
Learning Probability Distributions

by

Sanjoy Dasgupta

B.A. Harvard University 1993

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Umesh V. Vazirani, Chair
Professor Peter J. Bickel
Professor Christos H. Papadimitriou

Spring 2000

The dissertation of Sanjoy Dasgupta is approved:

Chair Date

Date

Date

University of California at Berkeley

Spring 2000

1

Abstract

Learning Probability Distributions

by

Sanjoy Dasgupta

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Umesh V. Vazirani, Chair

The first part of this thesis presents an algorithm which takes data from an unknown

mixture of Gaussians in arbitrarily high dimension and recovers the parameters of this

mixture to within the precision desired by the user. There are two restrictions on the

mixture: its component Gaussians must be “well-separated” in a precise sense, and they

must have a common (though of course unknown) non-singular covariance matrix. The

running time of the algorithm is linear in the dimension of the data and polynomial in the

number of Gaussians.

This algorithm is very simple, and relies crucially upon a particular procedure for

dimensionality reduction. Data from a mixture of k Gaussians are projected to a randomly

chosen O(log k)-dimensional subspace, regardless of the original dimension and the number

of data points, and it is shown that not only does this retain enough information for cluster-

ing, but it also causes a drastic reduction in the eccentricity of the Gaussians. Experiments

are performed to illustrate some of the promise of this random projection technique.

The second half of this thesis studies the problem of learning the maximum-likelihood

directed probabilistic net given data. Three combinatorial optimization tasks are distin-

guished: SL(k), learning the optimal probabilistic net in which each node has at most k

parents; PT, learning the optimal polytree; and PT(k), learning the optimal polytree with

an indegree bound of k. It is well-known that SL(1) is efficiently solvable while SL(2) is

an NP-hard optimization problem. We demonstrate an even more damaging hardness bar-

rier, that for some constant c > 1, unless P = NP there is no polynomial-time algorithm

which can c-approximate SL(2), that is, which can consistently return a solution whose

2

log-likelihood is within a multiplicative factor c of optimal.

We show a similar hardness result for PT(2), but at the same time prove that the

optimal branching (or Chow-Liu tree), which can be found efficiently, constitutes a good

approximation to the optimal polytree, regardless of indegree. The ratio between their log-

likelihoods cannot be bounded by an universal constant but depends upon the nature of

the individual attributes. For instance, if each attribute by itself has unit entropy then the

ratio is at most two. An optimal structure over n nodes can have log-likelihood anywhere

in the range [−O(n), 0] and therefore this approximation result is a significant guarantee.

Professor Umesh V. Vazirani
Dissertation Committee Chair

iii

Contents

I Introduction 1
1 Massive data sets . 2
2 Learning probability distributions . 3
3 Current practice . 9
4 A summary of results . 10

II Mixtures of Gaussians 12
1 Assessing the quality of a fit . 12
2 Learning algorithms . 15

2.1 The method of moments . 15
2.2 Expectation-maximization . 16

3 High-dimensional Gaussians . 17
3.1 Some counter-intuitive effects . 17
3.2 Formalizing separation . 19
3.3 The problem of dimension . 20

4 Dimensionality reduction . 20
4.1 Overview . 20
4.2 Principal component analysis . 21
4.3 Random projection . 22
4.4 Random projection for mixtures of Gaussians 22
4.5 Illustrative experiments . 27

III A simple learning algorithm 31
1 Overview . 31

1.1 Low-dimensional clustering . 31
1.2 Reconstruction in high-dimensional space 33
1.3 Consolidating the clusters in high-dimensional space 34
1.4 The main result . 34
1.5 Notation . 35

2 Projection . 36
3 Low-dimensional clustering . 36

3.1 Technical overview . 36
3.2 Summary . 39

iv

3.3 Crude density estimates . 39
3.4 Estimating the projected centers . 42
3.5 Choosing sets around the center-estimates 45

4 High-dimensional reconstruction . 46
4.1 Summary . 46
4.2 Details . 47

5 Consolidation in the high-dimensional space 49
6 Shortcomings . 52
7 More general mixture models . 52

7.1 Some consequences of the central limit theorem 54
7.2 Distributions with non-independent coordinates 55

IV Probabilistic nets 57
1 Background . 57

1.1 Conditional probability functions . 58
1.2 Inference . 58

2 A maximum-likelihood learning model . 59
2.1 Entropy . 59
2.2 Maximizing likelihood . 60
2.3 Other learning problems . 61

3 SL(k) . 62
3.1 Previous work . 63
3.2 SL(2) is hard to approximately solve 64

V Learning polytrees 72
1 Why polytrees? . 72
2 An approximation algorithm . 73

2.1 A simple bound . 73
2.2 A better performance guarantee . 74
2.3 The final improvement . 78

3 A hardness result . 80

VI Conclusions and open problems 86
1 Mixture models . 86
2 Directed probabilistic nets . 87

A Large deviation bounds 88
1 Chernoff-Hoeffding bounds . 88
2 Large deviation bounds for high-dimensional Gaussians 88
3 An elementary proof of the Johnson-Lindenstrauss lemma 90

Literature cited 93

v

Acknowledgements

I would like to thank my advisor, Umesh Vazirani, for guiding me with care through

my time in graduate school, and providing practical advice and help on the many occasions

when I needed them. My research also owes a lot to discussions with Yoav Freund, Nir

Friedman, Anupam Gupta, Mike Jordan, Daphne Koller, Christos Papadimitriou, Stuart

Russell, Leonard Schulman, Eric Vigoda, and David Zuckerman, and to the generosity and

encouragement of Peter Bickel.

1

Chapter I

Introduction

The wide proliferation of computers has raised hopes that it might be possible to

automatically analyze collections of data and provide concise, useful models of them. For

a simple example of the kind of computational task involved, consider a gel electrophoresis

experiment in which protein molecules in solution are mobilized by the application of a

potential difference (Longsworth, 1942; Titterington, Smith and Makov, 1985). Speeds of

some of these are then measured in the hope of gauging the relative proportions of different

proteins. Molecules of a particular protein can be thought of as having an “ideal speed” µ

which is perturbed by a host of environmental factors, like convection, of combined standard

deviation some σ. The measured speed of one of these molecules can then conveniently

be modeled as a Gaussian (normal) distribution with mean µ and variance σ2, denoted

N(µ, σ2). This particular choice of distribution is prevalent throughout the physical sciences

and has a universality that is captured in the central limit theorem (Feller, 1966).

If there are k distinct proteins in the solution, with ideal speeds µ1, µ2, . . . , µk and

noise levels σ1, . . . , σk, then the distribution of the measurements as a whole is a mixture of

Gaussians,

w1N(µ1, σ
2
1) + w2N(µ2, σ

2
2) + · · · + wkN(µk, σ

2
k),

where wi is the proportion in which the ith protein is present. The experimenter may decide

that molecules of different proteins are subject to the same noise processes, in which case

he can set σ1 = σ2 = · · · = σk. The task then is to fit a mixture of Gaussians to the

observations, as a useful summary of them. Once this is done, a potentially confusing list

of measurements has been condensed into a brief characterization of each protein, which

Introduction 2

can be used to answer general questions like “is one protein much more common than the

others?”, and, if need be, to classify new measurements.

Can this kind of modelling be reliably computerized? What assurances could we

reasonably expect? This issue is particularly important in the case of high-dimensional

data, where it is difficult to visually check the computer’s results. The need for performance

guarantees in data analysis is the central preoccupation of this thesis.

1 Massive data sets

A natural way to model, or summarize, a data set is to think of it as consisting of

samples from some unknown probability distribution, and to then learn a compact repre-

sentation of this distribution. In a typical scenario, a learning algorithm is given a restricted

family F of probability distributions and tries to pick one of them that best fits the data,

according to some suitable criterion. The choice of family F is often based upon pre-

conceptions about the data. In the electrophoresis example, a mixture of Gaussians was

appropriate because it was anticipated that the data would form several clusters, each of

which could be approximately described as normal. The goodness-of-fit criterion must also

be specified, and will depend on the family of distributions, on additional prior expectations

about the data, and on the specific uses to which the learned model will be put.

It is reasonable to select a family F that is believed to contain distributions close to

the empirical distribution of the data, but this is not necessary. Even a modest or poor fit

to the data might provide some valuable information. This is an important consideration

in handling collections of information which are so vast as to preclude any direct human

appraisal. Such collections, called “massive data sets” by a somewhat apprehensive sci-

entific community, are now widespread (Kettenring and Pregibon, eds., 1996). They are

being created continuously, spooled onto magnetic media from weather reports, credit card

transactions, medical histories, handwriting samples, gene sequences, . . . a flood of data,

accumulating day and night and awaiting attention.

One such electronic archive which has been studied in detail consists of articles from

the Reuters newsfeed (Lewis, 1996). A common preprocessing step identifies n = 10, 000

or more key words, counts the occurrences of these words in all the documents, and then

represents each document as the corresponding n-dimensional vector of frequencies. Under

this interpretation the archive consists of a vast number of data points, one per article, in

Introduction 3

the very high-dimensional space R
n. A possible goal is to group together similar documents

in the hope that this will facilitate subsequent queries.

The impressive number of samples in such a database poses various computational

difficulties. It brings up issues of caching and paging, and strongly discourages too many

passes through the data. However the more serious and fundamental concern is the high

number of attributes per data point, which has been nicknamed “the curse of dimensional-

ity” (Bellman, 1961).

What exactly is this curse? First, high-dimensional data is very hard to visualize.

Finding the mean and covariance, or looking at various two-dimensional projections, can be

helpful but also misleading. Diaconis and Freedman (1984) have demonstrated simple fami-

lies of non-Gaussian distributions most of whose two-dimensional projections look Gaussian.

