Bipartite Matching & the Hungarian Method

Last Revised: 15/09/07

These notes follow formulation originally developed by Subhash Suri in *http://www.cs.ucsb.edu/~suri/cs230/Matching.pdf*

We previously saw how to use the Ford-Fulkerson Max-Flow algorithm to find Maximum-Size matchings in bipartite graphs. In this section we discuss how to find Maximum-Weight matchings in bipartite graphs, a situation in which Max-Flow is no longer applicable.

The $O(|V|^3)$ algorithm presented is the Hungarian Algorithm due to Kuhn & Munkres.

- Review of Max-Bipartite Matching Earlier seen in Max-Flow section
- Augmenting Paths
- Feasible Labelings and Equality Graphs
- The Hungarian Algorithm for Max-Weighted Bipartite Matching

Application: Max Bipartite Matching

A graph G = (V, E) is *bipartite* if there exists partition $V = X \cup Y$ with $X \cap Y = \emptyset$ and $E \subseteq X \times Y$.

A *Matching* is a subset $M \subseteq E$ such that $\forall v \in V$ at most one edge in M is incident upon v.

The size of a matching is |M|, the number of edges in M.

A *Maximum Matching* is matching M such that every other matching M' satisfies $|M'| \leq M$.

Problem: Given bipartite graph G, find a maximum matching.

A bipartite graph with 2 matchings

L

R

R

L

We now consider *Weighted* bipartite graphs. These are graphs in which each edge (i, j) has a weight, or value, w(i, j). The *weight* of matching M is the sum of the weights of edges in M, $w(M) = \sum_{e \in M} w(e)$.

Problem: Given bipartite weighted graph G, find a maximum weight matching.

Note that, without loss of generality, by adding edges of weight 0, we may assume that *G* is a complete weighted graph.

Alternating Paths:

- Let M be a matching of G.
- Vertex v is matched if it is endpoint of edge in M; otherwise v is free
 Y₂, Y₃, Y₄, Y₆, X₂, X₄, X₅, X₆ are matched, other vertices are free.
- A path is alternating if its edges alternate between M and E - M.
 Y₁, X₂, Y₂, X₄, Y₄, X₅, Y₃, X₃ is alternating
- An alternating path is augmenting if both endpoints are free.
- Augmenting path has one less edge in M than in E M; replacing the M edges by the E M ones increments size of the matching.

An alternating tree is a tree rooted at some free vertex v in which every path is an alternating path.

Note: The diagram assumes a *complete* bipartite graph; matching M is the red edges. Root is Y_5 .

The Assignment Problem:

Let G be a (complete) weighted bipartite graph.

The Assignment problem is to find a max-weight matching in G.

A *Perfect Matching* is an M in which every vertex is adjacent to some edge in M.

A max-weight matching is perfect.

Max-Flow reduction dosn't work in presence of weights. The algorithm we will see is called the Hungarian Algorithm. Feasible Labelings & Equality Graphs

- A vetex *labeling* is a function $\ell: V \to \mathcal{R}$
- A feasible labeling is one such that

 $\ell(x) + \ell(y) \ge w(x, y), \quad \forall x \in X, y \in Y$

• the *Equality Graph* (with respect to ℓ) is $G = (V, E_{\ell})$ where

 $E_{\ell} = \{ (x, y) : \ell(x) + \ell(y) = w(x, y) \}$

Theorem: If ℓ is feasible and M is a Perfect matching in E_{ℓ} then M is a max-weight matching.

Proof:

Denote edge $e \in E$ by $e = (e_x, e_y)$.

Let M' be any PM in G (not necessarily in in E_{ℓ}). Since every $v \in V$ is covered *exactly* once by M we have

 $w(M') = \sum_{e \in M'} w(e) \le \sum_{e \in M'} (\ell(e_x) + \ell(e_y)) = \sum_{v \in V} \ell(v)$

so $\sum_{v \in V} \ell(v)$ is an upper-bound on the cost of any perfect matching.

Now let M be a PM in E_{ℓ} . Then $w(M) = \sum_{e \in M} w(e) = \sum_{v \in V} \ell(v).$

So $w(M') \leq w(M)$ and M is optimal.

