Primal-Dual Weighted Set Cover

Given universe U
collection of subsets \mathcal{F} of U, each $F \in \mathcal{F}$ having weight $C(F)$

A collection of subsets covers U if their union contains U. The weight of a cover is sum of the weights of set in cover.

Primal-Dual Weighted Set Cover

Given universe U
collection of subsets \mathcal{F} of U, each $F \in \mathcal{F}$ having weight $C(F)$

A collection of subsets covers U if their union contains U. The weight of a cover is sum of the weights of set in cover.

Finding a min-weight cover is NP-Hard. Algorithm below is an f-approximation algorithm, where f is max frequency of element in U (freq (x) is \# of sets to which x belongs.)

Primal-Dual Weighted Set Cover

Given universe U
collection of subsets \mathcal{F} of U, each $F \in \mathcal{F}$ having weight $C(F)$

A collection of subsets covers U if their union contains U. The weight of a cover is sum of the weights of set in cover.

Finding a min-weight cover is NP-Hard. Algorithm below is an f-approximation algorithm, where f is max frequency of element in U (freq (x) is \# of sets to which x belongs.)

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover.
by setting $x_{F}=1$ for those sets.
3. Output the cover

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover. by setting $x_{F}=1$ for those sets.
3. Output the cover

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover. by setting $x_{F}=1$ for those sets.
3. Output the cover

$$
\begin{array}{ll}
F_{1}=\{1,2,3,6\} & C\left(F_{1}\right)=4 \\
F_{2}=\{2,4,5,8\} & C\left(F_{2}\right)=6 \\
F_{3}=\{1,3,5\} & C\left(F_{3}\right)=1 \\
F_{4}=\{2,7,5\} & C\left(F_{4}\right)=3 \\
F_{5}=\{1,7,8,6\} & C\left(F_{5}\right)=9 \\
F_{6}=\{1,4,6\} & C\left(F_{6}\right)=2 \\
F_{7}=\{6,7,8\} & C\left(F_{7}\right)=10 \\
F_{8}=\{2,4,6,7,8\} & C\left(F_{8}\right)=7
\end{array}
$$

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover. by setting $x_{F}=1$ for those sets.
3. Output the cover

$$
\begin{array}{ll}
F_{1}=\{1,2,3,6\} & C\left(F_{1}\right)=4 \\
F_{2}=\{2,4,5,8\} & C\left(F_{2}\right)=6 \\
F_{3}=\{1,3,5\} & C\left(F_{3}\right)=1 \\
F_{4}=\{2,7,5\} & C\left(F_{4}\right)=3 \\
F_{5}=\{1,7,8,6\} & C\left(F_{5}\right)=9 \\
F_{6}=\{1,4,6\} & C\left(F_{6}\right)=2 \\
F_{7}=\{6,7,8\} & C\left(F_{7}\right)=10 \\
F_{8}=\{2,4,6,7,8\} & C\left(F_{8}\right)=7
\end{array}
$$

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover. by setting $x_{F}=1$ for those sets.
3. Output the cover

$$
\begin{array}{ll}
F_{1}=\{1,2,3,6\} & C\left(F_{1}\right)=4 \\
F_{2}=\{2,4,5,8\} & C\left(F_{2}\right)=6 \\
F_{3}=\{1,3,5\} & C\left(F_{3}\right)=1 \\
F_{4}=\{2,7,5\} & C\left(F_{4}\right)=3 \\
F_{5}=\{1,7,8,6\} & C\left(F_{5}\right)=9 \\
F_{6}=\{1,4,6\} & C\left(F_{6}\right)=2 \\
F_{7}=\{6,7,8\} & C\left(F_{7}\right)=10 \\
F_{8}=\{2,4,6,7,8\} & C\left(F_{8}\right)=7
\end{array}
$$

Tight
$e \quad y_{e} \quad$ Set(s) Covered

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover. by setting $x_{F}=1$ for those sets.
3. Output the cover

$$
\begin{array}{ll}
F_{1}=\{1,2,3,6\} & C\left(F_{1}\right)=4 \\
F_{2}=\{2,4,5,8\} & C\left(F_{2}\right)=6 \\
F_{3}=\{1,3,5\} & C\left(F_{3}\right)=1 \\
F_{4}=\{2,7,5\} & C\left(F_{4}\right)=3 \\
F_{5}=\{1,7,8,6\} & C\left(F_{5}\right)=9 \\
F_{6}=\{1,4,6\} & C\left(F_{6}\right)=2 \\
F_{7}=\{6,7,8\} & C\left(F_{7}\right)=10 \\
F_{8}=\{2,4,6,7,8\} & C\left(F_{8}\right)=7
\end{array}
$$

e $y_{e} \quad$ Set(s) Covered
$11 \quad F_{3} \quad 1,3,5$

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover. by setting $x_{F}=1$ for those sets.
3. Output the cover