Second, high-dimensional geometry contains many counter-intuitive pitfalls. One such ef-

fect can be observed by choosing points uniformly at random in an n-sphere and noticing

that they almost always lie close to the surface of the sphere. We shall encounter quite a

few more in the coming chapters. These two problems partially explain the basic difficulty,

which is this: much of current algorithmic technology is very clearly directed toward low-

dimensional data and becomes impractical when naively scaled to higher dimension. For

instance, Voronoi diagrams are a staple of two- and three-dimensional computational geom-

etry but lead to exponentially complex partitions of space when the dimension is increased;

m points in R
n will typically generate Voronoi cells with Ω(mn) faces.

2 Learning probability distributions

This thesis studies in detail two popular families of probability distributions. They

are most easily introduced by example.

The Infrared Astronomical Satellite (IRAS) data set, described by Cheeseman et

al. (1995), contains 5425 points in 100-dimensional space, each representing information

from one of an unknown number of distinct galaxies. The authors decided to model the

data from each galaxy by a high-dimensional Gaussian. These distributions are natural

generalizations of the univariate Gaussian presented earlier. A Gaussian in n dimensions is

indexed by its mean µ ∈ R
n and covariance matrix Σ, and is denoted N(µ,Σ). It assigns

Introduction 4

to a point x in space the density

p(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
,

where |Σ| is shorthand for the determinant of Σ. If Σ is diagonal, then points from the

Gaussian have independent coordinates. The researchers analyzing the IRAS data made

this choice, presumably to reduce the number of parameters involved. Their learning task

was then to determine the number of clusters k and to fit a mixture of k Gaussians to the

data. They found 77 clusters, and their results revealed some features previously unknown

to astronomers.

The mixture of Gaussians is among the most enduring, well-weathered models of

applied statistics. Its fundamental importance has made it the object of close experimental

and theoretical study for well over a century. In a typical application, as in the two we

have seen, sample data are thought of as arising from various possible sources, each present

in a certain proportion called its mixing weight, and each modeled as a Gaussian. Given

unlabeled data from these sources, the goal is to identify the mixture of Gaussians which

generated them. The most difficult scenario is that in which there is no prior information

either about the number of sources or about their nature; all this must be gleaned from the

data.

For some data sets Gaussians are inappropriate models of clusters, and mixtures of

more suitable distributions are used. For instance, if the data are all in {0, 1}n, it might be

a better idea to model each cluster by, say, a product of Bernoulli (that is, {0, 1}-restricted)

distributions than by a Gaussian with diagonal covariance matrix. Mixtures as a whole are

natural and convenient probabilistic models of clustered data. We will consider them in a

unified framework after first treating the canonical case, that of mixtures of Gaussians.

A Gaussian distribution over (X1, . . . ,Xn) is specified by the individual means EXi

and by the second-order moments EXiXj . But sometimes data contains more complicated

relationships between the variables. For instance, it may be the case that X1 is a function

of X2 and X3. When there are many such strong dependencies which are not captured by

pairwise correlations, it is often useful to model the data by a directed probabilistic net. As a

toy example, consider the three random variables Fever, Headache, and SoreThroat, which

can take on values yes or no and are defined on a sample space of some group of individuals.

We would certainly expect strong correlations between these variables. Say we draw some

data which makes it seem that Headache and SoreThroat are almost independent of each

Introduction 5

Fever

SoreThroat Headache

Figure 1: A toy probabilistic net.

Findings

Diseases

Figure 2: The QMR-DT probabilistic net has a bipartite structure.

other, but that they both make Fever more likely. This can be represented by the graph

in Figure 1 or equivalently by the factorization

P(Headache, SoreThroat, Fever) = P(Headache)×P(SoreThroat)×

P(Fever | Headache, SoreThroat).

A more sophisticated example is the QMR-DT medical network (Shwe et al., 1989; Jaakkola

and Jordan, 1999), a graphical model which attempts to encapsulate medical knowledge

about certain diseases and findings (symptoms). It contains nodes for approximately 600

diseases and 4,000 findings. These are arranged into a bipartite graph, with edges from

diseases to findings (Figure 2); the common jargon for this is that the disease nodes are

sources of the graph, and are parents of the symptom nodes. The network is annotated

with the conditional probability distribution of each node given its parents, and these then

specify a joint probability distribution over all the variables. A particularly appealing

feature of such networks is that they are easy to read and immediately communicate some

basic correlations between the different variables. The network structure can also in some

cases be constructed, or constrained, by consultation with experts. In such cases, as in the

QMR-DT net, it is common for the edges to reflect some interpretation of causality among

the variables.

Directed probabilistic nets are always acyclic. A maximally connected acyclic net can

Introduction 6

X ZY

X+Y+Z (X+Y)Z (X+Y)/Z X+Y+Z (X+Y)Z (X+Y)/Z

X

X+Y

ZY

Figure 3: Simplifying a model by introducing a new variable.

represent any distribution over the variables and requires potentially enormous conditional

probability distributions to be stored. In constructing these networks, therefore, a primary

concern is to limit connectivity, or more specifically, to limit the number of parents of each

node.

Probabilistic nets have become popular because they permit some complicated proba-

bility distributions to be expressed in a compact and easily understandable manner. Some-

times hidden nodes are introduced, representing random variables which are not directly

observed but which either permit a more concise model or correspond to some hypothesized

underlying causal mechanism. Figure 3, for instance, shows how a graph on six observable

variables can be simplified by the creation of a hidden node.

Once a probabilistic net has been created, it can be used to address conditional

probability queries about the distribution. For example, given the QMR-DT network, one

might reasonably ask, “what is the chance that I have so-and-so disease if I am exhibiting

these symptoms?” Answering such questions is called inference and in general is NP-hard

to perform with even approximate accuracy (Cooper, 1990; Dagum and Luby, 1993). There

are certain classes of networks for which efficient exact inference is possible, however. The

most natural such class is that of directed trees, called polytrees in the artificial intelligence

literature (Pearl, 1988).

It is becoming increasingly common to construct complex probability models out of

simpler ones. For instance, many speech recognition systems use both mixture models and

probabilistic nets as subcomponents. Depending upon style of speaking and environmental

factors, there are many different sequences of sound signals which can convey the same word,

or syllable, or phoneme. Therefore, for any particular phoneme, there is some distribution

over these various possible acoustic sequences. It is standard to summarize this distribution

by a hidden Markov model (Rabiner, 1989; Jelinek, 1997). Figure 4 is an example of such

Introduction 7

5

0.2

1 2

3
4

0.5

0.4 1.0

0.6

1.0

0.1

0.5

0.7

Figure 4: The underlying state graph of a simple hidden Markov model. The numbers on
the edges are transition probabilities.

1 O3

q1 q2 q3

O2O

...

Figure 5: A time-slice depiction of the Markov model of Figure 4. Here qt is the state (1-5)
at time t, and Ot is the observation at time t.

a model. The graph is annotated by an initial distribution over the five states (nodes) and

by transition probabilities on the edges. In addition, each state has its own distribution

over sound signals, called its observable distribution. A sound sequence can be generated

by performing a standard random walk on this graph, and at each time step choosing a

sound from the observable distribution of the current state. The graph is sometimes drawn

as a directed probabilistic net with nodes for the state and observation at each time step

(Figure 5). The observable distribution of each state is typically a mixture of Gaussians.

Sometimes, different states share the same set of Gaussians and are allowed to vary only

the mixing weights (“tied mixtures”).

For our purposes, the task of learning a mixture of Gaussians given a data set consists

of finding the parameters of a mixture which fits the data well. In order to assess the quality

of this fit, we will consider a simplified situation in which the data is actually generated from

a mixture of Gaussians, which we call the “true” mixture, and the number of Gaussians is

Introduction 8

The user provides:

• ǫ, an accuracy parameter;

• δ, a confidence parameter;

• k, the true number of Gaussians;

• wmin, a lower bound on the true mixing weights of the Gaussians; and finally,

• a source of i.i.d. samples from the true mixture.

A learning algorithm must now return a mixture of k Gaussians, such that with proba-

bility > 1− δ, the L2 distance between each learned center and the corresponding true

center is at most ǫ times the radius of that true Gaussian (defined in the next chapter).

A learning algorithm is considered efficient if it runs in time polynomial in k and 1/ǫ,

and polynomial in the dimension of the data.

Figure 6: The mixture of Gaussians learning framework.

known. The learned mixture is then evaluated on the basis of its proximity to the truth,

specifically the Euclidean (L2) distance between the learned Gaussian centers and the true

centers. This learning scenario, summarized in Figure 6, is inspired by Valiant’s (1984)

“probably approximately correct” (PAC) model.

Our learning model for directed probabilistic nets is rather different. It is framed as

a combinatorial optimization problem: given data, find the model with highest likelihood,

that is, the model which assigns the highest probability to the data set. In this case, there

are no assumptions whatever about the data and no notion of a “true” model. An efficient

learning algorithm can then routinely be defined as one whose time and sample complexity

are polynomial in the number of nodes.

It is always easy to find a good directed probabilistic net which has high connectivity,

but this defeats the purpose of such models. A natural restriction on the complexity of a

net is a bound on the number of parents its nodes are allowed to have. This motivates the

triplet of optimization problems presented in Figure 7. In each case, there are no hidden

nodes, so the number of nodes in the graph equals the number of attributes of the data set.

Introduction 9

SL(k) Find a directed probabilistic net of minimal cost in which each node has at

most k parents.

PT Find a polytree of minimal cost.

PT(k) Find a polytree of minimal cost in which each node has at most k parents.

Figure 7: Learning directed probabilistic nets: some optimization problems. In each case,
the cost of a model is its negative log-likelihood.