Theorem[Kuhn-Munkres]: If ℓ is feasible and M is a Perfect matching in E_{ℓ} then M is a max-weight matching.

The KM theorem transforms the problem from an op*timization* problem of finding a max-weight matching into a combinatorial one of finding a perfect matching. It combinatorializes the weights. This is a classic technique in combinatorial optimization.

Notice that the proof of the KM theorem says that for any matching M and any feasible labeling ℓ we have

$$w(M) \leq \sum_{v \in V} \ell(v).$$

This has very strong echos of the max-flow min-cut theorem.

3

2

2

Our algorithm will be to

Start with any feasible labeling ℓ and some matching $M \subseteq E_{\ell}$ maintaining an alternating tree $\mathcal{T} \subseteq E_{\ell}$.

While M is not perfect repeat the following:

1. Find an augmenting path for M in E_{ℓ} ; this increases size of MReset T to be one free vertex

2. If no augmenting path exists, improve ℓ to ℓ' such that M, T ⊂ E_{ℓ'}. Add one edge in E_{ℓ'} to T, keeping it an augmenting tree Go to 1.

Note that in each step of the loop we will either be increasing the size of M or T so this process must terminate.

Furthermore, when the process terminates, M will be a perfect matching in E_{ℓ} for some feasible labeling ℓ . So, by the Kuhn-Munkres theorem, M will be a maxweight matching.

Finding an Initial Feasible Labelling

Finding an initial feasible labeling is simple. Just use:

 $\forall y \in Y, \, \ell(y) = 0, \qquad \forall x \in X, \, \ell(x) = \max_{y \in Y} \{w(x, y)\}$

With this labelling it is obvious that

 $\forall x \in X, y \in Y, w(x, y) \le \ell(x) + \ell(y)$

Improving Labellings

Let ℓ be a feasible labeling. Define *neighbor* of $u \in V$ and set $S \subseteq V$ to be

 $N_{\ell}(u) = \{ v : (u, v) \in E_{\ell}, \}, \quad N_{\ell}(S) = \bigcup_{u \in S} N_{\ell}(u)$

Lemma: Let $S \subseteq X$ and $T = N_{\ell}(S) \neq Y$. Set

$$\alpha_{\ell} = \min_{x \in S, y \notin T} \{\ell(x) + \ell(y) - w(x, y)\}$$

and

$$\ell'(v) = \begin{cases} \ell(v) - \alpha_{\ell} & \text{if } v \in S \\ \ell(v) + \alpha_{\ell} & \text{if } v \in T \\ \ell(v) & \text{otherwise} \end{cases}$$

Then ℓ' is a feasible labeling and, (i) If $(x, y) \in E_{\ell}$ for $x \in S, y \in T$ then $(x, y) \in E_{\ell'}$; (ii) If $(x, y) \in E_{\ell}$ for $x \notin S, y \notin T$ then $(x, y) \in E_{\ell'}$; (iii) For some $x \in S, y \notin T$ we have $(x, y) \notin E_{\ell}$ but $(x, y) \in E_{\ell'}$

13

The Hungarian Method

- 1. Generate initial labelling ℓ and matching M in E_{ℓ} .
- 2. If *M* perfect, stop. Otherwise pick free vertex $u \in X$. Set $S = \{u\}, T = \emptyset$. Note: $S \cup T$ will be vertices of alternating tree
- 3. If $N_{\ell}(S) = T$, update labels (forcing $N_{\ell}(S) \neq T$)

 $\alpha_{\ell} = \min_{s \in S, \ y \notin T} \left\{ \ell(x) + \ell(y) - w(x, y) \right\}$

$$\ell'(v) = \begin{cases} \ell(v) - \alpha_{\ell} & \text{if } v \in S \\ \ell(v) + \alpha_{\ell} & \text{if } v \in T \\ \ell(v) & \text{otherwise} \end{cases}$$

4. If $N_{\ell}(S) \neq T$, pick $y \in N_{\ell}(S) - T$.

- If *y* free, *u* → *y* is augmenting path.
 Augment *M* and go to 2.
- If y matched, say to z, extend alternating tree: $S = S \cup \{z\}, T = T \cup \{y\}$. Go to 3.

