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Let G be a weighted, complete, directed acyclic graph whose edge weights obey
the concave Monge condition. We give an efficient algorithm for finding the
minimum weight k-link path between a given pair of vertices for any given k. The

log k log log n'O Ž . Ž .algorithm runs in n2 time, for k s V log n . Our algorithm can be
applied to get efficient solutions for the following problems, improving on previous

Ž . Ž .results: 1 computing length-limited Huffman codes, 2 computing optimal dis-
Ž . Ž .crete quantization, 3 computing maximum k-cliques of an interval graph, 4

Ž .finding the largest k-gon contained in a given convex polygon, 5 finding the
smallest k-gon that is the intersection of k half-planes out of n half-planes
defining a convex n-gon. Q 1998 Academic Press

1. INTRODUCTION

Ž . Ž .Let G s V, E be a weighted, complete, directed acyclic graph DAG
� 4 Žwith the vertex set V s ¨ , ¨ , . . . , ¨ . For convenience, we represent ¨1 2 n i

. Ž .by i. For 1 F i - j F n, let w i, j denote the weight associated with the
Ž . Ž .edge i, j . See Fig. 1.

An edge in a path in G is called a link of the path. We call a path in G a
k-link path if the path contains exactly k links. For any two vertices, i and
j, we call a path from i to j a minimum k-link path if it contains exactly k
links and among all such paths it has the minimum weight. A weighted

Ž .DAG, G, satisfies the concave Monge property if the inequality w i, j q
Ž . Ž . Ž .w i q 1, j q 1 F w i, j q 1 q w i q 1, j holds for all 1 - i q 1 - j - n.
In this article, we are interested in computing the minimum weight

k-link path from 1 to n in concave Monge DAGs, i.e., weighted DAGs
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FIG. 1. Complete DAG.

whose weights satisfy the concave Monge property. We assume that the
Ž .weights are not given explicitly, instead whenever a weight w i, j is

Žrequired it can be computed in constant time. Otherwise, any algorithm
Ž 2 . .would require V n running time.

w x w xUsing the results of Aggarwal et al. 1 and Aggarwal and Park 2 , it is
easy to show that the minimum weight k-link path can be computed in
Ž . w xO nk time for a concave Monge DAG. Bein, Larmore, and Park 7 and

w xAggarwal, Schieber, and Tokuyama 3 gave a weakly polynomial algorithm
for this problem when the weights are restricted to be integers. The

Ž .algorithm runs in O n log U time, where U is the maximum absolute
w xvalue of the weights. Aggarwal, Schieber, and Tokuyama 3 also gave an
Ž 'improved strongly polynomial algorithm that runs in O n k log n q

OŽ log k log log n .'.n log n time. The main result of this article is a n2 time
Ž .algorithm for computing the minimum weight k-link path, for k s V log n .
w xNote that this algorithm is superior to both the algorithm given in 3 and

Ž . Ž .the O nk time naive algorithm whenever k s V log n . From now on, we
assume that this is the case.

w xIn 3 , Aggarwal, Schieber, and Tokuyama posed the question of design-
Ž Ž ..ing an O n ? polylog n, k time algorithm for computing the minimum

weight k-link path. Although we are still unable to answer this question in
the affirmative, we may be a step closer to this goal because for any k,

ŽŽ .Ž1qa ..such that log k s V log log n , for some a ) 0, our algorithm runs
Ž « .in o nk time, for any fixed « .

Our algorithm is recursive. It uses some properties of concave Monge
wDAGs together with a variant of the parametric search technique 13,

x9 }a powerful technique for designing algorithms, especially in computa-
w xtional geometry 8 . Interestingly, our algorithm uses the parametric search

in the most naive way, in contrast to the more sophisticated way it was
w xused in 3 . We leave open the question whether a more clever way of

applying the parametric search paradigm would yield a better algorithm.
w xIn 3 , Aggarwal, Schieber, and Tokuyama describe five applications of

the algorithm for minimum weight k-link path in concave Monge DAGs.
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These applications are to the following problems:

I. Computing optimal length limited prefix free binary codes.
II. Data compression by quantization.

III. Computing k maximum weight cliques in interval graphs.
IV. Computing the maximum area k-gon and the maximum perime-

ter k-gon that are contained in a given convex n-gon.
V. Computing the minimum area k-gon that is the intersection of k

half-planes out of n half-planes defining a given convex n-gon.

w xIn all of these applications we improve upon the results in 3 . Specifically,
Ž .for k s V log n , the improved running time for Applications I, II, IV, and

OŽ log k log log n .'V is n2 , while the improved running time for Application III
OŽ log k log log n .'Ž .is O m q n2 . To make the article self-contained we de-

scribe these applications in more detail in Section 4.
The rest of the article is organized as follows. Section 2 proves some

properties of concave Monge DAGs, and Section 3 describes the algorithm
and analyzes its complexity.

2. PROPERTIES OF CONCAVE MONGE
DIRECTED ACYCLIC GRAPHS

Ž .Let G be a concave Monge DAG. For a real number t , define G t to
be the weighted DAG with the same sets of vertices and edges as G, in

Ž . Ž . Ž Ž .which each edge e in G t has the weight w e q t where w e is the
.weight of e in G . Note that if G has the concave Monge property, then

Ž .G t also has this property. Define a diameter path in G to be a path from
1 to n.

