The Shortest Superstring Problem: The Overlap Lemma

Last updated Nov 30, 2007

<u>Overlap Lemma:</u> Let c and c' be cycles in Cand r, r' their respective representative strings. Then

overlap(r,r') < wt(c) + wt(c')

where wt(c) is the cost of cycle c.

Cycle Lemma:

If every string in $S' \subseteq S$ is a substring of t^{∞} for some string t

 \Rightarrow there is a cycle of weight at most |t| in the prefix graph covering all of the vertices (corresponding to strings) in S.

Proof: Let $t = t_1 t_2 \dots t_k$. Suppose $S' = \{s_1, \dots, s_m\}$.

Now let j_i be the starting point of the first occurrence of s_i in t^{∞} . This must be in the first copy of t (why).

Note that all of the j_i are different from each other since no substring in S is a substring of any other.

Now sort the strings by their starting points and consider the cycle c that visits the vertices corresponding to the strings in the sorted order. This cycle has length at most t so we are done. <u>GCD Lemma:</u> Let X be a prefix of both α^{∞} and β^{∞} with $|X| \ge |\alpha| + |\beta|$. Then

1. If $|\alpha| = |\beta|$ then $\alpha = \beta$.

2. If $|\alpha| > |\beta|$ then X is a prefix of γ^{∞} where $\gamma = X[1]X[2] \dots X[|\alpha| - |\beta|].$

<u>Proof:</u> (i) is obvious. To prove (ii) set $p = |\alpha|, q = |\beta|$. By definition, \forall , $0 < i \leq q$ and $0 < j \leq p$,

X[i+p] = X[i] and X[j+q] = X[j]

We now show that $\forall i, 0 < i \leq |X| - (p - q),$ X[i + (p - q)] = X[i].

First assume that $0 < i \leq q$. Then

$$X[i + (p - q)] = X[i + (p - q) + q]$$
$$= X[i + p] = X[i]$$
ume that $q < i \leq |X| - (n - q)$ Then

Now assume that $q < i \le |X| - (p - q)$. Then X[i + (p - q)] = X[i + (p - q) - p]

$$X[i + (p - q)] = X[i + (p - q) - p] = X[i - q] = X[i]$$

<u>Corollary</u>: Let X be a prefix of both α^{∞} and β^{∞} with $|X| \ge |\alpha| + |\beta|$. Then X is a prefix of γ^{∞} where $\gamma = X[1]X[2] \dots X[gcd(|\alpha|, |\beta)|]$. Thus $\gamma^{\infty} = \alpha^{\infty} = \beta^{\infty}$.

<u>Overlap Lemma:</u> Let c and c' be cycles in C and r, r' their respective representative strings. Then

 $\mathit{overlap}(r,r') < wt(c) + wt(c')$

where wt(c) is the cost of cycle c.

<u>Proof:</u> Assume the contrary, that

 $overlap(r,r') \geq wt(c) + wt(c')$

Let α be the prefix of length of wt(c) of overlap(r, r')and α' the prefix of length of wt(c') of overlap(r, r'). Notice that

- 1. Every string "in" c is a substring of α^{∞} .
- **2. Every string "in"** c' is a substring of $(\alpha')^{\infty}$.
- **3.** *overlap*(r, r') is a prefix of both α^{∞} and $(\alpha')^{\infty}$.

From the GCD Lemma we know that the string γ containing the first gcd(wt(c), wt(c')) characters of overlap(r, r')satisfies

$$\gamma^{\infty} = \alpha^{\infty} = (\alpha')^{\infty}.$$

We just saw that

$$\gamma^\infty = \alpha^\infty = (\alpha')^\infty$$

so γ^{∞} contains every string in c and every string in c'. Furthermore, by construction,

```
|\gamma| = gcd(wt(c), wt(c'))
```

so, from the Cycle Lemma , we therefore have that there is a cycle of weight at most gcd(wt(c), wt(c')) covering all strings in c and c'.

This contradicts the minimality of \mathcal{C} . Thus

overlap(r, r') < wt(c) + wt(c')