$$
\begin{array}{ll}
F_{1}=\{1,2,3,6\} & C\left(F_{1}\right)=4 \\
F_{2}=\{2,4,5,8\} & C\left(F_{2}\right)=6 \\
F_{3}=\{1,3,5\} & C\left(F_{3}\right)=1 \\
F_{4}=\{2,7,5\} & C\left(F_{4}\right)=3 \\
F_{5}=\{1,7,8,6\} & C\left(F_{5}\right)=9 \\
F_{6}=\{1,4,6\} & C\left(F_{6}\right)=2 \\
F_{7}=\{6,7,8\} & C\left(F_{7}\right)=10 \\
F_{8}=\{2,4,6,7,8\} & C\left(F_{8}\right)=7
\end{array}
$$

Tight
$e \quad y_{e} \quad$ Set(s) Covered
$1 \begin{array}{llll}1 & 1 & F_{3} & 1,3,5\end{array}$
$23 \quad F_{1}, F_{4} \quad 2,6,7$

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover. by setting $x_{F}=1$ for those sets.
3. Output the cover

$$
\begin{array}{ll}
F_{1}=\{1,2,3,6\} & C\left(F_{1}\right)=4 \\
F_{2}=\{2,4,5,8\} & C\left(F_{2}\right)=6 \\
F_{3}=\{1,3,5\} & C\left(F_{3}\right)=1 \\
F_{4}=\{2,7,5\} & C\left(F_{4}\right)=3 \\
F_{5}=\{1,7,8,6\} & C\left(F_{5}\right)=9 \\
F_{6}=\{1,4,6\} & C\left(F_{6}\right)=2 \\
F_{7}=\{6,7,8\} & C\left(F_{7}\right)=10 \\
F_{8}=\{2,4,6,7,8\} & C\left(F_{8}\right)=7
\end{array}
$$

Tight
$e \quad y_{e} \quad$ Set(s) Covered
$1 \begin{array}{llll}1 & 1 & F_{3} & 1,3,5\end{array}$
$23 \quad F_{1}, F_{4} \quad 2,6,7$
$\begin{array}{llll}4 & 1 & F_{6} & 4\end{array}$

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover. by setting $x_{F}=1$ for those sets.
3. Output the cover

$$
\begin{array}{ll}
F_{1}=\{1,2,3,6\} & C\left(F_{1}\right)=4 \\
F_{2}=\{2,4,5,8\} & C\left(F_{2}\right)=6 \\
F_{3}=\{1,3,5\} & C\left(F_{3}\right)=1 \\
F_{4}=\{2,7,5\} & C\left(F_{4}\right)=3 \\
F_{5}=\{1,7,8,6\} & C\left(F_{5}\right)=9 \\
F_{6}=\{1,4,6\} & C\left(F_{6}\right)=2 \\
F_{7}=\{6,7,8\} & C\left(F_{7}\right)=10 \\
F_{8}=\{2,4,6,7,8\} & C\left(F_{8}\right)=7
\end{array}
$$

Tight
e $\quad y_{e} \quad \operatorname{Set}(\mathrm{~s}) \quad$ Covered

1	1	F_{3}	$1,3,5$
2	3	F_{1}, F_{4}	$2,6,7$
4	1	F_{6}	4
8	2	F_{2}	8

Primal-Dual Set-Cover

1. Set $\forall F, x_{F}=0, \forall e, y_{e}=0$.
2. Until all elements are covered do

Pick an uncovered element e, and increase y_{e} until some set becomes tight.
Add all newly tight sets to the cover. by setting $x_{F}=1$ for those sets.
3. Output the cover

$$
\begin{array}{ll}
F_{1}=\{1,2,3,6\} & C\left(F_{1}\right)=4 \\
F_{2}=\{2,4,5,8\} & C\left(F_{2}\right)=6 \\
F_{3}=\{1,3,5\} & C\left(F_{3}\right)=1 \\
F_{4}=\{2,7,5\} & C\left(F_{4}\right)=3 \\
F_{5}=\{1,7,8,6\} & C\left(F_{5}\right)=9 \\
F_{6}=\{1,4,6\} & C\left(F_{6}\right)=2 \\
F_{7}=\{6,7,8\} & C\left(F_{7}\right)=10 \\
F_{8}=\{2,4,6,7,8\} & C\left(F_{8}\right)=7
\end{array}
$$

Tight
$e \quad y_{e} \quad$ Set(s) Covered

1	1	F_{3}	$1,3,5$
2	3	F_{1}, F_{4}	$2,6,7$
4	1	F_{6}	4
8	2	F_{2}	8

Cover found is

$F_{1}, F_{2}, F_{3}, F_{4}, F_{6}$