The first two lemmas hold for any DAG and do not depend on the fact
that G has the concave Monge property.

Ž .LEMMA 1. If for some t a minimum weight diameter path in G t has k
links, then this path is a minimum weight k-link diameter path in G.

Proof. The lemma follows from the fact that the difference between
Ž .the weight of any k-link diameter path in G t and the weight of the same

path in G is kt .

Ž .LEMMA 2. If a minimum weight diameter path in G t has k links, then
Ž .for e¨ery j - t , any minimum weight diameter path in G j has at least k

links.

Ž .Proof. Let P and Q be minimum weight diameter paths in G t and
Ž .G j , respectively. Suppose that P has k links, and that Q has ll links.
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Ž . Ž . Ž . Ž .Let W P denote the weight of P in G t . Then, W Q y W P G 0 andt t t

Ž . Ž .W Q y W P F 0. Thus,j j

ll t y j s W Q y W Q G W P y W P s k t y j .Ž . Ž . Ž . Ž . Ž . Ž .t j t j

Because t y j ) 0, we have that ll G k.

Ž . Ž .DEFINITION 1. An edge i , j co¨ers another edge i , j if i F i -1 1 2 2 1 2
Ž . Ž .j F j and i , j / i , j .2 1 1 1 2 2

Ž .Let P and P be paths in G. Suppose that there exists a link i , j of1 2 1 1
Ž . Ž . Ž .P and a link i , j of P such that i , j covers i , j . We define a1 2 2 2 1 1 2 2

path swap operation with respect to this pair of edges. This operation
creates two new paths Q and Q . Path Q is given by connecting the1 2 1

Ž .prefix of P ending at i with the suffix of P starting at j by edge i , j .1 1 2 2 1 2
Path Q is given by connecting the prefix of P ending at i with the suffix2 2 2

Ž . Ž .of P starting at j by edge i , j . See Fig. 2.1 1 2 1

LEMMA 3. Let Q , Q be paths obtained from P and P by a path swap1 2 1 2
Ž . Ž .operation with respect to i , j and i , j . The sum of the weights of paths1 1 2 2

Q and Q is at most the sum of the weights of paths P and P . In particular,1 2 1 2
if P and P are minimum weight paths so are Q and Q .1 2 1 2

FIG. 2. The swap operation.
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Ž . Ž . Ž .Proof. In case i s i or j s j , clearly, W Q q W Q s W P q1 2 1 2 1 2 1
Ž .W P . Otherwise, i.e., i - i - j - j , we have2 1 2 2 1

W Q q W Q s W P q W P y w i , j q w i , jŽ . Ž . Ž . Ž . Ž . Ž .Ž .1 2 1 2 1 1 2 2

q w i , j q w i , jŽ . Ž .Ž .1 2 2 1

F W P q W P .Ž . Ž .1 2

The inequality follows from the concave Monge property of the edge
weights.

For a F b, let P and P be two distinct paths from 1 to a and from 1 to1 2
b, respectively. Suppose that P has k links, P has k links, where1 1 2 2
k G k .1 2

Ž .LEMMA 4. For any 0 F x F k y k there are links e s i , j of P1 2 1 1 1 1
Ž .and e s i , j of P with the following two properties.2 2 2 2

1. Edge e co¨ers edge e .2 1

2. The prefix of P ending at i has x more links than the prefix of P1 1 2
ending at i .2

Ž .Proof. We prove the lemma by double induction on k and k : the1 2
lengths of paths P and P .1 2

Induction Basis. Consider a path P from 1 to a with k links.1 1
Ž .Suppose that k s 1, that is, path P consists of a single link 1, b . In this2 2

Ž . Ž .case set e s 1, b , and set e as the x q 1 st link in P . It is easy to see2 1 1
that e covers e and that the second property holds because the prefix of2 1
P up to the left endpoint of e consists of x links.1 1

Ž .Induction Step. Assume that the lemma holds for i all pairs of paths
Ž .P and P that obey the lemma conditions , such that P has less than k1 2 1 1

Ž .links, and for ii all pairs of paths P and P , such that P has k links1 2 1 1
and P has k9 links, for 1 F k9 - k F k . We show that the lemma holds2 2 1
also for all pairs of paths P with k links and P with k links. Consider1 1 2 2
such a pair P and P . We distinguish between two cases depending on the1 2

Ž .last link of P , denoted c, b .2

Ž .Case 1. The edge c, b does not cover any edges of P . This implies1
Ž . Xthat c ) d, where d, a is the last link of P . Let P be the prefix of P1 1 1

ending at d, and let PX be the prefix of P ending at c. Note that the pair2 2
of paths PX and PX with k y 1 and k y 1 links, respectively, obey the1 2 1 2
lemma conditions and thus by the induction hypothesis for any 0 F x F
Ž . Ž . Ž . Xk y 1 y k y 1 s k y k there are links e s i , j of P and1 2 1 2 1 1 1 1

