Addendum

This page proves the statement

$$
\begin{align*}
& \text { if } y \in P_{i} \text { with } y \leq t \text { then } \exists z \in L_{i} \text { such that } \\
& \qquad\left(1-\frac{\epsilon}{n}\right)^{i} y \leq z \leq y \tag{1}
\end{align*}
$$

that appeared in the analysis of the subset-sum approximation scheme presented in COMP572. Please see the class notes for definitions of the terms.

The proof will be by induction on i. When $i=1$ note that $P_{1}=<0, x_{1}>$ while $L_{1}=<0, x_{1}>$ or $L_{1}=<0>$, depending upon whether or not $x_{i} \leq t$. In both cases, if $y \in P_{1}$ with $y \leq t$ then $y \in L_{1}$ so (1) is true.

Now assume that (1) is true for i. We will prove its correctness for $i+1$. Recall that $P_{i+1}=\operatorname{Merge}\left(P_{i}, P_{i}+x_{i+1}\right)$ with all items $>t$ thrown out and L_{i+1} is the trimmed version of $\operatorname{Merge}\left(L_{i}, L_{i}+x_{i+1}\right)$ with all items $>t$ thrown out.

So now suppose that $y \in P_{i+1}$ with $y \leq t$.
There are two cases: (i) $y \in P_{i}$ or (ii) $y \in P_{i}+x_{i+1}$.
If $y \in P_{i}$ then, by induction, $\exists z_{i} \in L_{i}$ such that $\left(1-\frac{\epsilon}{n}\right)^{i} y \leq z_{i} \leq y$. Since $z_{i} \in \operatorname{Merge}\left(L_{i}, L_{i}+x_{i+1}\right), \exists z \in L_{i+1}$ such that $\left(1-\frac{\epsilon}{n}\right) z_{i} \leq z \leq z_{i}$. Combining the two sets of inequalities yields

$$
\left(1-\frac{\epsilon}{n}\right)^{i+1} y \leq\left(1-\frac{\epsilon}{n}\right) z_{i} \leq z \leq z_{i} \leq y
$$

which is what we wanted to show.
If $y \in P_{i}+x_{i+1}$ then $y=y_{i}+x_{i+1}$ for some $y_{i} \in P_{i}$. Again by induction $\exists z_{i} \in L_{i}$ such that $\left(1-\frac{\epsilon}{n}\right)^{i} y_{i} \leq z_{i} \leq y_{i}$. Therefore

$$
\left(1-\frac{\epsilon}{n}\right)^{i} y=\left(1-\frac{\epsilon}{n}\right)^{i}\left(y_{i}+x_{i+1}\right) \leq\left(1-\frac{\epsilon}{n}\right)^{i} y_{i}+x_{i+1} \leq z_{i}+x_{i+1} \leq y_{i}+x_{i+1}=y
$$

Since $z_{i}+x_{i+1} \in \operatorname{Merge}\left(L_{i}, L_{i}+x_{i+1}\right), \exists z \in L_{i+1}$ such that $\left(1-\frac{\epsilon}{n}\right)\left(z_{i}+x_{i+1}\right) \leq$ $z \leq z_{i}+x_{i+1}$. Combining the two sets of inequalities yields

$$
\left(1-\frac{\epsilon}{n}\right)^{i+1} y \leq\left(1-\frac{\epsilon}{n}\right)\left(z_{i}+x_{i+1}\right) \leq z \leq z_{i}+x_{i+1} \leq y
$$

which is what we wanted to show and the proof is now complete.

