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• The Max-Flow Min-Cut Theorem is a just a spe-
cial case of the main duality theorem

• Feasible solutions to dual LPS can provide lower
bounds to associated ILPs.
We will see how this can be used to design an
Hn-approximation algorithm for the Weighted Set-
Cover problem.
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The Max-Flow Min-Cut Theorem

Let N = (s, t, V, E, b) be a flow network with
s, t the source,sink
n = |V |, the # of vertices
m = |E|, the # of edges
b(x, y), the capacity of edges (x, y).

We will use (x, y) to denote flow in (x, y).
Let A be the node-arc incidence matrix of (V, E).
An s− t flow of value v can be written as

Af =











+v Row s

−v Row t

0 other rows
f ≤ b

f ≥ 0
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An s− t flow of value v can be written as

Af =











+v Row s

−v Row t

0 other rows
f ≤ b

f ≥ 0

Define vector

di =











−1 i = s

+1 i = t

0 otherwise

Then maximizing v can be written as LP

max v

Af + dv = 0

f ≤ b

f ≥ 0
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Maximizing v can be written as LP1

max v

Af + dv = 0

f ≤ b

f ≥ 0

We now take the dual of this LP, which will be the pri-
mal LP2 . The first n equations of LP1 will correspond
to n variables in LP2; π(x) for x ∈ V . Since the first
n equations are equalities, these variable are free.

The last m equations of LP1 will correspond to m vari-
ables in LP2; γ(x, y) for (x, y) ∈ E. Since the last
m equations are inequalities, these variable are con-
strained.

LP2 is then

min
∑

(x,y)∈E γ(x, y)b(x, y)

π(x)− π(y) + γ(x, y) ≥ 0 ∀(x, y) ∈ E

−π(s) + π(t) ≥ 1
π(x) ≷ 0

γ(x, y) ≥ 0
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min
∑

(x,y)∈E γ(x, y)b(x, y)

π(x)− π(y) + γ(x, y) ≥ 0 ∀(x, y) ∈ E

−π(s) + π(t) ≥ 1
π(x) ≷ 0

γ(x, y) ≥ 0

A cut is a partition (W, W̄ ) of the vertices V with s ∈

W and t ∈ W̄ . The capacity of a cut is

C(W, W̄ ) =
∑

(i,j)∈E

s.t. i∈W,j∈W̄

b(i, j)

Theorem Every s-t cut determines a feasible so-
lution with cost C(W, W̄ ) to LP2 as follows:

γ(x, y) =

{

1 (x, y) such that x ∈W, y ∈ W̄

0 otherwise

π(x) =

{

0 x ∈W

1 x ∈ W̄
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We have just shown that every (W, W̄ ) has an asso-
ciated solution to primal LP2 with cost C(W, W̄ ).

This proves a (weak) form of the
Max-Flow Min-Cut Theorem, i.e,

Theorem:
The value v of any s-t flow is no greater than the
capacity C(W, W̄ ) of any s-t cut.

Furthermore, if v = C(W, W̄ ),
then v is a max-flow
and (W, W̄ ) is a min-cut.
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Recall the Set Covering Problem. Let X be a set and
F a family of subsets of X such that X = ∪F∈FF.

For example X = {1,2,3,4,5,6} and F contains
the subsets

F1 = {1,3,5}

F2 = {2,3,6}

F3 = {2,5,6}

F4 = {2,3,4,6}

F5 = {1,4}

A subset F ∈ F covers its elements.

The problem is to find a minimum-size subset C ⊆ F
that covers X, i.e., X = ∪F∈CF.

For example {F1, F2, F4} covers X but is not a mini-
mal size solution.

C = {F1, F4} is a minimal size solution.

Finding a minimal-size set cover is NP-Hard.
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We now generalize the problem to the
Weighted Set Cover problem where each set F has a
weight Cost(F ) = C(F ), and the problem is to find
a Set Cover of C of Minimum Weight,
Cost(C) =

∑

F∈C C(F ).

For example X = {1,2,3,4,5,6} and F contains
the subsets

F1 = {1,3,5}; C(F1) = 1
F2 = {2,3,6}; C(F2) = 1
F3 = {2,5,6}; C(F3) = 3
F4 = {2,3,4,6}; C(F4) = 5
F5 = {1,4}; C(F5) = 1

For example C = {F1, F4} is a minimal cardinality so-
lution but not a minimum weight one. C = {F1, F2, F5}

is a minimum weight solution.
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The Weighted Set Cover problem is NP-Hard so being
able to find an optimal solution is unlikely. We can find
an Hn approximation algorithm, though where
n = |X| and Hn =

∑n
i=1

1
i
∼ lnn.