Ž . Xe s i , j of P that satisfy the lemma properties. Because e and e are2 2 2 2 1 2
also in P and P it follows that the lemma holds also for P and P .1 2 1 2
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Ž .Case 2. The edge c, b covers the last y ) 0 edges of P . Denote the1
Ž . Ž . Ž .last y edges of P by d , d , d , d , . . . , d , d s a . Suppose that1 1 2 2 3 y yq1

Ž .k y k y y - x F k y k , in this case set e s c, b and e s1 2 1 2 2 1
Ž .d , d . Clearly, e covers e , also the prefix of Pxyk qk qy xyk qk qyq1 2 1 11 2 1 2

ending at d has x more links than the prefix of P ending at c.xyk qk qy 21 2

The remaining case we have to consider is 0 F x F k y k y y, and1 2
y F k y k . Let d be the vertex preceding d in P , let PX be the prefix1 2 1 1 1
of P ending at d, and let PX be the prefix of P ending at c. Note that PX

1 2 2 1
has k y y y 1 links and note that P has k y 1 links. The pair PX and1 2 2 1
PX obey the lemma conditions and thus by the induction hypothesis for any2

Ž . Ž .0 F x F k y y y 1 y k y 1 s k y k y y there are links e s1 2 1 2 1
Ž . X Ž . Xi , j of P and e s i , j of P that satisfy the lemma properties.1 1 1 2 2 2 2
Because e and e are also in P and P it follows that the lemma holds1 2 1 2
also for P and P .1 2

LEMMA 5. Let a, b, P , P , k , and k be as in the pre¨ious text. For any1 2 1 2
w xk in the range k , k , there are paths Q with k links from 1 to a and Q with2 1 1 2

k q k y k links from 1 to b such that the sum of the weights of paths Q1 2 1
and Q is at most the sum of the weights of paths P and P . In particular, if2 1 2
P and P are minimum weight paths so are Q and Q .1 2 1 2

w xProof. Fix some k in the range k , k . By Lemma 4 there are links2 1
Ž . Ž .e s i , j in P and e s i , j in P such that edge e covers edge e ,1 1 1 1 2 2 2 2 2 1

and the prefix of P ending at i has k y k more links than the prefix of1 1 2
P ending at i . Perform a path swap with respect to e and e to obtain2 2 1 2
two paths Q and Q from 1 to a and b, respectively. Because Q is1 2 1
created by connecting the prefix of P ending at i with the suffix of P1 1 2

Ž .starting at j , the length of Q is k q k y k s k. Similarly, the length2 1 2 2
Ž .of Q is k y k y k s k q k y k. Lemma 3 implies that the sum of2 1 2 1 2

the weights of paths Q and Q is at most the sum of the weights of paths1 2
P and P .1 2

Ž .DEFINITION 2. For 1 - a F n and 1 F ll - a, let P a, ll denote a
Ž .minimum weight ll-link path in G from 1 to a, and let W a, ll denote the

Ž . Ž . Ž . Ž .weight of this path. Let P ll s P n, ll and W ll s W n, ll .

The next propositions follow from Lemma 5.

PROPOSITION 6. For 1 - a - b F n and 1 F ll - a y 1,

W a, ll y W a, ll q 1 F W b , ll y W b , ll q 1 .Ž . Ž . Ž . Ž .

Ž .Proof. Let P be a minimum weight ll q 1 -link path in G from 1 to a1
and let P9 be a minimum weight ll-link path from 1 to b. By Lemma 5

Ž .there are paths Q with ll links from 1 to a and Q with ll q 1 links1 2
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from 1 to b such that the sum of the weights of these paths is at most the
sum of the weights of paths P and P . The proposition follows.1 2

PROPOSITION 7. For 1 - a F n and 1 - ll - a y 1,

W a, ll y W a, ll q 1 F W a, ll y 1 y W a, ll .Ž . Ž . Ž . Ž .

Ž .Proof. Let P be a minimum weight ll q 1 -link path in G from 1 to a
Ž .and let P9 be a minimum weight ll y 1 -link path from 1 to a. By Lemma

5 there are paths Q and Q9 with ll links from 1 to a such that the sum of
the weights of these paths is at most the sum of the weights of paths P and
P9. The proposition follows.

Ž .Proposition 7 implies that the function W a, . is unimodal; or in other
words, any local minimum of the function is the global minimum.

In the next proposition we consider minimum weight paths with ll links
from 1 to some vertex i. Note the distinction between minimum weight
ll-link paths which are paths of minimum weight among all path with
exactly ll links from 1 to i, and minimum weight paths with ll links which
are paths of minimum weight among all paths from 1 to i that also have ll

links, such paths may not necessarily exist.

PROPOSITION 8. For 1 F ll F n y 1, all the ¨ertices to which there exists a
Ž .minimum weight path from 1 with ll links are consecutï e.

