Primal-Dual Weighted Set Cover

v2: Revised 1/11/07

- Given universe Ucollection of subsets \mathcal{F} of U, each $F \in \mathcal{F}$ having weight C(F)
- A collection of subsets covers U if their union contains U. The weight of a cover is sum of the weights of set in cover.

Primal-Dual Weighted Set Cover

v2: Revised 1/11/07

- Given universe Ucollection of subsets \mathcal{F} of U, each $F \in \mathcal{F}$ having weight C(F)
- A collection of subsets covers U if their union contains U. The weight of a cover is sum of the weights of set in cover.
- Finding a min-weight cover is NP-Hard. Algorithm below is an f-approximation algorithm, where f is max frequency of element in U (freq(x) is # of sets to which x belongs.)

Primal-Dual Weighted Set Cover

- Given universe Ucollection of subsets \mathcal{F} of U, each $F \in \mathcal{F}$ having weight C(F)
- A collection of subsets covers U if their union contains U. The weight of a cover is sum of the weights of set in cover.
- Finding a min-weight cover is NP-Hard. Algorithm below is an f-approximation algorithm, where f is max frequency of element in U (freq(x) is # of sets to which x belongs.)

Primal-Dual Set-Cover 1. Set $\forall F, x_F = 0, \forall e, y_e = 0.$

2. Until all elements are covered do

Pick an uncovered element e, and increase y_e until some set becomes tight. Add all newly tight sets to the cover. by setting $x_F = 1$ for those sets.

3. Output the cover

v2: Revised 1/11/07

Primal-Dual Set-Cover

1. Set $\forall F, x_F = 0, \ \forall e, y_e = 0.$

2. Until all elements are covered do

Pick an uncovered element $e\,,$ and increase $y_{\,e}$

until some set becomes tight.

Add all newly tight sets to the cover.

by setting $x_F = 1$ for those sets.

3. Output the cover

Primal-Dual Set-Cover

- 1. Set $\forall F, x_F = 0, \forall e, y_e = 0$.
- 2. Until all elements are covered do

Pick an uncovered element e, and increase y_e until some set becomes tight. Add all newly tight sets to the cover. by setting $x_F = 1$ for those sets.

3. Output the cover

$F_1 = \{1, 2, 3, 6\}$	$C(F_1) = 4$
$F_2 = \{2, 4, 5, 8\}$	$C(F_2) = 6$
$F_3 = \{1, 3, 5\}$	$C(F_3) = 1$
$F_4 = \{2, 7, 5\}$	$C(F_4) = 3$
$F_5 = \{1, 7, 8, 6\}$	$C(F_5) = 9$
$F_6 = \{1, 4, 6\}$	$C(F_6) = 2$
$F_7 = \{6, 7, 8\}$	$C(F_7) = 10$
$F_8 = \{2, 4, 6, 7, 8\}$	$C(F_8) = 7$

Primal-Dual Set-Cover 1. Set $\forall F, x_F = 0, \ \forall e, \ y_e = 0.$ 2. Until all elements are covered do Pick an uncovered element e, and increase y_e until some set becomes tight. Add all newly tight sets to the cover. by setting $x_F = 1$ for those sets.

3. Output the cover

$F_1 = \{1, 2, 3, 6\}$	$C(F_1) = 4$
$F_2 = \{2, 4, 5, 8\}$	$C(F_2) = 6$
$F_3 = \{1, 3, 5\}$	$C(F_3) = 1$
$F_4 = \{2, 7, 5\}$	$C(F_4) = 3$
$F_5 = \{1, 7, 8, 6\}$	$C(F_5) = 9$
$F_6 = \{1, 4, 6\}$	$C(F_6) = 2$
$F_7 = \{6, 7, 8\}$	$C(F_7) = 10$
$F_8 = \{2, 4, 6, 7, 8\}$	$C(F_8) = 7$

Primal-Dual Set-Cover 1. Set $\forall F, x_F = 0, \forall e, y_e = 0.$ 2. Until all elements are covered do Pick an uncovered element e, and increase y_e until some set becomes tight. Add all newly tight sets to the cover. by setting $x_F = 1$ for those sets.

3. Output the cover

$F_1 = \{1, 2, 3, 6\}$	$C(F_1) = 4$
$F_2 = \{2, 4, 5, 8\}$	$C(F_2) = 6$
$F_3 = \{1, 3, 5\}$	$C(F_3) = 1$
$F_4 = \{2, 7, 5\}$	$C(F_4) = 3$
$F_5 = \{1, 7, 8, 6\}$	$C(F_5) = 9$
$F_6 = \{1, 4, 6\}$	$C(F_6) = 2$
$F_7 = \{6, 7, 8\}$	$C(F_7) = 10$
$F_8 = \{2, 4, 6, 7, 8\}$	$C(F_8) = 7$

Tight Set(s) e y_e Covered Primal-Dual Set-Cover 1. Set $\forall F, x_F = 0, \forall e, y_e = 0.$ 2. Until all elements are covered do Pick an uncovered element e, and increase y_e until some set becomes tight. Add all newly tight sets to the cover. by setting $x_F = 1$ for those sets.