This means that, for every input, our algorithm will
generate a cover C such that

Cost(C) ≤ Hn ·OPT

where OPT is the cost of the real optimal solution
(which we do not know).

Question: If we do not know OPT how can we guar-
antee the approximation?

Answer: Using Duality
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Question: If we do not know OPT how can we guar-
antee the approximation?

Answer: Using Duality.

1. Write Weighted Set Cover as mimimization ILP, P ′.
Let OPT be cost of optimal solution to P ′.

2. Relax the ILP to a LP, P .
Let z∗ be cost of optimal solution to P .
Note that z∗ ≤ OPT .

3. Let D be the dual LP to P .
Construct some feasible solution π to D.
Let w be the cost of π.
Duality says that w ≤ z∗ ≤ OPT .

4. Our algorithm will be to create a C satisfying

Cost(C) ≤ Hn · w.

This will guarantee

Cost(C) ≤ Hn · w ≤ Hn · z
∗ ≤ Hn ·OPT
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A Greedy Set-Cover algorithm
U ← X

C ← ∅

select a F ∈ F that minimizes Cost(F )
|F∩U |

U ← U − F

C ← C ∪ {F}

For each e ∈ F ∩ U set price(e) = Cost(F )
|F∩U |

return(C)

The value Cost(F )
|F∩U |

is the cost-effectiveness of the set.
It is the average cost of adding each item in |F ∩ U |

to the cover.

price(e) will contain this average value (used later in
the analysis). Note that the set cover constructed has
cost

∑

e∈U price(e).

Note that if Cost(F ) = 1 for all sets F then the algo-
rithm always picks F that maximizes |F ∩ U |. This is
a greedy algorithm for set cover.
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The integer LP will be
Minimize

∑

F∈F C(F )xF

subject to conditions
∀e ∈ U,

∑

e∈F xF ≥ 1

∀F ∈ F xF ∈ {0,1}

The relaxation of the LP is
Minimize

∑

F∈F C(F )xF

subject to conditions
∀e ∈ U,

∑

e∈F xF ≥ 1

∀F ∈ F , 1 ≥ xF ≥ 0

Note that this is the same as
Minimize

∑

F∈F C(F )xF

subject to conditions
∀e ∈ U,

∑

e∈F xF ≥ 1

∀F ∈ F , xF ≥ 0

We now introduce a variable ye for all e ∈ U .
The dual of the relaxed LP is then

Maximize
∑

e∈U ye

subject to conditions
∀F ∈ F ,

∑

e∈F ye ≤ C(F )

∀e ∈ U, ye ≥ 0
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Maximize
∑

e∈U ye

subject to conditions
∀F ∈ F ,

∑

e∈F ye ≤ C(F )
∀e ∈ U, ye ≥ 0

Theorem: The setting ye = price(e)
Hn

is a feasible so-
lution to the dual problem D where n = |U |.

Proof: Consider some set F ∈ F . Let k = |F |. Num-
ber the elements of F in the order in which they are
covered by the algorithm as e1, e2, . . . , ek, breaking
ties arbitrarily.

Let us examine the step of the algorithm at which item
ei is covered. Before this step starts F contains at
least k − i + 1 uncovered elements.

Therefore, at this step F itself can cover ei with cost-
effectiveness at most c(F )

k−i+1. Since the algorithm chooses
a set F ′ with minimal cost-effectiveness this implies
price(ei) ≤

c(F )
k−i+1. Thus

yei ≤
1

Hn
·

C(F )

k − i + 1
so

k
∑

i=1

yei
≤

C(F )

Hn

(

1

k
+

1

k − 1
+ · · ·

1

1

)

=
Hk

Hn

· C(F ) ≤ C(F )
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Theorem: The approximation algorithm is an
Hn-approximation algorithm.

Proof:

• The theorem on the previous page states that the
setting ∀e ∈ U, ye = price(e)

Hn
is a feasible solu-

tion for the dual LP D. The objective function for
the dual was

∑

e∈U ye which for this setting has
value w =

∑

e∈U
price(e)

Hn
.

• From the Duality Theorem we have that w ≤ z∗

where z∗ is optimal solution of the primal, P .

• z∗ ≤ OPT by definition of LP relaxation.

• Then w ≤ z∗ ≤ OPT or
∑

e∈U
price(e)

Hn
≤ OPT.

• Recall that

Cost(C) =
∑

F∈C

Cost(F ) =
∑

e∈U

price(e).

This proves Cost(C) ≤ Hn ·OPT.
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