Proof. To obtain a contradiction assume that there exist three vertices
a - b - c, such that there exist minimum weight paths P and P with ll1 3
links from 1 to a and to c, respectively, but there is no minimum weight
path from 1 to b with ll links. Let P be a minimum weight path from 12
to b with k links. If k - ll , then, by Lemma 5, there are minimum weight
paths Q with k links from 1 to a and Q with ll links from 1 to b.1 2
Otherwise, there are minimum weight paths Q with k links from 1 to c3
and Q with ll from 1 to b; a contradiction.2

LEMMA 9. For any 1 F k F n y 1, there exists a real number t such that
Ž .a minimum weight diameter path of G t has k links.

Proof. First, consider some 1 - k - n y 1. We claim that for any t in
w Ž . Ž . Ž . Ž .xthe interval W k y W k q 1 , W k y 1 y W k there is a minimum

Ž .weight diameter path in G t with k links. Consider any k - ll - n. Note
Ž . Ž .that a minimum weight x-link path in G t weighs W x q xt , it follows

Ž Ž . Ž .. Ž .that for t G W k y W ll r ll y k , a minimum weight k-link path in
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Ž . Ž .G t weighs no more than a minimum weight ll-link path in G t . By
Proposition 7,

W k y W ll s W k y W k q 1 q W k q 1 y W k q 2Ž . Ž . Ž . Ž . Ž . Ž .
q ??? qW ll y 1 y W llŽ . Ž .

F ll y k W k y W k q 1 .Ž . Ž . Ž .Ž .
Ž . Ž .We get that for all t G W k y W k q 1 , a minimum weight k-link path

Ž . Ž .in G t weighs no more than a minimum weight ll-link path in G t , for
Ž Ž . Ž .. Ž .any ll ) k. Now consider any 1 F ll - k. For t F W ll y W k r k y ll ,

Ž .a minimum weight k-link path in G t weighs no more than a minimum
Ž .weight ll-link path in G t . Applying Proposition 7 again we get that for all

Ž . Ž . Ž .t F W k y 1 y W k , a minimum weight k-link path in G t weighs no
more than a minimum weight ll-link path. This completes the proof for
1 - k - n y 1. In a similar way it can be shown that for any 1 - ll - n,

Ž . Ž . Ž .and for all t G W 1 y W 2 , a minimum weight 1-link path in G t
weighs no more than a minimum weight ll-link path; and for any 1 F ll - n

Ž . Ž . Ž .y 1, and for all t F W n y 2 y W n y 1 , a minimum weight n y 1 -link
Ž .path in G t weighs no more than a minimum weight ll-link path.

w Ž . Ž . Ž . Ž .xLet I be the interval W k y W k q 1 , W k y 1 y W k . To findopt
a minimum weight k-link diameter path it is sufficient to find some value
t in the interval I . Suppose that such a t is found. To compute aopt opt opt

Žminimum weight k-link diameter path in G or equivalently, a minimum
Ž . .weight diameter path in G t with k links we do the following. First, weopt

apply either the linear time algorithm for finding a minimum weight
diameter path in DAGs with the concave Monge property given by Wilber
w x w x15 or the one given by Klawe 10 , to find two minimum weight diameter

Ž .paths in G t : P with the maximum number of links and P with theopt 1 2
minimum number of links. The modification required in either of these

Ž .algorithms in order to find P resp., P is in the comparisons of path1 2
weights: whenever the weights of two paths are compared and found to be

Ž .equal the path with more resp., less links is considered lighter. Second,
we apply Lemma 5 to find a minimum weight diameter path with k links.
It is easy to see that finding the required links e and e in the proof of1 2
Lemma 5 and that performing the path swap can be done in time

Ž .proportional to the length of P ; that is, O n time.1

3. THE ALGORITHM

The algorithm either explicitly computes a minimum k-link diameter
path or finds some t which can be used to find such a path as explainedopt
in the previous section.
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Fix an integer ll , which is set appropriately in the analysis. For conve-
nience, assume that both ll and krll are integers. The algorithm consists
of krll stages. In the t th stage, for t s 1, . . . , krll ,

Ž . w xeither find some t or i compute the maximal range L , Ropt t t
such that for all t g I and for all L F i F R , there exists aopt t t

Ž . Ž .minimum weight path from 1 to i in G t with t ll links; and ii
compute a minimum weight t ll-link path to each of these
vertices.

w xNote that the range L , R cannot be empty. Later we show that in caset t
t is not found in stage t, then for all t g I and for all L F i F R , allopt opt t t

Ž .minimum weight paths from 1 to i in G t have t ll links. This implies that
L ) R .t ty1

ŽŽ . .The input to stage t consists of minimum weight t y 1 ll -link paths
from 1 to i in G, for all L F i F R . All these paths are minimumty1 ty1

Ž .weight paths in G t , for all t g I . For t ) 1, these paths were com-opt
puted in the previous stage. For t s 1, L s R s 1.0 0

The main tool used in stage t is a decision procedure that for a given
Ž .vertex R q m and a parameter x ) t y 1 ll , decides whether for allty1

Ž .t g I all minimum weight paths from 1 to R q m in G t have lessopt ty1
than x links. The decision procedure either terminates with a ‘‘yesrno’’
answer or finds some t . We use the decision procedure to binary searchopt
L and R .t t

Before turning to stage t we describe the decision procedure. In this
procedure we recursively compute minimum k9-link paths for some k9 - k
in an auxiliary DAG H . We start with the following definition.k

DEFINITION 3. Let P be a path that starts at 1. The left endpoint of the
last link of P is called the anchor of P. Similarly, the left endpoint of the

Ž .ith link of P is called the i-anchor of P. If the anchor i-anchor of a path
Ž .P is in an interval I, we say that the path P is anchored i-anchored in I.

