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e The Max-Flow Min-Cut Theorem is a just a spe-
cial case of the main duality theorem

e Feasible solutions to dual LPS can provide lower
bounds to associated ILPs.
We will see how this can be used to design an
H,,-approximation algorithm for the Weighted Set-
Cover problem.



The Max-Flow Min-Cut Theorem

Let N = (s,¢,V, E,b) be a flow network with
s, t the source,sink

n = |V/|, the # of vertices

m = |FE|, the # of edges

b(x,vy), the capacity of edges (z,vy).

We will use (z, y) to denote flow in (z, y).
Let A be the node-arc incidence matrix of (V, E).
An s — t flow of value v can be written as

+v ROwW s
Af = —v Row t

O other rows
f < b
f =0



An s — t flow of value v can be written as

+v ROwW s

Af = —v Row't
O other rows
f <b
f =0
Define vector

—1 1 ==

d; = +1 1=t

0O otherwise

Then maximizing v can be written as LP

Max v
Af+dv = 0
fo< b
f >0



Maximizing v can be written as LP1

Max v
Af+dv = 0
f < b
f =0

We now take the dual of this LP, which will be the pri-
mal LP2 . The first n equations of LP1 will correspond
to n variables in LP2; w(x) for x € V. Since the first
n equations are equalities, these variable are free.

The last m equations of LP1 will correspond to m vari-
ables in LP2; v(x,y) for (z,y) € E. Since the last
m equations are inequalities, these variable are con-
strained.

LP2 is then

min- ., yerv(z,y)b(z,y)
m(z) —7(y) +v(z,y) >0 V(z,y) € E

—7(s)+7n(t) > 1

m(x) 20

v(x,y) > 0



Min -, )er V(@ y)b(z, y)
m(z) —7(y) +v(z,y) >0 V(z,y) € E

—7(s) +n(t) > 1

m(x) 20

v(z,y) > 0

A cut is a partition (W, W) of the vertices VV with s €
W and t € W. The capacity of a cut is

C(W,W) = > b(, 5)
(i,J)eE
s.t.ieWjeWw

Theorem Every s-t cut determines a feasible so-
lution with cost C(W, W) to LP2 as follows:

1 (z,y)suchthatz e W, y € W
otherwise

a:EVY
re W

v(z,y) =

= O O

m(x) =




We have just shown that every (W, W) has an asso-
ciated solution to primal LP2 with cost C'(W, W).

This proves a (weak) form of the
Max-Flow Min-Cut Theorem, i.e,

Theorem:
The value v of any s-t flow is no greater than the
capacity C'(W, W) of any s-t cut.

Furthermore, if v = C(W, W),
then v Is a max-flow
and (W, W) is a min-cut.




Recall the Set Covering Problem. Let X be a set and
JF a family of subsets of X such that X = Up. £ F.

For example X = {1,2,3,4,5,6} and F contains
the subsets

1 = {1,3,5}
Fr, = {2,3,6}
F3 = {2,5,6}
Fp = {2,3,4,6}
Fs = {1,4}

A subset F' € F covers its elements.

The problem is to find a minimum-size subset C C F
that covers X, i.e., X = UpcF.

For example { Fy, F», F4} covers X but is not a mini-
mal size solution.

C = {Fy, F4} is a minimal size solution.

Finding a minimal-size set cover is NP-Hard.



We now generalize the problem to the

Weighted Set Cover problem where each set F' has a
weight Cost(F') = C(F'), and the problem is to find
a Set Cover of C of Minimum Weight,

Cost(C) = > pec C(F).

For example X = {1,2,3,4,5,6} and F contains
the subsets

By = {1,3,5}; C(F) =1
Fy = {2,3,6}; C(Fp) =1
3 = {2,5,6}; C(F3) =3
Fa = {2,3,4 6): C(F,) =5
s = {1,4} C(Fs) =1

For example C = {Fy, F4} is a minimal cardinality so-
lution but not a minimum weightone. C = {F1y, F», F5}
IS @ minimum weight solution.



