A Fully Polynomial Time

Approximation Scheme
for Subset Sum

CLRS — Chapter 35

Last Revised — 16/11/07

Approximation Algorithms

For any given optimization (minimization) prob-
lem and approximation algorithm A to solve it:

e Let [I = Set of all instances of the problem.
e For all instances I € II define size(1).

e For all instances I € II define

OPT(I) = cost of optimal solution for [
A(I) = cost of solution produced by A on I.

Let p(n) be a function such that
A(l
VI € I, with size(I) = n, OP<T(>I) < p(n).

Then A is a
factor p(n) approximation algorithm
(p(n)-approzimation algorithm) .

(there is a similar definition for mazimization
problems)

The Subset-Sum Problem

Definition: An instance of the

subset-sum decision problem is (S, t) where:
S ={x1,29,...,2,} aset of positive integers;
t a positive integer.

The problem is whether some subset of S adds up exactly
to t. This problem is NP-complete

The subset-sum optimization problem 1is to
find a subset of S whose sum is as large as pos-
sible but no greater than t.

We will define a class of algorithms A, such that, Ve > 0,

e A, is an e-approximation algorithm
for subset-sum.

e A, runs in time polynomial in n, logt and %
Such a class of algorithms is known as a

A fully polynomzial-time approximation
scheme.

An Exponential Time Algorithm

IfS ={x1,29,...,x,}isaset orlist and x a real number
then define

S+x={x1,x9,..., 0} ={m1+x,0042,...,0,+2x}.
If L={x1,29,...,2,} and L' = {uq,us, ..., u,} are

both sorted lists then define Merge-Lists(L, L") to be
the procedure that returns the sorted union of the two

lists. This procedure runs in time O(|L'| + |L]).

Exact-Subset Sums

n <« |S]
Ly+—<0>
for i =1 ton
L; = Merge-Lists(L; 1, L; 1 + z;)
remove from [, all elements bigger than t.
return largest element in L,.

Let P, be the set of all values that can be obtained by
selecting some subset of {1, s, ..., x;} and summing its
members. Then L; is a sorted list containing all elements
in P; of size no greater than ¢.

The algorithm therefore returns the correct answer.

Since L; can have as many as 2' items this algorithm can
take ©(2") time!

Trimming

Let L{z1,x9,..., 2} Dbe alist. To trim the list by
parameter 0 means to remove as many elements from L
as possible in such a way that the list L’ of remaining
elements has the following property:

For every y € L there exists a z € L' such that
(1-0d)y<z<y.

Example:
L=< 10,11,12,15,20.21,22.23,24.29 > and & = 0.1.
A trimmed list would be L' =< 10, 12, 15, 20, 23,29 > .

Trim(L,0)
L =< €T, >
last = x4

for i =2 tom
if last < (1 —9)z;
then append z; onto end of L.
last = z;

return L/

This algorithm returns a trimmed list in O(m) time.
(It assumes that input list is sorted in non-decreasing
order.)

The Actual Approximation Algorithm

Approx-Subset-Sum(S, ¢,)
n «— |S|.
Lo=<0>.
fori=1ton
L; — Merge-Lists(L;, L; 1 + x;)
L; < Trim(L;,e/n)
remove from [; all elements bigger than ¢
return largest element in L,

Note that when list L; is trimmed we introduce a relative
error of at most €/n between the representative values
remaining and the elements of the list. By induction can
show that, Vy € P; there exists some z € L; such that

(1-%)y<z<y
n

Let Z be the largest element in L,,. If y* is a solution to
the exact subset-sum problem then there exists a z* € L,
such that
€\
(1—) <z <z<uy.
n
But Vn > 1,

1—e§(1—€)n = (1—ey <7
n

and A, is an e-approximation algorithm.

6

Running Time

The running time of the ith stage of the algorithm is
O(|Lil)-

After trimming, successive elements 2/, z € L; have the

property
€
7 <z (1 —) :
n

Therefore the total number of elements in L; is at most

| Int
Ogl—lﬁt B —1n(1—;)

<0 (nlnt)

€

The running time of A, is proportional to

n?lnt

€

and the A, form a
Fully Polynomial Time Approzimation Scheme

for subset-sum.