Ž .Fix x ) t y 1 ll and m and consider any minimum weight path P from
Ž . ŽŽ .1 to R q m in G t , for any t g I . We claim that P is t y 1 ll qty1 opt

. w x1 -anchored at L , R . This follows from our assumption thatty1 ty1
w xL , R is the maximal range such that for all t g I and allty1 ty1 opt

Ž .L F i F R , there exists a minimum weight path from 1 to i in G tty1 ty1
Ž .with t y 1 ll links.

We now define the auxiliary DAG H . In this DAG the prefix of anyt
Ž .such path P with t y 1 ll q 1 edges is represented by a single edge. The

DAG H has n y R q 1 vertices: a new source vertex s, and verticest ty1
Ž .R q 1, . . . , n of G. For R q 1 F i - j F n, the weight of edge i, jty1 ty1

Ž .in H is the same as its weight in G. The weight of edge s, i , fort
ŽŽ . .R q 1 F i F n, is the weight of a minimum weight t y 1 ll q 1 -linkty1

w x Žpath in G from 1 to i that is anchored in L , R . We describe howty1 ty1
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. Ž .to compute these paths later. Define H t to be the weighted DAG witht
the same sets of edges and vertices as H , in which the weight of each edget
Ž .i, j , for R q 1 F i - j F n, is incremented by t , and the weight ofty1

Ž . ŽŽ . .each edge s, i , for R q 1 F i F n, is incremented by t y 1 ll q 1 t .ty1
Ž .Because for all t g I , any minimum weight path in G t from 1 toopt

ŽŽ . . w xR q m is t y 1 l q 1 -anchored in l , R , a minimum weightty1 ty1 ty1
Ž .path in H t from s to R q m with d links corresponds to a minimumt ty1

Ž . Ž .weight path in G t from 1 to R q m with d q t y 1 ll links. In orderty1
Ž .to be able to compute minimum k9-link paths in H t recursively, wet

need to show that H has the concave Monge property.t

PROPOSITION 10. The DAG H has the conca¨e Monge property.t

Ž .Proof. Because for all R q 1 F i - j F n, the weight of edge i, jty1
in H is the same as its weight in G, the inequality corresponding to thet
concave Monge property holds for all these indices. Thus, all that is left to
show is that for every R q 1 - j - n, the difference between weight ofty1

Ž . Ž . Ž .edge s, j and the weight of edge s, j q 1 is at most w R q 1, j yty1
Ž . ŽŽ . .w R q 1, j q 1 . Let P and P be minimum weight t y 1 ll q 1 -ty1 j jq1

w xlink paths anchored in L , R from 1 to j and j q 1, respectively.ty1 ty1
Ž . Ž .Recall that the weights of edges s, j and s, j q 1 are the weights of Pj

w xand P , respectively. Suppose that P is anchored at i g L , R .jq1 jq1 ty1 ty1
ŽŽ . .Let Q be the t y 1 ll q 1 -link path given by the prefix of P endingj jq1

Ž .at i with the edge i, j . Clearly, the weight of Q is at least the weight ofj
P . We get that the difference between the weights of P and P is lessj j jq1
than or equal to the difference between the weights of Q and P .j jq1
Because the prefixes of Q and P ending at i are the same, thisj jq1

Ž . Ž .difference is equal to w i, j y w i, j q 1 . By the concave Monge prop-
erty of G we get

w i , j y w i , j q 1 F w i q 1, j y w i q 1, j q 1Ž . Ž . Ž . Ž .
F w i q 2, j y w i q 2, j q 1Ž . Ž .
F ??? F w R q 1, j y w R q 1, j q 1 .Ž . Ž .ty1 ty1

Recall that given m and x, the decision procedure decides whether for
Ž .all t g I all minimum weight paths from 1 to R q m in G t haveopt ty1

less than x links. The decision procedure consists of two steps.

Ž . Ž .Step I. Let y s x y t y 1 ll . Find a minimum weight y y 1 -link
path, and find a minimum weight y-link path in H from s to R q m,t ty1

Žby invoking the algorithm recursively. However, as a matter of fact, the
recursion is done only on the subgraph of H induced by the first m q 1t
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. Ž . Ž .vertices. Let W m, y y 1 and W m, y denote the weights of theseH H
paths.

Ž . Ž .Step II. Set j s W m, y y 1 y W m, y . Find two minimum weightH H
Ž .diameter paths in G j : P with the maximum number of links and P1 2

with the minimum number of links. If the number of links of P is greater1
than or equal to k and the number of links of P is less than or equal to k,2

Ž .then there exists a minimum weight diameter path in G j with k links.
This implies that j g I and we are done. In the next two lemmas weopt

Ž .prove: i If the number of links of P is strictly less than k, then for all1
Ž .t g I , all minimum weight paths from 1 to R q m in G t have atopt ty1

Ž .least x links. ii If the number of links of P is strictly greater than k,2
then for all t g I , all minimum weight paths from 1 to R q m inopt ty1
Ž .G t have less than x links. This concludes the decision procedure.