The cost of any given model is defined as its negative log-likelihood (that is, minus the log

of its likelihood).

3 Current practice

The most popular technique for learning a mixture of Gaussians from data is currently

the expectation-maximization (EM) algorithm. This is a local search heuristic of appealing

simplicity, whose principal goal is convergence to a local maximum in the space of Gaussian

mixtures ranked by likelihood. No performance guarantees of the kind outlined above are

known for this algorithm.

For learning probabilistic nets, a variety of different local search algorithms have been

proposed, including variants of gradient descent and EM. One important subcase stands

out, that of branchings (sometimes called Chow-Liu trees in the literature), directed nets in

which each node has at most one parent. A simple and computationally efficient algorithm

for determining the maximum-likelihood branching (in the absence of hidden nodes) was

discovered by Edmonds in 1967. In our terminology, this means that SL(1) (or equivalently,

PT(1)) is efficiently solvable. To date this remains the central positive result in the literature

on learning the structure of probabilistic nets.

The research that will be presented here is motivated principally by the lack of simple

and provably good algorithms for learning important classes of probability distributions. As

in the two learning frameworks just described, we shall think of a provably good algorithm

as one which is computationally efficient and is accompanied by strong guarantees on the

quality of fit of the learned model. Such guarantees give the user some indication of how

much confidence he can have in the final answer and provide a scale along which different

Introduction 10

algorithms can be meaningfully compared. They are crucial in the construction of complex

probabilistic models which rely upon the correct functioning of each component submodel.

4 A summary of results

Chapters II and III present an efficient learning algorithm, in the sense of Figure 6,

for mixtures of Gaussians in arbitrarily high dimension. There are two restrictions: the

component Gaussians of the true mixture must be well-separated (this notion is made pre-

cise in the next chapter), and they must have a common (though unknown) non-singular

covariance matrix. The running time is linear in the dimension of the data and polynomial

in the number of Gaussians.

This algorithm is very simple and relies crucially upon a particular procedure for

dimensionality reduction. Data from a mixture of k Gaussians are projected to a randomly

chosen O(log k)-dimensional subspace, regardless of the original dimension and the number

of data points, and it is shown that not only does this retain enough information for clus-

tering, but it also causes a drastic reduction in the eccentricity of the Gaussians. This latter

quantity will be defined later; for the time being, it should be interpreted as some natural

measure of how non-spherical a Gaussian looks. Experiments in Chapter II illustrate some

of the promise of this random projection technique.

Can something similar be done when the clusters do not look Gaussian, for instance

if the data is discrete-valued? A celebrated result of Diaconis and Freedman (1984) demon-

strates that many families of distributions, including for instance product distributions on

the hypercube, look more Gaussian when randomly projected to low dimension, in a sense

that we will make precise in Chapter III. Thus the techniques we develop might work for a

fairly broad class of mixture models.

The last two chapters study probabilistic nets in terms of SL and PT. These are NP-

hard optimization problems and therefore the main question is whether good approximation

algorithms exist for them. A c-approximation algorithm for a minimization problem is

defined as one which always returns a solution whose cost is within a multiplicative factor

c of optimal. We have already seen that SL(1) is efficiently solvable. Chapters IV and V

will demonstrate that SL(2) and PT(2) are, however, hard to even approximately solve.

Specifically, there is some constant c > 1 for which c-approximating SL(2) is an NP-hard

optimization problem. A similar result holds for PT(2).

Introduction 11

The main result of Chapter V is an approximation algorithm for PT. It is shown

that the optimal solution to PT(1), which can be obtained efficiently, constitutes a good

approximation to the optimal polytree, regardless of degree. The multiplicative factor

involved is not a universal constant but depends upon the nature of the individual attributes.

For instance, if each attribute by itself has the distribution of a fair coin flip, then the factor

is two. An optimal structure over n nodes can have cost anywhere in the range [0, O(n)]

and therefore this approximation result is a very significant guarantee.

12

Chapter II

Mixtures of Gaussians

1 Assessing the quality of a fit

In the maximum-likelihood (ML) framework, given data S = {x1, . . . , xm} the goal is

to find a mixture of Gaussians θ, drawn from some family Θ (for instance, all mixtures of

three Gaussians), which maximizes
m∏

i=1

θ(xi),

θ(x) being the density of the mixture θ at point x. In other words, the goal is to maximize

the probability density of the data S with respect to θ, and there are no assumptions about

the data – in particular, it is not assumed that the data actually come from a mixture of

Gaussians.

This framework has an appealing generality. A formal justification would ideally

include a finite-sample guarantee of the form: “for any mixture θ, for any ǫ > 0, there

exists an mǫ such that the maximum-likelihood mixture of Gaussians with respect to mǫ

i.i.d. samples from θ will with high probability have centers which are ǫ-close to those of θ,

under some natural measure of closeness”. Unfortunately, this is quite dramatically false.

Given any data points x1, . . . , xm, consider a mixture θ̂ which centers one Gaussian on x1

and allows its variance (or covariance matrix) to go to zero. Then θ̂(x1) approaches infinity.

In short, given any finite amount of data, the ML solution is ill-defined because a mixture

with arbitrarily high likelihood can be found.

Define the radius of a Gaussian N(µ,Σ) to be
√

trace(Σ) – we will soon see the

reasons for this choice. Suppose that during ML learning, some lower bound is placed on

Mixtures of Gaussians 13

the radius of the Gaussians in the mixture. Then the singularities we just encountered will

no longer occur to quite the same alarming extent. Nevertheless, similar difficulties will

continue to be present, since the creation of one (or more) clusters of very small radius can

artificially boost the overall likelihood. It is perhaps fair to say that the ML framework is

inadequate in situations where different clusters may have widely differing radii. However,

this should not be judged too harshly since it is an important open problem in clustering

to develop goodness-of-fit criteria that can satisfactorily handle such cases. The algorithms

presented in this thesis all assume clusters of approximately the same radius.

Open Problem 1 Say m i.i.d. data points are generated from an unknown mixture θ of

k Gaussians with the same covariance matrix, and then the maximum-likelihood solution

θ̂ is found within this same class of mixtures. Can it be shown that with high probability

the Gaussian centers of θ̂ will be close in L2 distance to those of θ? What bounds can be

given for this error as a function of k and m?

How can the maximum-likelihood solution be found? No algorithm is known which

affords meaningful finite-sample guarantees about the quality of its solution vis-à-vis the

optimal solution, even for very restricted hypothesis classes like mixtures of two spherical

Gaussians. In practice, the likelihood space of Gaussian mixtures is explored using a local

search technique like EM, which aims to find a local maximum. The quality of this solution

then depends upon the prevalence and positioning of local maxima within the search space.

Analyzing the performance of such algorithms, even with heavy assumptions about the

data, is a challenging and fascinating direction of research.

Open Problem 2 What kind of guarantees can be given for EM’s performance on finite

data sets drawn i.i.d. from a mixture of Gaussians?

The next chapter describes an algorithm which takes data from a mixture of Gaussians

and then recovers that mixture with high probability, to any specified accuracy. Why is it

at all acceptable to make such a strong distributional assumption about the data? First,

any algorithm with such a performance guarantee must be able to handle a certain amount

of sampling error; thus it can automatically handle component distributions which are close

to Gaussian in a specific sense that we will discuss in Chapter III. Second, the Gaussian is a

distribution which occurs naturally in many data sets, for instance as noise in physical data.

This phenomenon can be explained, after the fact, by appeal to entropy considerations or

Mixtures of Gaussians 14

to the central limit theorem. Third, we will see that many non-Gaussian distributions can

be made to look more Gaussian under a simple form of projection; this is related to the

previous point and gives the Gaussian a certain universality.

For many clustering problems, it is impossible to give algorithms with useful per-

formance guarantees under completely arbitrary conditions. Consider, for instance, the

k-center problem.

k-center

Input: n data points in R
d; integer k.

Output: k “centers” µ1, µ2, . . . , µk ∈ R
d and radius r such that the data set is

contained within B(µ1; r) ∪ · · · ∪B(µk; r).

Objective: Minimize r.

It has been shown that there is no polynomial-time algorithm which can consistently find

an r within a multiplicative factor two of optimal, unless P = NP, and that this factor can

be achieved by a simple greedy algorithm (Hochbaum and Shmoys, 1985; González, 1985;

Feder and Greene, 1988). This is a very weak guarantee which can be quite unacceptable

for clustering. For instance, suppose each cluster in the data looks like the surface of a

sphere. Then choosing “centers” on the surfaces of these spheres will yield a value of r

within a factor two of optimal, and yet it should be possible to do much better.

A big challenge in designing an algorithm for a combinatorial optimization problem

is to state the problem in an useful manner. If it is stated in too much generality, then it

might be impossible to concoct an algorithm with any meaningful performance guarantee.

In this case, there may be many algorithms to choose between, but one will not be able to

differentiate between them – the goodness criterion is so stringent that they all fail miserably.

One could run simulations or make a few heuristic arguments for specific cases, but overall

it will be hard to make a definitive and satisfactory choice. This may well be the case with

the ML formulation of the mixture-of-Gaussians problem without any assumptions on the

data.

Clustering is a hard problem which is the subject of intensive research. One possible

mode of attack is to alternate exploratory data analysis with algorithm design:

Explore data sets of interest to gain some insights into them. What do clusters
look like?

Using these insights, formalize some assumptions about the data. Design an
algorithm which works well under these assumptions.

Mixtures of Gaussians 15

A reasonable way of starting this process is by designing a clustering algorithm which works

under what is perhaps the most widely used assumption – that the data look like a mixture

of Gaussians.

