The Shortest Superstring Problem: The Overlap Lemma

Last updated Nov 30, 2007

Overlap Lemma: Let c and c^{\prime} be cycles in \mathcal{C}
and r, r^{\prime} their respective representative strings. Then

$$
\operatorname{overlap}\left(r, r^{\prime}\right)<w t(c)+w t\left(c^{\prime}\right)
$$

where $w t(c)$ is the cost of cycle c.

Cycle Lemma:

If every string in $S^{\prime} \subseteq S$ is a substring of t^{∞} for some string t
\Rightarrow there is a cycle of weight at most $|t|$ in the prefix graph covering all of the vertices (corresponding to strings) in S.

Proof:

Let $t=t_{1} t_{2} \ldots t_{k}$.
Suppose $S^{\prime}=\left\{s_{1}, \ldots, s_{m}\right\}$.
Now let j_{i} be the starting point of the first occurrence of s_{i} in t^{∞}. This must be in the first copy of t (why).

Note that all of the j_{i} are different from each other since no substring in S is a substring of any other.

Now sort the strings by their starting points and consider the cycle c that visits the vertices corresponding to the strings in the sorted order. This cycle has length at most t so we are done.

GCD Lemma: Let X be a prefix of both α^{∞} and β^{∞} with $|X| \geq|\alpha|+|\beta|$. Then

1. If $|\alpha|=|\beta|$ then $\alpha=\beta$.
2. If $|\alpha|>|\beta|$ then X is a prefix of γ^{∞} where $\gamma=$ $X[1] X[2] \ldots X[|\alpha|-|\beta|]$.

Proof: (i) is obvious. To prove (ii) set $p=|\alpha|, q=|\beta|$. By definition, $\forall, 0<i \leq q$ and $0<j \leq p$,

$$
X[i+p]=X[i] \quad \text { and } \quad X[j+q]=X[j]
$$

We now show that $\forall i, 0<i \leq|X|-(p-q)$,

$$
X[i+(p-q)]=X[i]
$$

First assume that $0<i \leq q$. Then

$$
\begin{aligned}
X[i+(p-q)] & =X[i+(p-q)+q] \\
& =X[i+p]=X[i]
\end{aligned}
$$

Now assume that $q<i \leq|X|-(p-q)$. Then

$$
\begin{aligned}
X[i+(p-q)] & =X[i+(p-q)-p] \\
& =X[i-q]=X[i]
\end{aligned}
$$

Corollary: Let X be a prefix of both α^{∞} and β^{∞} with $|X| \geq|\alpha|+|\beta|$. Then X is a prefix of γ^{∞} where $\gamma=X[1] X[2] \ldots X[\operatorname{gcd}(|\alpha|, \mid \beta) \mid]$. Thus

$$
\gamma^{\infty}=\alpha^{\infty}=\beta^{\infty}
$$

Overlap Lemma: Let c and c^{\prime} be cycles in \mathcal{C} and r, r^{\prime} their respective representative strings. Then

$$
\operatorname{overlap}\left(r, r^{\prime}\right)<w t(c)+w t\left(c^{\prime}\right)
$$

where $w t(c)$ is the cost of cycle c.
Proof: Assume the contrary, that

$$
\operatorname{overlap}\left(r, r^{\prime}\right) \geq w t(c)+w t\left(c^{\prime}\right)
$$

Let α be the prefix of length of $w t(c)$ of $\operatorname{overlap}\left(r, r^{\prime}\right)$ and α^{\prime} the prefix of length of $w t\left(c^{\prime}\right)$ of $\operatorname{overlap}\left(r, r^{\prime}\right)$. Notice that

1. Every string "in" c is a substring of α.
2. Every string "in" c^{\prime} is a substring of $\left(\alpha^{\prime}\right)^{\infty}$.
3. overlap $\left(r, r^{\prime}\right)$ is a prefix of both α^{∞} and $\left(\alpha^{\prime}\right)^{\infty}$.

From the GCD Lemma we know that the string γ containing the first $\operatorname{gcd}\left(w t(c), w t\left(c^{\prime}\right)\right)$ characters of $\operatorname{overlap}\left(r, r^{\prime}\right)$ satisfies

$$
\gamma^{\infty}=\alpha^{\infty}=\left(\alpha^{\prime}\right)^{\infty}
$$

We just saw that

$$
\gamma^{\infty}=\alpha^{\infty}=\left(\alpha^{\prime}\right)^{\infty}
$$

so γ^{∞} contains every string in c and every string in c^{\prime}. Furthermore, by construction,

$$
|\gamma|=\operatorname{gcd}\left(w t(c), w t\left(c^{\prime}\right)\right)
$$

so, from the Cycle Lemma , we therefore have that there is a cycle of weight at most $\operatorname{gcd}\left(w t(c), w t\left(c^{\prime}\right)\right)$ covering all strings in c and c^{\prime}.
This contradicts the minimality of \mathcal{C}. Thus

$$
\operatorname{overlap}\left(r, r^{\prime}\right)<w t(c)+w t\left(c^{\prime}\right)
$$

