
Lecture 4: The Shortest Superstring Problem

Last updated Nov 30, 2007

In this lecture we describe a
4-approximation algorithm for the
shortest superstring problem .

References:
Vazirani, Chapter 7 and
16.17.1 in Gusfield, Algorithms on Strings, Trees and Se-

quences.

1

The Shortest Superstring problem

Definition:

Given a finite alphabet Σ and

a set of n strings S = {s1, . . . , sn} ⊆ Σ+

a superstring of S is a string s

that contains all of the si.

The problem is to Find a shortest superstring s.

Note: We assume that no string in S is a substring of any other.

Motivated by problems in DNA and data compression.

Problem is NP-Hard.

2

Example: S = {abcc, efab, bccla}.

Both bcclabccefab and efabccla are superstrings

of S. efabccla is a shortest superstring.

For two strings s, s′ :

Let overlap(s, s′) be the maximum overlap between a

suffix of s and a prefix of s′.

Let prefix(s, s′) be the prefix of s that remains after

chopping off overlap(s, s′).

Example: s = GREAT, s′ = EATEN. Then

overlap(s, s′) = EAT prefix(s, s′) = GR.

Now suppose that in the optimum solution the strings

appear, from left to right, in the order s1, s2, . . . , sn. The

overlap between two consecutive strings is as large as pos-

sible (otherwise a smaller superstring exists). Therefore:

OPT = |prefix(s1, s2)| + |prefix(s2, s3)| + · · ·

+|prefix(sn−1, sn)| + |prefix(sn, s1)|

+|overlap(sn, s1)|.

3

The Prefix Graph

Let S = {s1, . . . , sn} ⊆ Σ+ be as described.

Its prefix graph is a complete weighted directed graph

G = (V, E) with

V = {1, 2, . . . , n}

wt(i, j) = |prefix(si, sj)|.

Notice that the graph tour i1 → i2 → . . . → in → i1
has cost

|prefix(si1, si2)|+|prefix(si2, si3)|+· · ·+|prefix(sin−1
, sin)|+|prefix(sin, si1)|

so the Minimum Travelling Salesman Tour cost (TSP)

in this graph is actually a lower bound on

OPT = |prefix(s1, s2)| + |prefix(s2, s3)| + · · ·

+|prefix(sn−1, sn)| + |prefix(sn, s1)|

+|overlap(sn, s1)|.

TSP is hard to use (and calculate) so we will actually use

the related problem of minimum cycle cover (MCC).

4

Cycle Covers

A Cycle Cover of a directed graph is a disjoint set of

cycles covering all of the vertices in the graph. A mini-

mum cycle cover of a weighted directed graph is a cycle

cover of minimum cost.

Note that a tour is a cycle cover so MCC ≤ TSP.

In our case this means that MCC ≤ TSP ≤ OPT,

giving another lower bound on OPT.

Let G = (V, E) be a directed graph with V = {v1, v2, . . . vn}.

Now construct a new bipartite graph G′ = (U ∪ W, E ′)

with U = {u1, u2, . . . un} and W = {w1, w2, . . . wn} as

follows:

(ui, wj) ∈ E ′ ⇔ (vi, vj) ∈ E.

Also, let wt(ui, wj) = c(vi, vj).

Every cycle cover in G corresponds to a perfect matching

in G′ with the same cost and vice versa.

To find a minimum cost cycle cover in G all we have to

do is find a minimum cost perfect matching in G′, which

can be done in polynomial time.

5

If c = i1 → i2 → . . . → il → i1 is a cycle in the prefix

graph define

α(c) = prefix(si1, si2) ◦ . . . ◦ prefix(sil−1
, sil) ◦ prefix(sil, si1)

σ(c) = α(c) ◦ si1.

Notice that

• |α(c)| = wt(c), |σ(c)| = wt(c) + |si1|.

• σ(c) is a superstring of si1, si2, . . . , sil.

• All of the si1, si2, . . . , sil are substrings of

α(c) ◦ α(c) ◦ α(c) ◦ . . . = (α(c))∞.

• σ(c) was constructed by opening cycle c at arbitrary

string si1. We call si1 the representative string for

c.

Shortest Superstring

1. Construct the prefix graph of S.

2. Find a minimal cycle cover of the prefix graph

C = {c1, c2, . . . , ck}.

3. Output σ(c1) ◦ σ(c2) ◦ . . . ◦ σ(ck).

Theorem: SS is a 4-approximation algorithm for the short-

est superstring problem.

6

Overlap Lemma: Let c and c′ be cycles in C and r, r′

representative strings. Then

overlap(r, r′) < wt(c) + wt(c′)

where wt(c) is the cost of cycle c.

7

Theorem: SS is a 4-approximation algorithm for the short-

est superstring problem.

Proof:

Recall that SS finds a cycle cover C = {c1, c2, . . . , ck}

and outputs

σ(c1) ◦ σ(c2) ◦ . . . ◦ σ(ck)

where σ(ci) = α(ci) ◦ ri and |σ(ci)| = wt(ci) + |ri|.

Let wt(C) =
∑k

i=1 wt(ci).

Then the output of the algorithm has length
k∑

i=1

|σ(ci)| = wt(C) +
k∑

i=1

|ri|.

Recall that wt(C) ≤ TSP ≤ OPT.

To prove the theorem we only have to prove that
∑k

i=1 |ri| ≤ 3OPT.

Assume that r1, r2, . . . , rk are numbered in order of their

leftmost appearance in the shortest superstring of S. Then

OPT ≥
k∑

i=1

|ri| −
k−1∑

i=1

overlap(ri, ri+1).

From the overlap lemma:

overlap(ri, ri+1) < wt(ci) + wt(ci+1).

8

So far we have seen

OPT ≥
k∑

i=1

|ri| −
k−1∑

i=1

overlap(ri, ri+1)

and

overlap(ri, ri+1) < wt(ci) + wt(ci+1).

This implies

OPT ≥
k∑

i=1

|ri| − 2
k∑

i=1

wt(ci)

so

k∑

i=1

|ri| ≤ OPT + 2wt(C) ≤ 3OPT

and we are done.

9