2 Learning algorithms

The reference book of Titterington, Smith and Makov (1985) contains a brief history

of the many fascinating and idiosyncratic techniques that have been applied to learning

mixtures of Gaussians. These range from manual univariate procedures requiring graph

paper and sharpened pencils to more sophisticated numerical methods based upon the

manipulation of empirical Fourier coefficients of the data. Further details and more recent

advances can be found in an excellent survey article by Redner and Walker (1984) and in a

monograph by Lindsay (1995). Among the various algorithms, two of the most prominent

are the method of moments and EM.

2.1 The method of moments

The theory of mixture models is often thought to have started with Pearson’s (1894)

clustering of crabs. The data were collected from 1000 crabs in Naples. For each crab, the

ratio of the “forehead” to the body length was recorded. Pearson wanted to divide these

measurements into two clusters, and did so by fitting a mixture of two univariate Gaussians

to the data.

The technique he used has been widely studied since, and is called the method of

moments. Pick a function t(·), and compute its expectation under the empirical distribution

of data points x1, . . . , xm,

Êt =
t(x1) + · · ·+ t(xm)

m
.

Now choose a model θ ∈ Θ for which the expectation of t under θ is equal to Êt. Often a

number of different functions ti are chosen and the fit need not be exact.

Pearson chose the first few moment functions ti(x) = xi. He reduced the resulting

equivalences to a single nonic equation whose solution would yield a mixture of Gaussians.

In scaling this technique to mixtures with more parameters, a few considerations are

important. First, the functions t(·) should not have high variance, otherwise their empirical

estimates are unreliable. This can sometimes rule out high-order moments, suggesting

Mixtures of Gaussians 16

instead the “zero-order moments” tA(x) = 1(x ∈ A), for sets A. It seems difficult to find a

set of moments to use with mixtures of Gaussians which will make the necessary equation-

solving easy to automate. Perhaps this is why it appears to have died out as a viable

algorithm, despite its intuitive appeal.

2.2 Expectation-maximization

The principal goal of the EM algorithm (Dempster, Laird and Rubin, 1977; Redner

and Walker, 1984; Xu and Jordan, 1996) when applied to our learning problem is to find a

local maximum in the space of Gaussian mixtures ranked by likelihood. We have already

seen that the global optimum is not necessarily desirable, which puts the whole enterprise

in question. Nonetheless EM has an appealing simplicity which, together with a marked

absence of significantly better alternatives, has made it the current algorithm of choice for

learning mixtures of Gaussians.

We will briefly sketch the algorithm. It starts by guessing some values for the mixture

parameters, and then alternates between two stages.

Stage ‘E’: Taking the current guess as truth, compute, for each data point and
each Gaussian, the probability that the point came from that Gaussian. This
gives a “soft clustering” of the data set – each point is not definitively assigned
to a Gaussian, but is split between all of them in suitable proportion.

Stage ‘M’: Based on this interim clustering, update the estimates of the param-
eters.

As this process continues, the log-likelihood of the estimated mixture increases monotoni-

cally. A possible stopping point is when the increase becomes very small, although of course

this could just be a misleading lull.

One issue that has received a fair amount of attention is how the initial parameters

should be chosen, particularly the initial Gaussian centers (for instance, Meilă and Hecker-

man, 1998). Viable options for the initial centers are: (i) choose a few of the data points

at random; (ii) use the results of k-means, a quicker clustering heuristic; or (iii) find the

bounding box of the data and choose some points uniformly at random from this box.

Mixtures of Gaussians 17

3 High-dimensional Gaussians

3.1 Some counter-intuitive effects

An n-dimensional Gaussian N(µ,Σ) has density function

p(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
.

If Σ is a multiple of the identity matrix, then the Gaussian is called spherical. Some

important intuition about the behavior of Gaussians in high dimension can quickly be

gained by examining the spherical Gaussian N(0, σ2In). Although its density is highest at

the origin, it turns out that for large n most of the probability mass lies far away from this

center. This is the first of many surprises that high-dimensional space will spring upon us.

A point X ∈ R
n chosen randomly from this Gaussian has coordinates Xi which are i.i.d.

N(0, σ2). Therefore its expected squared Euclidean norm is E(‖X‖2) =
∑

i EX2
i = nσ2.

In fact, it can be shown quite routinely, by writing out the moment-generating function of

‖X‖2, that the distribution of ‖X‖2 will be tightly concentrated around its expected value.

Specifically,

P(|‖X‖2 − σ2n| > ǫσ2n) ≤ 2e−nǫ2/24.

That is to say, for big enough n, almost the entire distribution lies in a thin shell of radius

approximately σ
√

n. Thus the natural scale of this Gaussian is in units of σ
√

n.

This effect might arouse some initial skepticism because it is not observable in one or

two dimensions. But it can perhaps be made more plausible by the following explanation.

The Gaussian N(0, In) assigns density proportional to e−ρ2n/2 to points on the surface of

the sphere centered at the origin and of radius ρ
√

n, ρ ≤ 1. But the surface area of this

sphere is proportional to (ρ
√

n)n−1. For large n, as ρ ↑ 1, this surface area is growing much

faster than the density is decaying, and thus most of the probability mass lies at distance

about
√

n from the origin. Figure 1 is a graphical depiction of this effect for various values

of n.

The more general Gaussian N(0,Σ) has ellipsoidal contours of equal density. Each

such ellipsoid is of the form {x : xT Σ−1x = r2}, corresponding to points at a fixed Maha-

lanobis distance ‖x‖Σ =
√

xT Σ−1x from the center of the Gaussian. The principal axes of

any of these ellipsoids are given by the eigenvectors of Σ. The radius along a particular axis

is proportional to the square root of the corresponding eigenvalue. Denote the eigenvalues by

Mixtures of Gaussians 18

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n = 1

Radius r from center, in units of sqrt(n)

P
ro

ba
bi

lit
y

m
as

s
at

 r
ad

iu
s

r

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n = 2

Radius r from center, in units of sqrt(n)

P
ro

ba
bi

lit
y

m
as

s
at

 r
ad

iu
s

r

0 0.5 1 1.5 2
0

0.5

1

1.5

2
x 10

−5

n = 10

Radius from center, in units of sqrt(n)

P
ro

ba
bi

lit
y

m
as

s
at

 r
ad

iu
s

r

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
x 10

−13

n = 20

Radius r from center, in units of sqrt(n)

P
ro

ba
bi

lit
y

m
as

s
at

 r
ad

iu
s

r

Figure 1: Probability mass of N(0, In) at radius r
√

n from the origin, for various n.

Mixtures of Gaussians 19

λ1 ≤ · · · ≤ λn. We will measure how non-spherical a Gaussian is by its eccentricity, namely
√

λn/λ1. As in the spherical case, for large n and for Σ of bounded eccentricity the distribu-

tion of N(0,Σ) will be concentrated around an ellipsoidal shell ‖x‖2Σ ≈ n. Yet it will also be

concentrated, perhaps less tightly, around a spherical shell ‖x‖2 ≈ λ1 + · · ·+λn = trace(Σ).

3.2 Formalizing separation

It is reasonable to imagine, and is borne out by experience with techniques like EM

(Duda and Hart, 1973; Redner and Walker, 1984), that a mixture of Gaussians is easiest to

learn when the Gaussians do not overlap too much. Our discussion of N(µ, σ2In) suggests

that it is natural to define the radius of this Gaussian as σ
√

n, which leads to the following

Definition Two Gaussians N(µ1, σ
2In) and N(µ2, σ

2In) are c-separated if ‖µ1 − µ2‖ ≥
cσ
√

n. More generally, Gaussians N(µ1,Σ1) and N(µ2,Σ2) in R
n are c-separated if

‖µ1 − µ2‖ ≥ c
√

n max(λmax(Σ1), λmax(Σ2)),

where λmax(Σ) is shorthand for the largest eigenvalue of Σ. A mixture of Gaussians is

c-separated if its component Gaussians are pairwise c-separated.

In other words, two spherical Gaussians are c-separated if their centers are c radii

apart. In high dimension, a 2-separated mixture corresponds roughly to almost completely

separated Gaussians, whereas a mixture that is 1- or 1
2 -separated has slightly more (though

still negligible) overlap. The algorithm presented in the following chapter can deal with

Gaussians which are arbitrarily close together; its running time, however, will inevitably

depend on their level of separation.

One way to think about high-dimensional c-separated mixtures is to imagine that

their projections to any one coordinate are c-separated. For instance, suppose that mea-

surements are made on a population consisting of two kinds of fish. Various attributes,

such as length and weight, are recorded. Suppose also that restricting attention to any

one attribute gives a 1-separated mixture of two Gaussians in R
1, which is unimodal and

therefore potentially difficult to learn. However, if several (say ten) independent attributes

are considered together, then the mixture in R
10 will remain 1-separated but will no longer

have a unimodal distribution. It is precisely to achieve such an effect that data sets gener-

ally try to incorporate as many relevant attributes as possible. This improvement in terms

of better-defined clusters is bought at the price of an increase in dimensionality. Are there

learning algorithms which can effectively exploit this tradeoff?

Mixtures of Gaussians 20

3.3 The problem of dimension

Why is it at all difficult to reconstruct a mixture of Gaussian given i.i.d. samples

from it? In low dimension, for instance in the case of univariate Gaussians, it is often

possible to simply plot the data and visually estimate a solution, provided the Gaussians

maintain a respectable distance from one another. This is because a reasonable amount of

data conveys a fairly accurate idea of the overall probability density. The high points of this

density correspond to centers of Gaussians and to regions of overlap between neighboring

clusters. If the Gaussians are far apart, these modes themselves provide good estimates of

the centers.