Ž .LEMMA 11. If all minimum weight diameter paths in G j ha¨e less than
k links, then for all t g I , all minimum weight paths from 1 to R q mopt ty1

Ž .in G t have at least x links.

Ž .Proof. Because all minimum weight diameter paths in G j have less
Ž . Ž . Ž Ž . Ž .than k links, j ) W k y 1 y W k . Recall that W k y 1 y W k is the

.rightmost point of I . By the definition of j , for all t - j the weight ofopt
Ž .a minimum weight y-link path to R q m in H t is less than thety1 t

Ž .weight of a minimum weight y y 1 -link path to R q m. It followsty1
Ž . Ž .from the unimodality of the function W m, . Proposition 7 that allH

Ž .minimum weight paths from s to R q m in H t have at least y links.ty1 t
Ž .Recall that for all t g I , a minimum weight path in H t from s toopt t

Ž .R q m with d links corresponds to a minimum weight path in G tty1
Ž . Ž .from 1 to R q m with d q t y 1 ll links. Because x s y q t y 1 ll ,ty1

Ž .for all t g I , all minimum weight paths to R q m in G t have atopt ty1
least x links.

In a similar way we can prove:

Ž .LEMMA 12. If all minimum weight diameter paths in G j ha¨e more
than k links, then for all t g I , all minimum weight paths from 1 toopt

Ž .R q m in G t ha¨e less than x links.ty1

We turn back to the description of stage t. Stage t consists of three
steps:

Step 1. Construct H . For this, compute for all R - j F n and for allt ty1
Ž .t g I , a minimum weight path from 1 to j in G t anchored inopt

w x Ž .L , R . All these paths have t y 1 ll q 1 links.ty1 ty1

w xStep 2. Apply the decision procedure to find the range L , R . If int t
the course of this computation some value t g I is found then we areopt
done; otherwise, continue to the next step.
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Step 3. For all L F j F R and for all t g I , compute a minimumt t opt
Ž .weight path in G t from 1 to j. All these paths have t ll links.

We now describe each of the steps in detail.

Step 1. For t s 1 this step is trivial. Consider some t ) 1. Because all
w x Ž .the minimum weight paths anchored in L , R have t y 1 ll q 1ty1 ty1

links, the computation of the minimum over these paths can be done
independently of t as all comparisons involve paths with the same number
of links.

Ž . Ž .Let M be the n y R = R y L q 1 matrix in which thet ty1 ty1 ty1
Ž . Ž .i, j th entry is the weight of a minimum weight t y 1 ll-link path from 1

Ž .to j q L y 1 in G, plus the weight of the edge j q L y 1, i q Rty1 ty1 ty1
in G. It is not difficult to see that the minimum entry in row i corresponds

ŽŽ . .to the weight of a minimum weight t y 1 ll q 1 -link path from 1 to
w xi q R anchored in L , R .ty1 ty1 ty1

PROPOSITION 13. The matrix M has the conca¨e Monge property.t

Proof. To prove the property we have to show that for every 1 F i - n
w x w xy R and for every 1 F j - R y L q 1, M i, j y M i q 1, j Fty1 ty1 ty1 t t

w x w x w x ŽM i, j q 1 y M i q 1, j q 1 . By our definition M i, j s W j q L yt t t ty1
Ž . . Ž .1, t y 1 ll q w j q L y 1, i q R . Because the weights of G obeyty1 ty1

the concave Monge property we get
w x w xM i , j y M i q 1, jt t

s w j q L y 1, i q R y w j q L y 1, i q R q 1Ž . Ž .ty1 ty1 ty1 ty1

F w j q L , i q R y w j q L , i q R q 1Ž . Ž .ty1 ty1 ty1 ty1

w x w xs M i , j q 1 y M i q 1, j q 1 .t t

w xIt follows that all the minimum weight paths anchored in L , Rty1 ty1
Ž . w xcan be found in O n time by applying the matrix search algorithm of 1 .

Note that the matrix need not be stored explicitly. Instead, each entry can
be computed upon demand.

Step 2. First, we show how to find L . This is done in two phases oft
binary search. In the first phase we find the minimum integer a G 0 such
that for all t g I , there exists a minimum weight path from 1 toopt

a Ž .R q 2 ll in G t with at least t ll links. In the second phase, if a ) 0,ty1
w ay1we perform a binary search on all the vertices in the range R q 2 llty1

a xq 1, R q 2 ll to find L .ty1 t

The First Phase. Initialize m to ll , and test using the decision
procedure whether for all t g I , all minimum weight paths from 1 toopt

Ž .R q m in G t have strictly less than t ll links. If some t is foundty1 opt
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during the execution then we are done. Else, if the answer is ‘‘yes,’’ then
Ž .double m and iterate. Otherwise, a s log mrll is the minimum integer2

such that for all t g I , there exists a minimum weight path from 1 toopt
a Ž .R q 2 ll in G t with at least t ll links.ty1