- Initial Graph, trivial labelling and associated Equality Graph
- Initial matching: (x_3, y_1) , (x_2, y_2)
- $S = \{x_1\}, T = \emptyset.$
- Since $N_{\ell}(S) \neq T$, do step 4. Choose $y_2 \in N_{\ell}(S) - T$.
- y_2 is matched so grow tree by adding (y_2, x_2) , i.e., $S = \{x_1, x_2\}, T = \{y_2\}.$
- At this point $N_{\ell}(S) = T$, so goto 3.

- $S = \{x_1, x_2\}, T = \{y_2\}$ and $N_{\ell}(S) = T$
- Calculate α_{ℓ}

$$\alpha_{\ell} = \min_{x \in S, y \notin T} \begin{cases} 6+0-1, & (x_1, y_1) \\ 6+0-0, & (x_1, y_3) \\ 8+0-0, & (x_2, y_1) \\ 8+0-6, & (x_2, y_3) \end{cases}$$
$$= 2$$

- Reduce labels of *S* by 2; Increase labels of *T* by 2.
- Now $N_{\ell}(S) = \{y_2, y_3\} \neq \{y_2\} = T.$

- $S = \{x_1, x_2\}, N_{\ell}(S) = \{y_2, y_3\}, T = \{y_2\}$
- Choose $y_3 \in N_{\ell}(S) T$ and add it to T.
- y_3 is **not** matched in M so we have just found an alternating path x_1, y_2, x_2, y_3 with two free endpoints. We can therefore augment M to get a larger matching in the new equality graph. This matching is perfect, so it must be optimal.
- Note that matching (x_1, y_2) , (x_2, y_3) , (x_3, y_1) has cost 6 + 6 + 4 = 16 which is exactly the sum of the labels in our final feasible labelling.

Correctness:

- We can always take the trivial ℓ and empty matching M = Ø to start algorithm.
- If N_ℓ(S) = T, we saw that we could always update labels to create a new feasible matching ℓ'. The lemma on page 13 guarantees that all edges in S × T and S × T that were in E_ℓ will be in E_{ℓ'}. In particular, this guarantees (why?) that the current M remains in E_{ℓ'} as does the alternating tree built so far.

Note: The lemma requires that $T \neq Y$ but this is trivially correct since |T| = |S| - 1 so |T| < |Y|.

If N_ℓ(S) ≠ T, we can, by definition, always augment alternating tree by choosing some x ∈ S and y ∉ T such that (x, y) ∈ E_ℓ. Note that at some point y chosen must be free, in which case we augment M.

- So the algorithm always terminates.
- M is a perfect matching in E_{ℓ} when the algorithm terminates

— it is optimal by Kuhn-Munkres theorem.

Complexity

In each phase of algorithm, |M| increases by 1 so there are at most *V* phases. How much work needs to be done in each phase?

In implementation, $\forall y \notin T$ keep track of $slack_y = \min_{x \in S} \{\ell(x) + \ell(y) - w(x, y)\}$

- Initializing all slacks at beginning of phase takes O(|V|) time.
- In step 4 we must update all slacks when vertex moves from \$\overline{S}\$ to \$S\$.
 This takes \$O(|V|)\$ time; only \$|V|\$ vertices can be moved from \$\overline{S}\$ to \$S\$, giving \$O(|V|^2)\$ time per phase.
- In step 3, α_ℓ = min_{y∉T} slack_y and can therefore be calculated in O(|V|) time from the slacks. This is done at most |V| times per phase (why?) so only takes O(|V|²) time per phase. After calculating α_ℓ we must update all slacks. This can be done in O(|V|) time by setting

 $\forall y \notin T$, $slack_y = slack_y - \alpha_\ell$. Since this is only done O(|V|) times, total time per phase is $O(|V|^2)$. There are |V| phases and $O(|V|^2)$ work per phase so the total running time is $O(|V|^3)$.