Easy algorithms of this kind fail dismally in higher dimension. Consider again the

Gaussian N(µ, σ2In). We must pick 2Ω(n) random points from this distribution in order

to get just a few which are at distance ≤ 1
2σ
√

n from the center. The data in any sample

of plausible size, if plotted somehow, would resemble a few scattered specks of dust in an

enormous void. What can we possibly glean from such a sample? Such gloomy reflections

have prompted researchers to try mapping data into spaces of low dimension.

4 Dimensionality reduction

4.1 Overview

The naive mode-finding algorithm we just considered requires at least about 2d data

points to learn a mixture of Gaussians in R
d. Is it possible to reduce the dimension of the

data so dramatically that this requirement actually becomes reasonable?

Dimensionality reduction has been the subject of keen study for the past few decades,

and instead of trying to summarize this work we will focus upon two very popular contem-

porary techniques: principal component analysis (PCA) and random projection. They are

both designed for data with Euclidean (L2) interpoint distances and are both achieved via

linear mappings.

The linear projection of a Gaussian remains a Gaussian. Therefore, projecting a mix-

ture of high-dimensional Gaussians onto a single line will produce a mixture of univariate

Gaussians. However, these projected clusters might be so close together as to be indistin-

guishable. The main question then is, how much can the dimension be reduced while still

maintaining a reasonable amount of separation between different clusters?

Mixtures of Gaussians 21

4.2 Principal component analysis

Principal component analysis is an extremely important tool for data analysis which

has found use in many experimental and theoretical studies. It finds a d-dimensional sub-

space of R
n which captures as much of the variation in the data set as possible. Specifically,

given data S = {x1, . . . , xm} it finds the linear projection to R
d for which

m∑

i=1

‖x∗
i − µ∗‖2

is maximized, where x∗
i is the projection of point xi and µ∗ is the mean of the projected

data.

This projection is quite easy to obtain. Let µ,Σ denote the mean and covariance of

the high-dimensional data S. The positive semidefinite matrix Σ can be written in the form

BT DB, where D = diag(λ1, . . . , λn) is a diagonal matrix containing the eigenvalues of Σ,

and B is an orthogonal n × n matrix (that is, BT B = BBT = In). If the data points are

rotated by B, the resulting data Bx1, . . . , Bxm has mean Bµ and covariance

1

m

m∑

i=1

(Bxi −Bµ)(Bxi −Bµ)T = BΣBT = D.

Assume the eigenvalues are ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn. Then the direction of

maximum variance of the rotated data is simply the first coordinate axis. Similarly, to

select the d-dimensional subspace of maximum variance, simply pick the first d coordinate

axes of the rotated space. In summary, PCA projects each point xi ∈ R
n to x∗

i = P T xi,

where P T is the d× n projection matrix consisting of the first d rows of B. The projected

data then has covariance diag(λ1, . . . , λd).

By how much can PCA reduce the dimension of a mixture of k Gaussians? It is

quite easy to symmetrically arrange a group of k spherical Gaussians in R
k/2 so that a

PCA projection to any smaller dimension will collapse some of the Gaussians together, and

thereby decisively derail any hope of learning. For instance, place the centers of the (2j−1)st

and 2jth Gaussians along the jth coordinate axis, at positions j and −j. The eigenvectors

found by PCA will roughly be coordinate axes, and the discarding of any eigenvector will

collapse together the corresponding pair of Gaussians. Thus PCA cannot in general be

expected to reduce the dimension of a mixture of k Gaussians to below Ω(k). Moreover, it

is a rather time-consuming process for high-dimensional data.

Mixtures of Gaussians 22

4.3 Random projection

A much faster technique for dimensionality reduction, which has received a warm

welcome in the theoretical computer science community, is expressed in the following lemma.

Lemma 1 (Johnson-Lindenstrauss, 1984) Fix some 0 < ǫ < 1 and 0 < δ < 1. Pick

any m data points x1, . . . , xm ∈ R
n. If these points are projected into a randomly chosen

subspace of dimension d ≥ 12
ǫ2

ln m2

δ then with probability > 1 − δ, the projected points

x∗
1, . . . , x

∗
m satisfy

(1− ǫ)
d

n
≤
‖x∗

i − x∗
j‖2

‖xi − xj‖2
≤ (1 + ǫ)

d

n
for all i 6= j.

This remarkable lemma asserts, roughly, that any m data points in arbitrarily high

dimension can be linearly mapped into an O(log m)-dimensional subspace in such a way

that pairwise Euclidean distances between the points are only slightly distorted. Moreover,

this particular subspace is not hard to choose; a random subspace will with high probability

(> 1−m−Ω(1)) do the job. The original proof was simplified by Frankl and Maehara (1988),

and a yet more elementary version, the result of joint work with Gupta, is presented in

Appendix A.3.

The choice of random projection matrix does not depend upon the data in any way,

and so can be accomplished quickly, in time O(d2n). This technique is therefore a very

efficient generic means of coping with high dimensionality. However, for our purposes this

reduced dimension is still far too high. The rough heuristic outlined above needs 2d data

points, and this exceeds m by many orders of magnitude.

4.4 Random projection for mixtures of Gaussians

Later in this chapter we will see that for the particular case of mixtures of Gaussians,

we can reduce the dimension of the data far more drastically than in the generic bound given

above. By using projection to a randomly chosen subspace as in the Johnson-Lindenstrauss

lemma, we can map the data into just d = O(log k) dimensions, where k is the number of

Gaussians. Therefore the amount of data we will need is only polynomial in k.

This might puzzle readers who are familiar with random projection, because the usual

motive behind such projections is to approximately preserve relative distances between

data points. However, in our situation we expressly do not want this. We want some

Mixtures of Gaussians 23

of the pairwise distances to contract significantly, so that the fraction of points within

distance ∆
√

d of any Gaussian center in the reduced space R
d is much greater than the

fraction of points within distance ∆
√

n of the same center in the original space R
n. At

the same time, we do not want the distances between different Gaussians to contract; we

must make sure that Gaussians which are well-separated remain so when they are projected.

These conflicting requirements are accommodated admirably by a projection to just O(log k)

dimensions.

Definition For a positive definite matrix Σ, let λmax(Σ) and λmin(Σ) refer to its largest

and smallest eigenvalues, respectively, and denote by e(Σ) the eccentricity of the matrix,

that is,
√

λmax(Σ)/λmin(Σ).

The following dimensionality reduction lemma applies to arbitrary mixtures of Gaus-

sians, which we parametrize by mixing weights wi, means µi and covariance matrices Σi,

one per Gaussian. Its statement refers to the notion of separation introduced earlier.

Lemma 2 (Dimensionality reduction) For any c > 0, let {(wi, µi,Σi)} denote a c-

separated mixture of k Gaussians in R
n, and let δ, ǫ ∈ (0, 1) designate confidence and ac-

curacy parameters, respectively. The projection of this mixture of Gaussians into a random

d-dimensional subspace will with probability > 1− δ yield a (c
√

1− ǫ)-separated mixture of

Gaussians {(wi, µ
∗
i ,Σ

∗
i)} in R

d, provided d ≥ 4
ǫ2

ln k2

2δ .

Moreover, λmax(Σ∗
i) ≤ λmax(Σi) and λmin(Σ∗

i) ≥ λmin(Σi). In particular therefore,

e(Σ∗
i) ≤ e(Σi).

Proof. Consider a single line segment in R
n, of squared length L. If the original space is

projected onto a random d-dimensional subspace, the squared length of this line segment

becomes some L∗, of expected value EL∗ = Ld/n. The proof of the Johnson-Lindenstrauss

lemma (Appendix A.3) shows that P(L∗ < (1− ǫ)Ld/n) ≤ e−dǫ2/4.

Apply this bound to the
(k
2

)
line segments joining pairs of Gaussian centers in the

original space. Then

P
(
∃i 6= j : ‖µ∗

i − µ∗
j‖ < ‖µi − µj‖

√
(1− ǫ)d/n

)
≤

(
k

2

)
e−dǫ2/4 ≤ δ.

This keeps the centers far apart; to satisfy our definition of separatedness, we must also check

that the original Gaussians do not spread out when projected, that is, λmax(Σ∗
i) ≤ λmax(Σi).

Mixtures of Gaussians 24

Before projection After projection

.

. .
.
.

. .

.
.

.
..

.

.
.

. .

.
.

. .
.

.

.

.
.

.
.

. . .
..

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.
. .

.

.

.

. .
.

.
.

.
.

. .

.

.

Figure 2: The effects of random projection: the dimension is drastically reduced while the
clusters remain well-separated and become more spherical.

This is straightforward. Write the projection, say P T , as a d×n matrix with orthog-

onal rows. P T sends Gaussian N(µ,Σ) in R
n to N(P T µ,P T ΣP) in R

d, and

λmax(P T ΣP) = max
u∈Rd

uT (P T ΣP)u

uT u
= max

v∈Rn

(P T v)T (P T ΣP)(P T v)

(P T v)T (P T v)

= max
v∈Rn

(PP T v)T Σ(PP T v)

(PP T v)T (PP T v)

≤ max
v∈Rn

vT Σv

vT v
= λmax(Σ).

The denominator in the second line uses P T P = Id. In similar fashion we can show that

λmin(Σ∗
i) ≥ λmin(Σi), completing the proof.

This method of projection has another tremendous benefit: we show that even if

the original Gaussians are highly skewed (have ellipsoidal contours of high eccentricity),

their projected counterparts will be more spherical (Figure 2). Since it is conceptually

much easier to design algorithms for spherical clusters than ellipsoidal ones, this feature of

random projection can be expected to simplify the learning of the projected mixture.

