
A Fully Polynomial Time

Approximation Scheme
for Subset Sum

CLRS – Chapter 35

Last Revised – 16/11/07

1

Approximation Algorithms

For any given optimization (minimization) prob-
lem and approximation algorithm A to solve it:

• Let Π = Set of all instances of the problem.

• For all instances I ∈ Π define size(I).

• For all instances I ∈ Π define

OPT (I) = cost of optimal solution for I

A(I) = cost of solution produced by A on I.

Let ρ(n) be a function such that

∀I ∈ Π, with size(I) = n,
A(I)

OPT (I)
≤ ρ(n).

Then A is a
factor ρ(n) approximation algorithm
(ρ(n)-approximation algorithm) .

(there is a similar definition for maximization
problems)

2

The Subset-Sum Problem

Definition: An instance of the
subset-sum decision problem is (S, t) where:
S = {x1, x2, . . . , xn} a set of positive integers;
t a positive integer.

The problem is whether some subset of S adds up exactly

to t. This problem is NP-complete

The subset-sum optimization problem is to
find a subset of S whose sum is as large as pos-
sible but no greater than t.

We will define a class of algorithms Aǫ, such that, ∀ǫ > 0,

• Aǫ is an ǫ-approximation algorithm

for subset-sum.

• Aǫ runs in time polynomial in n, log t and 1
ǫ .

Such a class of algorithms is known as a

A fully polynomial-time approximation

scheme.

3

An Exponential Time Algorithm

If S = {x1, x2, . . . , xn} is a set or list and x a real number

then define

S +x = {x1, x2, . . . , xn} = {x1 +x, x2 +x, . . . , xn +x}.

If L = {x1, x2, . . . , xn} and L′ = {u1, u2, . . . , um} are

both sorted lists then define Merge-Lists(L, L′) to be

the procedure that returns the sorted union of the two

lists. This procedure runs in time O(|L′| + |L|).

Exact-Subset Sums

n← |S|

L0 ←< 0 >

for i = 1 to n

Li = Merge-Lists(Li−1, Li−1 + xi)

remove from Li all elements bigger than t.

return largest element in Ln.

Let Pi be the set of all values that can be obtained by

selecting some subset of {x1, x2, . . . , xi} and summing its

members. Then Li is a sorted list containing all elements

in Pi of size no greater than t.

The algorithm therefore returns the correct answer.

Since Li can have as many as 2i items this algorithm can

take Θ(2n) time!

4

Trimming

Let L{x1, x2, . . . , xm} be a list. To trim the list by

parameter δ means to remove as many elements from L

as possible in such a way that the list L′ of remaining

elements has the following property:

For every y ∈ L there exists a z ∈ L′ such that

(1− δ)y ≤ z ≤ y.

Example:

L =< 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 > and δ = 0.1.

A trimmed list would be L′ =< 10, 12, 15, 20, 23, 29 > .

Trim(L, δ)

L′ =< x1 >

last = x1

for i = 2 to m

if last < (1− δ)xi

then append xi onto end of L′.

last = xi

return L′

This algorithm returns a trimmed list in O(m) time.

(It assumes that input list is sorted in non-decreasing

order.)

5

The Actual Approximation Algorithm

Approx-Subset-Sum(S, t, ǫ)

n← |S|.

L0 =< 0 > .
for i = 1 to n

Li ←Merge-Lists(Li, Li−1 + xi)
Li ← Trim(Li, ǫ/n)
remove from Li all elements bigger than t

return largest element in Ln

Note that when list Li is trimmed we introduce a relative

error of at most ǫ/n between the representative values

remaining and the elements of the list. By induction can

show that, ∀y ∈ Pi there exists some z ∈ Li such that
(

1−
ǫ

n

)i
y ≤ z ≤ y.

Let z be the largest element in Ln. If y∗ is a solution to

the exact subset-sum problem then there exists a z∗ ∈ Ln

such that
(

1−
ǫ

n

)n
y∗ ≤ z∗ ≤ z ≤ y∗.

But ∀n > 1,

1− ǫ ≤
(

1−
ǫ

n

)n
⇒ (1− ǫ)y∗ ≤ z,

and Aǫ is an ǫ-approximation algorithm.

6

Running Time

The running time of the ith stage of the algorithm is

O(|Li|).

After trimming, successive elements z′, z ∈ Li have the

property

z′ < z
(

1−
ǫ

n

)

.

Therefore the total number of elements in Li is at most

log 1

1− ǫ
n

t =
ln t

− ln
(

1− ǫ
n

)

≤ Θ





n ln t

ǫ





The running time of Aǫ is proportional to

n2 ln t

ǫ

and the Aǫ form a

Fully Polynomial Time Approximation Scheme

for subset-sum.

7