3. Output the cover

$F_1 = \{1, 2, 3, 6\}$	$C(F_1) = 4$
$F_2 = \{2, 4, 5, 8\}$	$C(F_2) = 6$
$F_3 = \{1, 3, 5\}$	$C(F_3) = 1$
$F_4 = \{2, 7, 5\}$	$C(F_4) = 3$
$F_5 = \{1, 7, 8, 6\}$	$C(F_5) = 9$
$F_6 = \{1, 4, 6\}$	$C(F_6) = 2$
$F_7 = \{6, 7, 8\}$	$C(F_7) = 10$
$F_8 = \{2, 4, 6, 7, 8\}$	$C(F_8) = 7$

Tight Set(s) e y_e Covered 1, 3, 51 1 F_3

Primal-Dual Set-Cover 1. Set $\forall F, x_F = 0, \ \forall e, \ y_e = 0.$ 2. Until all elements are covered do Pick an uncovered element e, and increase y_e until some set becomes tight. Add all newly tight sets to the cover. by setting $x_F = 1$ for those sets. 3. Output the cover

$F_1 = \{1, 2, 3, 6\}$	$C(F_1) = 4$
$F_2 = \{2, 4, 5, 8\}$	$C(F_2) = 6$
$F_3 = \{1, 3, 5\}$	$C(F_3) = 1$
$F_4 = \{2, 7, 5\}$	$C(F_4) = 3$
$F_5 = \{1, 7, 8, 6\}$	$C(F_5) = 9$
$F_6 = \{1, 4, 6\}$	$C(F_6) = 2$
$F_7 = \{6, 7, 8\}$	$C(F_7) = 10$
$F_8 = \{2, 4, 6, 7, 8\}$	$C(F_8) = 7$

e	y_e	Tight Set(s)	Covered
1	1	F_3	1,3,5
2	3	F_1,F_4	2, 6, 7

Primal-Dual Set-Cover 1. Set $\forall F, x_F = 0, \forall e, y_e = 0.$ 2. Until all elements are covered do Pick an uncovered element e, and increase y_e until some set becomes tight. Add all newly tight sets to the cover. by setting $x_F = 1$ for those sets. 3. Output the cover

 $F_1 = \{1, 2, 3, 6\}$ $C(F_1) = 4$ $F_2 = \{2, 4, 5, 8\}$ $C(F_2) = 6$ $F_3 = \{1, 3, 5\}$ $C(F_3) = 1$ $F_4 = \{2, 7, 5\}$ $C(F_4) = 3$ $C(F_5) = 9$ $F_5 = \{1, 7, 8, 6\}$ $F_6 = \{1, 4, 6\}$ $C(F_6) = 2$ $F_7 = \{6, 7, 8\}$ $C(F_7) = 10$ $F_8 = \{2, 4, 6, 7, 8\}$ $C(F_8) = 7$

e	y_e	Tight Set(s)	Covered
1	1	F_3	1, 3, 5
2	3	F_1,F_4	2, 6, 7
4	1	F_6	4

Primal-Dual Set-Cover 1. Set $\forall F, x_F = 0, \forall e, y_e = 0.$ 2. Until all elements are covered do Pick an uncovered element e, and increase y_e until some set becomes tight. Add all newly tight sets to the cover. by setting $x_F = 1$ for those sets. 3. Output the cover

 $F_1 = \{1, 2, 3, 6\}$ $C(F_1) = 4$ $F_2 = \{2, 4, 5, 8\}$ $C(F_2) = 6$ $F_3 = \{1, 3, 5\}$ $C(F_3) = 1$ $F_4 = \{2, 7, 5\}$ $C(F_4) = 3$ $C(F_5) = 9$ $F_5 = \{1, 7, 8, 6\}$ $F_6 = \{1, 4, 6\}$ $C(F_6) = 2$ $F_7 = \{6, 7, 8\}$ $C(F_7) = 10$ $F_8 = \{2, 4, 6, 7, 8\}$ $C(F_8) = 7$

e	y_e	Tight Set(s)	Covered
1	1	F_3	1,3,5
2	3	F_1,F_4	2, 6, 7
4	1	F_6	4
8	2	F_2	8

Primal-Dual Set-Cover 1. Set $\forall F, x_F = 0, \forall e, y_e = 0.$ 2. Until all elements are covered do Pick an uncovered element e, and increase y_e until some set becomes tight. Add all newly tight sets to the cover. by setting $x_F = 1$ for those sets. 3. Output the cover

 $F_1 = \{1, 2, 3, 6\}$ $C(F_1) = 4$ $F_2 = \{2, 4, 5, 8\}$ $C(F_2) = 6$ $F_3 = \{1, 3, 5\}$ $C(F_3) = 1$ $F_4 = \{2, 7, 5\}$ $C(F_4) = 3$ $F_5 = \{1, 7, 8, 6\}$ $C(F_5) = 9$ $F_6 = \{1, 4, 6\}$ $C(F_6) = 2$ $F_7 = \{6, 7, 8\}$ $C(F_7) = 10$ $F_8 = \{2, 4, 6, 7, 8\}$ $C(F_8) = 7$

e	y_e	Tight Set(s)	Covered
1	1	F_3	1,3,5
2	3	F_1,F_4	2, 6, 7
4	1	F_6	4
8	2	F_2	8

Cover found is F_1, F_2, F_3, F_4, F_6