Consider a Gaussian N(0,Σ) in R
n, and think of the random projection from R

n to

R
d as a random rotation in R

n, represented by some orthogonal matrix UT , followed by a

projection P T onto the first d coordinates. The columns of UT are an orthonormal basis

{u1, . . . , un} of R
n. Denote the restriction of these vectors to their first d coordinates by

u∗
1, . . . , u

∗
n, respectively. The high-dimensional covariance matrix Σ has some eigenvalues

λ1 ≤ · · · ≤ λn, with eccentricity e =
√

λn/λ1 ≥ 1, and normalized trace λ = 1
n(λ1+· · ·+λn).

It will turn out that under suitable conditions on e the covariance matrix of the projected

Mixtures of Gaussians 25

Gaussians, denoted Σ∗, is close to the spherical covariance matrix λId.

Pick any unit vector x ∈ R
d, and define V (x) = xT Σ∗x to be the variance of the

projected Gaussian in direction x. The quantity V (x) is a random variable which depends

upon the choice of random projection. We next characterize its distribution.

Lemma 3 (Variance of a projected Gaussian) For any unit vector x ∈ R
d, V (x) has

the same distribution as
∑n

i=1 λiv
2
i , where v is chosen uniformly at random from the surface

of the unit sphere in R
n. Therefore EV (x) = λ, over the choice of random projection.

Proof. We can write the projected covariance matrix Σ∗ as (UP)T Σ(UP), and on account

of U we may assume Σ is diagonal, specifically Σ = diag(λ1, . . . , λn).

Pick any direction x ∈ R
d. The variance of the projected Gaussian in direction x is

V (x) = xT Σ∗x = (Px)T (UT ΣU)(Px). Since Σ is diagonal,

(UT ΣU)ij =

n∑

k=1

λkUkiUkj

whereby

V (x) =
n∑

i,j=1

(Px)i(Px)j(U
T ΣU)ij

=
d∑

i,j=1

xixj

n∑

k=1

λkUkiUkj

=
n∑

k=1

λk

d∑

i,j=1

(xiUki)(xjUkj)

=

n∑

k=1

λk(x · u∗
k)

2,

where u∗
k denotes the first d coordinates of the kth row of U .

We can without loss of generality assume that x lies along some coordinate axis, say

the very first one, in which case

V (x) =

n∑

i=1

λiu
2
i1.

Since UT is a random orthogonal matrix, its first row (u11, . . . , un1) is a random unit vector.

We now have a simple formulation of the distribution of V (x). For any given x, this

value is likely to be close to its expectation because it is the sum of n almost-independent

Mixtures of Gaussians 26

bounded random variables. To demonstrate V (x) ≈ λ simultaneously for all vectors x on

the unit sphere in R
d, we will prove uniform convergence for a carefully chosen finite cover

of this sphere.

Lemma 4 (Eccentricity reduction) There is a universal constant C such that for any

0 < ǫ ≤ 1 and 0 < δ < 1, if the original dimension satisfies n > C · e2

ǫ2
(log 1

δ + d log d
ǫ),

then with probability > 1 − δ over the choice of random projection, the eccentricity e∗ of

the projected covariance matrix will be at most 1 + ǫ. In particular, if the high-dimensional

eccentricity e is at most n1/2C−1/2(log 1
δ + d log d)−1/2 then with probability at least 1− δ,

the projected Gaussians will have eccentricity e∗ ≤ 2.

Proof. By considering moment-generating functions of various gamma distributions (see

Lemma A.5 for details), we can show that for any particular x and any ǫ ∈ (0, 1],

P(|V (x)− λ| > 1
6ǫλ) ≤ e−Ω(nǫ2/e2).

Moreover, if x and y are unit vectors which are close to each other then V (y) cannot

differ too much from V (x):

|V (x)− V (y)| ≤
n∑

i=1

λi

∣∣(u∗
i · x)2 − (u∗

i · y)2
∣∣

=

n∑

i=1

λi |u∗
i · (x− y)| · |u∗

i · (x + y)|

≤
n∑

i=1

λi ‖u∗
i ‖2 · ‖x + y‖ · ‖x− y‖

≤ 2 ‖x− y‖
(

n∑

i=1

λi‖u∗
i ‖2
)

.

The third line follows by the Cauchy-Schwarz inequality and the fourth uses the fact that

x and y are unit vectors. The final parenthesized quantity has expected value dλ (each u∗
i

consists of the first d coordinates of a random unit vector in R
n and therefore E‖u∗

i ‖2 = d
n).

The chance that it exceeds 2dλ is at most de−Ω(n/e2), by Lemma A.5. Choosing ‖x− y‖ ≤
ǫ

24d will then ensure |V (x)− V (y)| ≤ 1
6ǫλ.

Bounding V (x) effectively bounds V (y) for y ∈ B(x; ǫ
24d). How many points x must

be chosen to cover the unit sphere in this way? It turns out that (24dβ
ǫ)d points will do the

trick, for some constant β > 0. This last result is shown by considering the dual question,

Mixtures of Gaussians 27

how many non-overlapping spherical caps of fixed radius can be packed onto the surface of

a sphere? An upper bound can be obtained by a surface area calculation (Gupta, 1999).

Let S denote this finite cover; then

P(e∗ ≥ 1 + ǫ) ≤ P(∃x : V (x) 6∈ [λ(1− 1
3ǫ), λ(1 + 1

3ǫ)])

≤ de−Ω(n/e2) + P(∃x ∈ S : V (x) 6∈ [λ(1− 1
6ǫ), λ(1 + 1

6ǫ)])

≤ de−Ω(n/e2) + (O(d
ǫ))

d · e−Ω(nǫ2/e2),

completing the proof.

Random projection offers many clear benefits over principal component analysis. As

explained earlier, PCA cannot in general be used to reduce the dimension of a mixture of

k Gaussians to below Ω(k), whereas random projection can reduce the dimension to just

O(log k). Moreover, PCA may not reduce the eccentricity of Gaussians. However, if a

projection to k dimensions is acceptable, then a PCA-projected mixture could easily be

far better separated than a randomly projected mixture. For this reason PCA remains an

important tool in the study of Gaussian clusters.

4.5 Illustrative experiments

The lemmas of the previous section can be illustrated by a few simple experiments.

The first two of these examine what happens when a 1-separated mixture of k Gaussians in

R
n is randomly projected into R

d. The main question is, in order to achieve a fixed level of

separation in the projected mixture, what value of d must be chosen? How will this d vary

with n and k?

The first experiment, depicted in Figure 3, is intended to demonstrate that d does not

depend upon n, that is, the projected dimension is independent of the original dimension

of the data. Here two 1-separated spherical Gaussians are projected into R
20 and their

separation is noted as a function of n. The error bars are for one standard deviation in

either direction; there are 40 trials per value of n.

The second series of tests (Figure 4) randomly projects 1-separated mixtures of k

spherical Gaussians in R
100 into d = 10 ln k dimensions, and then notes the separation of

the resulting mixtures. The results directly corroborate Lemma 2. The mixtures created for

these tests are maximally packed, that is, each pair of constituent Gaussians is 1-separated.

There are 40 measurements taken for each value of k.

Mixtures of Gaussians 28

0 200 400 600 800 1000 1200
0

0.5

1

1.5
Projected separation vs. initial dimension

Original dimension (n)

S
ep

ar
at

io
n

of
 p

ro
je

ct
ed

 m
ix

tu
re

Figure 3: The projected dimension (d = 20) does not depend upon the original dimension.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Projected separation when reduced dimension d = 10 log k

Number of Gaussians in mixture (k)

S
ep

ar
at

io
n

of
 p

ro
je

ct
ed

 m
ix

tu
re

Figure 4: d = 10 ln k works nicely to keep the projected clusters well-separated.

Mixtures of Gaussians 29

Eccentricity e n
in R

n 25 50 75 100 200

50 9.5± 3.80 3.4± 0.62 2.5 ± 0.29 2.2± 0.17 1.7 ± 0.07
100 13.1 ± 5.79 3.5± 0.57 2.5 ± 0.26 2.2± 0.19 1.7 ± 0.08
150 13.0 ± 7.40 3.5± 0.55 2.5 ± 0.25 2.2± 0.14 1.7 ± 0.07
200 14.7 ± 8.04 3.4± 0.50 2.5 ± 0.22 2.2± 0.19 1.7 ± 0.06

Figure 5: Reduction in eccentricity e→ e∗, for a variety of starting dimensions n. Values in
the table represent eccentricities e∗ in the projected space R

20, plus or minus one standard
deviation. Each table entry is the result of 40 trials.

The last two experiments, shown in Figures 5 and 6, document the dramatic decrease

in eccentricity that accompanies the random projection of a Gaussian. The first of these

projects a Gaussian of high eccentricity e from R
n into R

20 and measures the eccentricity

e∗ of the projection, over a range of values of e and n. Here matrices of eccentricity e are

constructed by sampling the square roots of their eigenvalues uniformly from the range [1,e],

and making sure to include the endpoints 1 and e. The last experiment fixes a particular

Gaussian in R
50 of enormous eccentricity e = 1000, and then projects this Gaussian into

successively lower dimensions 49, 48, 47, . . . , 25. Notice that the y-axis of the graph has a

logarithmic scale. Also, the error bars no longer represent standard deviations but in fact

span the maximum and minimum eccentricities observed over 40 trials per value of d.

Mixtures of Gaussians 30

20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

Projecting a 50−dimensional Gaussian of eccentricity 1000

Reduced dimension (d)

E
cc

en
tr

ic
ity

 o
f p

ro
je

ct
ed

 G
au

ss
ia

n

Figure 6: The eccentricity e∗ in R
d of a Gaussian which has eccentricity e = 1000 in R

50.