The Weighted Set Cover problem is NP-Hard so being
able to find an optimal solution is unlikely. We can find
an H, approximation algorithm, though where
n=|X|and H, =" ;1 ~Inn.

This means that, for every input, our algorithm will
generate a cover C such that

Cost(C) < Hy - OPT

where OPT is the cost of the real optimal solution
(which we do not know).

Question: If we do not know O PT" how can we guatr-
antee the approximation?

Answer: Using Duality



Question: If we do not know O PT how can we guatr-
antee the approximation?

Answer: Using Duality.

1. Write Weighted Set Cover as mimimization ILP, P’.
Let OPT be cost of optimal solution to P’.

2. Relax the ILP to a LP, P.
Let z* be cost of optimal solution to P.
Note that z* < OPT.

3. Let D be the dual LP to P.

Construct some feasible solution 7 to D.
Let w be the cost of .

Duality says that w < z* < OPT.

4. Our algorithm will be to create a C satisfying

Cost(C) < Hyp - w.
This will guarantee

Cost(C) < Hp-w < Hyp - 2* < Hp - OPT
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A Greedy Set-Cover algorithm
U+— X
C—10
select a F' € F that minimizes
U—U-—-F
C—CU{F}
Foreach e € FFNU set price(e) =
return(C)

Cost(F)
|FNU |

Cost(F")
|FNU |

The value %(UIT) IS the cost-effectiveness of the set.

It is the average cost of adding each item in |F' N U]
to the cover.

price(e) will contain this average value (used later in
the analysis). Note that the set cover constructed has

cost > <y price(e).

Note that if Cost(F) = 1 for all sets F' then the algo-
rithm always picks F' that maximizes |F' N U|. This is
a greedy algorithm for set cover.
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The integer LP will be
Minimize ZFE]:C(F)xF
subject to conditions

Ve € U, decrTr > 1
VF € F zp € {0,1}

The relaxation of the LP is
Minimize Y pcr C(F)xp
subject to conditions

Ve € U, >ecrTr > 1
VF € F, 1>z >0

Note that this is the same as
Minimize Y pcr C(F)xp
subject to conditions

Ve € U, Y>ecrrp >1
VF € F, xp >0

We now introduce a variable y. for all e € U.
The dual of the relaxed LP is then
Maximize . cir Ye

subject to conditions

VE € F, >ecrYe < C(F)
Ve € U, Ye > 0O




Maximize > . ve

subject to conditions

VEEF,  Y.epye < CF)
Ve € U, Ye > 0

Theorem: The setting ye = 1%6(6) is a feasible so-
lution to the dual problem D where n = U]

Proof: Consider some set F' € F. Let £ = |F|. Num-
ber the elements of F' in the order in which they are
covered by the algorithm as eq,eo, ..., e, breaking
ties arbitrarily.

Let us examine the step of the algorithm at which item
e; IS covered. Before this step starts /' contains at
least &k — 7 + 1 uncovered elements.

Therefore, at this step F' itself can cover e; with cost-
effectiveness at most o(F ) . Since the algorithm chooses
a set I/ with mlnlmal cost effectiveness this implies
price(e;) < (_|_) Thus

1 CF)
Hy, k—1+4+1

yei S

SO

Zye_C(F)(Jrk_—lJr 1) =50 <o)
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Theorem: The approximation algorithm is an
H,,-approximation algorithm.

Proof:

e The theorem on the previous g)age states that the
setting Ve € U, ye = pmce °’ is a feasible solu-
tion for the dual LP D. The objective function for

the dual was > .7 ye Which for this setting has

value w = ¢y 2rece)
n

e From the Duality Theorem we have that w < z*
where z* is optimal solution of the primal, P.

o ¥ < OPT by definition of LP relaxation.

e Thenw < 2* < OPT or ¥peys pr@gi(e) < OPT.

e Recall that

Cost(C) = Y Cost(F) = ) price(e).

FeC ecU
This proves Cost(C) < Hy, - OPT.
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