S|) 0

15

The Potential Method: Incrementing a counter

In this case we let
Φ(D) = the number of 1s in the counter.

Suppose that the ith increment operation flips ti 1 bits
to 0; let bi be the number of 1s in the counter after the
operation.

Actual cost is ci ≤ ti + 1.

If bi = 0 then increment totally resets the counter and
bi−1 = ti.
If bi > 0 then bi = bi−1 − ti + 1.
In both cases bi ≤ bi−1 − ti + 1 so

Φ(Di)−Φ(Di−1) ≤ bi−1− ti +1− bi−1 = 1− ti.

Amortized cost is then,

ĉi = ci + Φ(Di)−Φ(Di−1)

≤ (ti + 1) + (1− ti) = 2

16

We just saw that with the given potential function Φ

the amortized cost per Increment is 2.

This means that
n

∑

i=1

ci ≤
n

∑

i=1

ĉi − (Φ(Dn)−Φ(D0)) ,

Starting with an empty counter, Φ(D0) = 0 so

n
∑

i=1

ci ≤
n

∑

i=1

ĉi

Even if we don’t start with an empty counter we can
still analyze the run time by noting that

n
∑

i=1

ci ≤
n

∑

i=1

ĉi + Φ(D0) ≤ 2n + Φ(D0)

So if n > k (the counter size), the total cost of the
sequence of operations will always be O(n).

17

Binary heap Binomial heap Fibonacci heap
Procedure (worst-case) (worst-case) (amortized)
Make-Heap Θ(1) Θ(1) Θ(1)
Insert Θ(lgn) O(lgn) Θ(1)
Minimum Θ(1) O(lgn) Θ(1)
Extract-Min Θ(lgn) Θ(lgn) O(lgn)
Union Θ(n) O(lgn) Θ(1)
Decrease-Key Θ(lgn) Θ(lgn) Θ(1)
Delete Θ(lgn) Θ(lgn) O(lgn)

We started this section with the table above. We now
can understand the last column. In particular, Dijk-
stra’s algorithm for solving the single-source short-
est path problem and Prim’s similar algorithm for con-
structing a minimum spanning-tree use

|V | Inserts; |V | Extract-Mins; |E| Decrease-Keys.

The amortized time bounds given for Fibonacci heaps
tells us that this sequence of operations can actually
be performed in Θ(|V | log |V |+ |E|) instead of the
Θ((|E|+ |V |) log |V |) that an analysis using worst-
case operation time yields.

In the next part of this section we will see how to build
Fibonacci heaps.

18