The Second Phase. If a s 0, then there exists a minimum weight path
Ž .from 1 to R q ll in G t with at least t ll links. Because all minimumty1

Ž . w x Ž .weight paths in G t from 1 to any i g L , R have t y 1 ll links,ty1 ty1
Ž .any minimum weight path from 1 to R q ll in G t has at most t llty1

Ž .links. It follows that any minimum weight path from 1 to R q ll in G tty1
has exactly t ll links. Because all minimum weight paths from 1 to
R q j, for j - ll , have strictly less than t ll links, we get that if a s 0ty1
then L s R q ll .t ty1

Suppose that a ) 0. In this phase we search for L ; the first vertex int
w ay1 a xthe range R q 2 ll q 1, R q 2 ll such that for all t g I , therety1 ty1 opt

Ž .exists a minimum weight path from 1 to L in G t with at least t ll links.t
This is done using binary search similar to the first phase. Initialize
a s 2 ay1 ll q 1, b s 2 a ll . The following procedure is done iteratively. If

?Ž . @a s b then we are done and L s R q a . Else, set m s b q a r2 ,t ty1
and test whether for all t g I , all minimum weight paths from 1 toopt

Ž .R q m in G t have less than t ll links. If some t is found during thety1 opt
execution then we are done. Else, if the answer is ‘‘yes,’’ then set
a s m q 1, and iterate. Otherwise, set b s m, and iterate.

Note that if no value t is found in the search then by Lemma 11 foropt
Ž .all t g I , all minimum weight paths from 1 to L in G t have at leastopt t

t ll links. Also, because L is the first such vertex, there must be at
Ž .minimum weight path from 1 to L in G t with exactly t ll links.t

To find the vertex R , we search for the minimum b such that for allt
Ž .t g I , all the minimum weight paths from 1 to b in G t have at leastopt

t ll q 1 links. This is done by a binary search using the decision procedure
similar to the way L was found in the previous text. However, as before, ift
no value t is found in the search then for all t g I , all minimumopt opt

Ž .weight paths from 1 to b in G t have at least t ll q 1 links. Clearly, in this
case R s b y 1. It follows that for all t g I and for all L F i F R , allt opt t t

Ž .minimum weight paths from 1 to i in G t have exactly t ll links.

Ž .Step 3. To compute a minimum weight path in G t from 1 to j, for all
ŽL F j F R and for all t g I , we first compute the weights W L , ll yt t opt H t

. Ž . Ž . Ž . Ž1 , W L , ll , W R , ll , and W R , ll q 1 in case they were notH t H t H t
.computed in the previous step , by a recursive call to our algorithm.

w Ž . Ž . Ž . Ž .xRecall that I s W k y W k q 1 , W k y 1 y W k . Because foropt
all t g I and for all L F i F R , all minimum weight paths from 1 to iopt t t

Ž .in G t have exactly t ll links, all minimum weight paths from s to i in
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Ž . Ž . Ž . ŽH t have exactly ll links. It follows that W k y 1 y W k - W L , ll yt h t

. Ž . Ž . Ž . Ž . Ž .1 y W L , ll , and W k y W k q 1 ) W R , ll y W R , ll q 1 .H t H t H t
Ž .Alternatively, in other words, the closed interval I is contained in theopt

Ž . Ž Ž . Ž . Ž .open interval I s W R , ll y W R , ll q 1 , W L , ll y 1 yt H t H t H t
Ž ..W L , ll . By Proposition 6 it follows that I is contained in all the openH t t

Ž Ž . Ž . Ž . Ž ..intervals W i, ll y W i, ll q 1 , W i, ll y 1 y W i, ll , for L F iH H H H t
Ž .F R . Hence, for all t g I all minimum weight paths from s to i in H tt t t

have ll links, and correspondingly, all minimum weight paths from 1 to i
Ž .in G t have t ll links. We pick one such t and we apply the linear time

algorithm for finding a minimum weight diameter path in DAGs with the
concave Monge property to find the minimum weight path from 1 to all

Ž .L F i F R in G t . This can be done in one application of the linear timet t
algorithm.

3.1. Time and Space Complexity

Ž .Let T n, k denote the time complexity of our algorithm when the input
DAG has n vertices and we are required to find a minimum weight k-link
path. It is not difficult to verify that the time complexity of the algorithm is
dominated by Step 2 of each stage. In Step 2 we perform a binary search
where in each iteration of this search we call the algorithm recursively to
find minimum weight ll-links paths in an auxiliary DAG, and we invoke a

Ž .linear time algorithm for finding a minimum weight diameter path in G t .
Ž .The size of the auxiliary DAG in the ith stage is bounded by 2 R y R .i iy1

Ž .It follows that T n, k satisfies the following recursion,

krll

T n , k s c ? log n ? T n , ll q n ,Ž . Ž .Ž .Ý i
is1

for some constant c, and for some sequence n , n , . . . , n , where1 2 k r ll
k r ll Ž .n F Ý n F 2n. All logarithms are base 2.is1 i