31

Chapter III

A simple learning algorithm

1 Overview

In this chapter we will examine a simple algorithm which learns an unknown mix-

ture of Gaussians with arbitrary common covariance matrix and arbitrary mixing weights,

in time which scales only linearly with dimension and polynomially with the number of

Gaussians. With high probability, it learns the true centers of the Gaussians to within

the precision specified by the user. Previous heuristics have been unable to offer any such

performance guarantee, even for highly restricted subcases like mixtures of two Gaussians.

The learning model was described in the introductory chapter (Figure I.6). The user

furnishes: a data set S consisting of (say) m data points in R
n; ǫ, the accuracy within which

the centers are to be learned; δ, a confidence parameter; k, the number of Gaussians; and

wmin, the smallest mixing weight that will be considered.

The algorithm, shown in Figure 1, works in four phases and is very simple to im-

plement. Some brief intuition about its functioning will hopefully ease the way for the

subsequent formal analysis.

1.1 Low-dimensional clustering

The data are projected from R
n to R

d via a linear map. Since any linear transfor-

mation of a Gaussian conveniently remains a Gaussian, we can pretend that the projected

data themselves come from a mixture of low-dimensional Gaussians.

The second step of the algorithm estimates the means of these projected Gaussians.

Learning mixtures of Gaussians 32

1. Projection Select a random d-dimensional subspace of the original space R
n,

and project the data into this space. This step is motivated by the results of the

previous chapter. Let S∗ denote the projected data.

2. Low-dimensional clustering This step first estimates the low-dimensional cen-

ters and then finds data points near them. In the projected space,

• For each x ∈ S∗, compute rx, the smallest radius such that there are ≥ p

points within distance rx of x.

• Start with S′ = S∗.

• For i = 1 . . . k:

– Let estimate µ̂∗
i be the point x ∈ S′ with the lowest rx.

– Find the q closest points to this estimated center.

– Remove these points from S′.

• For each i, let S∗
i denote the l points in S∗ which are closest to µ̂∗

i . Let Si

denote these same points in the original space.

3. High-dimensional reconstruction Let the (high-dimensional) estimate µ̂i be

the mean of Si in R
n.

4. High-dimensional consolidation Assign each data point in S to its closest

µ̂i. Compute statistics of the resulting clusters to obtain estimates of the means,

mixing weights, and covariance matrix.

Figure 1: An algorithm for learning mixtures of Gaussians. The parameters d, l, p, and q
depend upon the inputs, and will be determined later.

Learning mixtures of Gaussians 33

Regions of higher density will tend to contain more points, and we can roughly imagine the

density around any data point x to be inversely related to the radius rx. In particular, the

point with lowest rx will be near the center of some (projected) Gaussian. If the Gaussians

all share the same covariance, then this data point will most likely be close to the center of

the Gaussian with highest mixing weight.

Once we have a good estimate for the center of one Gaussian, how do we handle the

rest of them? The problem is that one Gaussian may be responsible for the bulk of the data

if it has a particularly high mixing weight. All the data points with low rx might come from

this one over-represented Gaussian, and need to be eliminated from consideration somehow.

This is done by growing a wide region around the estimated center, and removing

from contention all the points in it. The region should be large enough to remove all high-

density points in that particular Gaussian, but should at the same time leave intact the

high-density points of other Gaussians. The reader may wonder, how can we possibly know

how large this region should be if we have no idea of either the covariance or the mixing

weights? First, we pick the q points closest to the estimated center rather than using a

preset radius; this accomplishes a natural scaling. Second, the probability of encountering

a data point at a distance ≤ r from the center of the Gaussian grows exponentially with

r, and this rapid growth tends to eclipse discrepancies of mixing weight and directional

variance.

Both the techniques described – that of choosing the point with the next lowest rx

as a center-estimate, and then “subtracting” the points close to it – rely heavily on the

accuracy of spherical density estimates. That is, they assume that for any sphere in R
d,

the number of data points which fall within that sphere is close to its expected value under

the mixture distribution. That this is in fact the case follows from the happy circumstance

that the concept class of spheres in R
d has VC dimension only d + 1.

1.2 Reconstruction in high-dimensional space

At this stage, projected centers in hand, we recall that our actual task was to find the

Gaussian means in the original high-dimensional space. This is not too difficult conceptually.

For each low-dimensional estimated center µ̂∗
i , we pick the l data points closest to it in R

d,

call them S∗
i , and then average these same points in R

n. We expect S∗
i to be relatively

uncontaminated with points from other Gaussians (although we cannot of course avoid the

Learning mixtures of Gaussians 34

odd straggler), and thus its mean in R
n should closely approximate µi.

The chief technical problem in the reconstruction is to show that small errors in the

estimate µ̂∗
i are not grossly magnified when carried back into R

n. The core question can be

stated quite simply. Given that an unknown point x ∈ R
n drawn from Gaussian N(0,Σ)

gets projected to some y ∈ R
d, what is the conditional distribution of ‖x‖ given ‖y‖? A bit

of matrix analysis yields the answer.

1.3 Consolidating the clusters in high-dimensional space

The estimates obtained in the second and third phases of the algorithm will be very

crude, of much lower precision than the user demands. Nevertheless, it can be shown that

assigning each point in S to its closest high-dimensional center-estimate µ̂i will cluster the

data almost perfectly. Computing statistics of each cluster will then yield sharp estimates

of its mean, covariance, and mixing weight.

How exactly did the projection help us? It enabled us to find, for each Gaussian, a

set of data points drawn mostly from that Gaussian.

1.4 The main result

Theorem 1 In what follows, C1, C2, and C3 are universal constants. Suppose data is drawn

from a mixture of k Gaussians in R
n which is 1-separated, has smallest mixing weight wmin,

and has some common (unknown) covariance matrix Σ. If the user specifies confidence

and accuracy parameters δ, ǫ ∈ (0, 1) respectively, then the algorithm will set the reduced

dimension to some d = C1 log 1
wminδ .

Let σ2
max denote the maximum eigenvalue of Σ and let e denote its eccentricity. If

(1) e ≤ C2n
1/2(d log d)−1/2, (2) n ≥ C2(d + log 1

ǫ) and (3) the number of data points is

m ≥ (1
wminδ)C3 , then with probability > 1−δ, the center estimates returned by the algorithm

will be accurate within L2 distance ǫσmax
√

n.

The algorithm runs in time O(m2d+mdn), plus an additional O(mn2) if an estimate

of the covariance matrix is sought.

This algorithm can in fact efficiently handle Gaussians whose separation is an arbi-

trarily small constant c > 0. It is only to curtail the proliferation of symbols that we insist

upon 1-separation in this theorem. A similar comment applies to the eccentricity.

Learning mixtures of Gaussians 35

Mixtures of one-dimensional Gaussians cannot be handled by our procedure. Since it

attempts to project data into Ω(log k)-dimensional space, the original dimension must be

at least this high. The final phase of the algorithm obtains estimates of the means (and

other parameters) using a hard clustering of the data, as in the k-means algorithm. Even a

perfect hard clustering will result in an L2 error of O(e−n√n); this is tiny for large n but in

our framework it necessitates the requirement n ≥ Ω(log 1
ǫ). To remove this qualification a

soft clustering can be used instead, as in the EM algorithm.

1.5 Notation

The following battery of notation will be used consistently through the chapter.

ǫ, δ Accuracy and confidence, supplied by user
ǫ0 Accuracy of spherical density estimates
m Overall number of data points
n Original dimension of data
d Reduced dimension
k Number of Gaussians
wiN(µi,Σ) A mixture component (Gaussian) in R

n

wmin Lower bound on the wi, supplied by user
cij Separation between ith and jth Gaussians in R

n

c mini6=j cij

c∗ij , c
∗ Separation of Gaussians in R

d

wiN(µ∗
i ,Σ

∗) Projection of ith Gaussian into R
d

π∗(·) Density of the entire projected mixture
B(x; r) Sphere of radius r centered at x
B(r′; r) B(x; r) for some x with ‖x‖ = r′

l, p, q Integer parameters needed by algorithm
ρ The accuracy of phases two and three (a small constant)
S Data set in R

n

S∗ Data set in R
d

σmax, σmin

√
λmax(Σ),

√
λmin(Σ)

e Eccentricity σmax/σmin

σ∗
max, σ∗

min,e∗ Similar, but in the projected space
ν(·) N(0, Id)
νΣ∗(·) N(0,Σ∗)
T A useful linear transformation in R

d

‖ · ‖Σ Mahalanobis distance, ‖x‖Σ =
√

xT Σ−1x
E(z; r; Σ) Ellipsoid {x : ‖x− z‖Σ ≤ r}

As we have already seen, we can think of e∗ as a small constant even if e is large,

and this will help us tremendously.

Learning mixtures of Gaussians 36

2 Projection

Theorem 2 The first phase of the algorithm takes as input (1) a data set S ⊆ R
n and (2)

k, the number of Gaussians (or an upper bound on it). It returns a projection of the data

set, S∗. If c∗ij denotes the separation between the ith and jth projected Gaussians, and e∗ is

the eccentricity of the projected covariance matrix,

• if d ≥ 64
9 log k2

δ then with probability at least 1− δ, for all i 6= j, c∗ij ≥ 1
2cij ; and

• with probability at least 1− δ, for any v > 0,

e∗ ≤ 1 + max{v, C1/2 · e√
n
·
√

log 1
δ + d log d

v}.

where C is the universal constant from Lemma II.4.

In particular, if the high-dimensional mixture is 1-separated, with Gaussians of eccentricity

e < n1/2C−1/2(log 1
δ + d log d)−1/2, then with probability > 1 − 2δ, its projection will be

1
2-separated, with eccentricity e∗ ≤ 2.

Proof. This follows immediately from the lemmas in Chapter II.