Ž .We claim that if k s V log n , then the solution of this recursion is
OŽ log k log log n .'n2 . To see this, it is sufficient to prove that for some ll there

exists some constant a such that

krll

a log k log log n a log ll log log n'' in2 G c ? log n ? n 2 q n .Ý ž /i
is1

For this we prove

k
a log k log log n a log ll log log n''n2 G c ? n ? log n ? 2 ? 2 q .ž /ll
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This is done by showing that for some a each of the terms in the
right-hand side is less than or equal to half of the left-hand side. We set ll

a log k log log n'to be the minimum value for which n2 G 2c ? n ? log n ? krll ;
ya log k log log n'that is, ll s 2c ? log n ? k ? 2 . Taking the base 2 logarithm

from both hands, the other inequality translates to

'a log k log log n

'G 2 q log c q log log n q a log log n

'? 1 q log c q log log n q log k y a log k log log n .'
Ž .By our assumption k s V log n . Hence, for large enough n and for some

3 2 2Ž .x G , x log log n F log k F x q 1 log log n. For large enough n: 2 q4
1log c F log log n. We get that it is sufficient to show2

a x log log n

'G 2 log log n q a log log n

2'? x q 1 log log n y a y 2 x log log n .Ž . Ž .

This inequality holds if

2'a x y x q 1 y a y 2 x G 2.Ž .ž /
3It is easy to verify that this holds for any x G and a s 4.4

Ž .We note that the space complexity of the algorithm is O n .

4. APPLICATIONS

The algorithm for minimum weight k-link path in concave Monge DAGs
has several applications. In the following text, we describe five of these

Ž .applications to: data compression Applications I and II , interval graphs
Ž . Ž .Application III , and geometric path finding Applications IV and V . All

w xthese applications were originally described in 3 , and we include them
here to make the article self-contained.

Application I. Given a weighted alphabet of size n, we want to find an
optimal prefix-free binary code for the alphabet with the restriction that
no code string be longer than k bits. Using the reduction of this problem

w xto the minimum weight k-link path problem 12 , we solve it in
OŽ log k log log n .' w xn2 time, improving on 11, 3 .
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� 4Application II. Let f : x , x , . . . , x ª RR be a real valued function,1 2 n
where RR is the set of the real numbers and x F x F ??? F x are real1 2 n
numbers. Fix k and consider a sorted set of real numbers Z s
� 4 � 4 � 4z , z , . . . , z and a mapping c : 1, 2, . . . , n ª 1, 2, . . . , k . The pair1 2 k
Ž . n Ž .Ž .2Z, c is called a quantization, and the sum Ý f x x y z theis1 i i c Ž i.
error of the quantization. An optimal quantization is the one that mini-

y1Ž .mizes the error. It is easy to see that in an optimal quantization c j is
an interval for each j s 1, 2, . . . , k. Quantization can be regarded as a data

w xcompression of n data items into k items, as illustrated in Fig. 3. Wu 14
showed that computing an optimal quantization can be reduced to finding

OŽ log k log log n .'a minimum weight k-link path. Hence, it can be solved in n2
w xtime by applying our algorithm, improving on 14, 3 .

Application III. Let H be an interval graph generated by m weighted
intervals on n terminals. Given k, find k cliques of H so that the sum of

Žthe weights of intervals in the union of the cliques is maximized. See Fig.
. w x4. Aggarwal, Schieber, and Tokuyama 3 showed how this problem can be

reduced to finding a minimum weight k-link path in a DAG with n
w xvertices. Aggarwal and Tokuyama 4 designed a data structure in which

Ž .the overhead involved in this reduction is O m q n log n time. Hence, the
OŽ log k log log n .'Ž .application of our algorithm yields an O m q n2 time

w xsolution for this problem, improving on previous results of 5, 3, 4 .

Application IV. The computation of the maximum area k-gon and the
maximum perimeter k-gon that are contained in a given convex n-gon.
Ž . w x Ž .See Fig. 5. For this problem Boyce et al. 6 provided an O nk log n time

Ž .FIG. 3. Quantization k s 4 .
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Ž .FIG. 4. k maximum weight cliques of interval graph k s 2 .

w x Ž .algorithm that was later improved by Aggarwal et al. 1 to O nk q n log n
w x Ž 'time, and by Aggarwal, Schieber, and Tokuyama 3 to O n k log n q

. w xn log n time. Aggarwal et al. 1 showed that the distance matrix involved
in computing the maximum area and the maximum perimeter polygon
contained in a given convex polygon has the convex Monge property.
Because finding the maximum path in convex DAGs is equivalent to
finding the minimum path in concave DAGs, we can apply our algorithm

OŽ log k log log n .'to achieve an n2 time algorithm for the problem.

Application V. The computation of the minimum area k-gon that is the
intersection of k half-planes out of n half-planes defining a given convex
n-gon. In other words, computing the minimum area circumscribing the

Ž .polygon touching edge-to-edge. See Fig. 6. This problem is the dual of
OŽ log k log log n .'the previous problem, and thus can also be solved in n2

time, improving on the previous results mentioned earlier.

FIG. 5. Max-area inscribed polygon.
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FIG. 6. Min-area inscribed polygon with edge-to-edge contact.
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