3 Low-dimensional clustering

3.1 Technical overview

The second phase of the algorithm, which learns the centers of Gaussians in low

dimension, is ad hoc though correct. The technical tools used in its analysis might be

helpful in developing other similar routines, so we start with a brief overview of them.

The first question is, in what way is the Gaussian nature of the data being used?

Using VC bounds, it can be shown that with just a modest number of samples, all spheres

in R
d will contain roughly the expected number of points of under the mixture distribution.

This is a convenient guarantee; we need no other control on the sampling error. More

formally, the clustering algorithm will work under a

Weak Gaussian assumption For each sphere in R
d, the fraction of S∗ that falls in

this sphere is the expected fraction under the mixture distribution, ±ǫ0, where ǫ0 reflects

sampling error (and is in our case proportional to m−1/2). The class of spheres may be

substituted by some other class of small VC dimension.

Learning mixtures of Gaussians 37

A

B

Figure 2: A sphere near the center of a Gaussian has higher probability mass than a sphere
further away.

This requirement should be contrasted with a

Strong Gaussian assumption The data in S∗ are drawn i.i.d. from the projected mixture

of Gaussians.

The latter enables us to conclude, for instance, that if d is large and S∗ consists

of just two data points, then with high probability these two points are not close to one

another. This does not follow from the weak assumption; in fact, the sampling error is so

high for such a tiny data set that no non-trivial conclusions whatsoever can be drawn. The

deliberate use of such a restriction is not mere conceit; it will turn out to be important for

some of the extensions proposed later.

The weak Gaussian assumption forces us to examine the relative probability masses

of different spherical regions in R
d. Assume that the Gaussians are spherical. Each point x

in the sample is assigned a radius rx, and we hope that points with low rx will be close to

the centers of the Gaussians. In order to prove this, we must show that in cases such as that

depicted in Figure 2 (where the outer sphere conceptually denotes a Gaussian), sphere A

has a significantly higher probability mass than sphere B, which has the same radius but is

further from the center of the Gaussian. This can be shown easily by a pointwise coupling

of A and B.

Next, assume the Gaussians are spherical with unit variance. Once a center µ̂∗
i has

been chosen, we will eliminate the q points closest to it, where q is the number of points

expected to fall within B(µ∗
i ;

3
8

√
d), assuming a mixing weight of wmin. It turns out that

if µ̂∗
i is a reasonably accurate estimate of µ∗

i then whatever wi might actually be, this

process will eliminate all points in B(µ∗
i ;

1
4

√
d) and nothing that does not lie in B(µ∗

i ;
1
2

√
d).

In effect, it eliminates all the high-density points in the ith Gaussian while leaving intact

Learning mixtures of Gaussians 38

Gaussian
an ellipsoidal

Ellipse in a
spherical
Gaussian

Sphere in

Linear

transformation

Figure 3: Estimating the probability mass of spherical regions in ellipsoidal Gaussians.

high-density regions of other Gaussians.

These arguments seem most naturally suited to spherical Gaussians. They all involve

obtaining upper and lower bounds on the probability masses of spherical regions in R
d.

The extension to ellipsoidal Gaussians is managed via a simple linear transformation which

maps a sphere contained in an ellipsoidal Gaussian to an ellipsoid contained in a spherical

Gaussian. Bounds on the probability mass of this latter ellipsoid are then obtained by

considering its inscribed and circumscribed spheres (Figure 3). These bounds are acceptable

because the projected Gaussians have small eccentricity.

Once we have obtained estimates of the centers in R
d, we pick a few points S∗

i close

to each center-estimate µ̂∗
i . We will need to argue that the points S∗

i were for the most part

originally drawn from the ith Gaussian Gi. In other words, we are thinking of data points

as having hidden labels revealing which Gaussian generated them. A labelled point can be

generated by the process

• Pick Gaussian Gi with probability wi.

• Pick a point x from Gi, and label it with i.

or by the equivalent

• Pick Gaussian Gj with probability wj .

• Pick a point x from Gj .

• Pick label i with probability proportional to (wi · density assigned to x by Gi).

By switching between these two options, we will avoid various unpleasant dependencies

between the data set and the estimated centers.

Learning mixtures of Gaussians 39

3.2 Summary

Theorem 3 The second phase of the algorithm takes as input a (projected) data set S∗ ⊆ R
d

which satisfies the weak Gaussian assumption with error ǫ0 with respect to a 1
2-separated

mixture of Gaussians {(wi, µ
∗
i ,Σ

∗)}. The other inputs are: k, the number of Gaussians; the

eccentricity e∗, or some upper bound on it; an accuracy parameter ρ > 0; and an integer l.

The output of this phase is a set of k subsets {S∗
1 , . . . , S∗

k} ⊆ S∗, each of size l.

The quantity ρ should be thought of as a small constant which is typically unrelated

to the final precision ǫ required by the user. If the following conditions are met,

• ρ ≤ min{ 1
16e∗ , 1

8e∗2},

• ǫ0 ≤ wmin(ρ
8e∗)d min{1

8 , 3
1024ρ2d},

• d ≥ max
{

38e∗4 ln 1
wminρ2 , 8

e + 16 ln 10
ρwmin

}
,

• l ≤ mwmin(1
2ρ)d −mǫ0, and

• l ≥ 30
wminρ ln k2

δ ,

then with probability at least 1 − δ, each S∗
i is contained within B(µ∗

i ; ρσ∗
max

√
d) and the

number of points in Si from the jth Gaussian Gj , j 6= i, is ≤ lwjρ
10c∗ij

.

Proof. This is a consequence of Lemmas 4 to 13, which follow.

3.3 Crude density estimates

Our algorithm relies heavily upon the hope that in the projected space, every spherical

region will contain roughly its expected number of points under the mixture distribution.

This can shown effortlessly by a VC dimension argument.

Lemma 4 (Accuracy of density estimates) Let ν(·) denote any density on R
d from

which i.i.d. data is drawn. If the number of data points seen satisfies m ≥ O
(

d
ǫ2
0

ln 1
δǫ0

)
,

then with probability > 1 − δ, for every sphere B ⊂ R
d, the empirical probability of that

sphere differs from ν(B) by at most ǫ0; that is, the number of points that fall in B is in the

range mν(B)±mǫ0.

Learning mixtures of Gaussians 40

Proof. For any closed ball B ⊂ R
d, let 1B(x) = 1(x ∈ B) denote the indicator function for

B. The concept class {1B : B ⊂ R
d is a sphere} has VC dimension d + 1 (Dudley, 1979).

The rest follows from well-known results about sample complexity; details can be found,

for instance, in an article by Haussler (1992) or in the book by Pach and Agarwal (1995).

We will henceforth assume that m meets the conditions of this lemma and that

all spherical density estimates are accurate within ǫ0. The next problem we face is that

because Gaussians in general have ellipsoidal contours, it is not easy to get tight bounds on

the probability mass of a given spherical region. We will content ourselves with rather loose

bounds, obtained via the mediation of a linear transformation T which converts ellipsoids

into spheres.

Write the d × d covariance matrix Σ∗ as BTDB, where B is orthogonal and D is

diagonal with the eigenvalues of Σ∗ as entries. Define T = BTD−1/2B; notice that T is its

own transpose. The table below hints at the uses to which T shall be put.

In R
d before T is applied In R

d after T is applied

Gaussian N(µ∗,Σ∗) Gaussian N(Tµ∗, Id)
Point x, with ‖x‖Σ∗ = r Point Tx, with ‖Tx‖ = r
Ellipsoid E(z; r; Σ∗) Sphere B(Tz; r)

Our first step will be to relate the density νΣ∗ of the ellipsoidal Gaussian N(0,Σ∗) to

the more manageable density ν of N(0, Id).

Lemma 5 (Approximate density estimates for ellipsoidal Gaussians) Choose any

point z and any radius r. Writing s = ‖z‖Σ∗ , the probability mass νΣ∗(B(z; r)) must lie in

the range [ν(B(s; r
σ∗

max
)), ν(B(s; r

σ∗

min
))].

Proof. This is easy if T is used appropriately. For instance, since E(z; r
σ∗

max
; Σ∗) ⊆ B(z; r)

we can write

νΣ∗(B(z; r)) ≥ νΣ∗(E(z; r
σ∗

max
; Σ∗)) = ν(B(s; r

σ∗

max
)),

where the final equality is a result of applying the transformation T .

Similarly we can bound the relative densities of displaced spheres. Consider two

spheres of equal radius r, one close to the center of the Gaussian, at Mahalanobis distance

s, and the other at some distance s + ∆. By how much must the probability mass of the

closer sphere exceed that of the farther one, given that they may lie in different directions

Learning mixtures of Gaussians 41

from the center? Although the spheres have equal radius, it might be the case that the

closer sphere lies in a direction of higher variance than the farther sphere, in which case its

radius is effectively scaled down. The following lemma gives a bound that will work for all

spatial configurations of the spheres.

Lemma 6 Pick any point z and set s = ‖z‖Σ∗ . If ‖z′‖Σ∗ ≥ s + ∆ for some ∆ > 0 and if

radius r ≤ sσ∗
max then

νΣ∗(B(z; r))

νΣ∗(B(z′; r))
≥ exp

{
(∆ + 2s)(∆ − 2se∗)

2

}
.

Proof. We will use the fact that Mahalanobis distance satisfies the triangle inequality and

that ‖u‖Σ∗ ≤ ‖u‖/σ∗
min. For any point x in B(z; r),

‖x‖Σ∗ ≤ ‖z‖Σ∗ + ‖x− z‖Σ∗ ≤ s + r
σ∗

min
≤ s + se∗,

where the last inequality follows from our restriction on r. Similarly, for any point x′ in

B(z′; r),

‖x′‖Σ∗ ≥ ‖z′‖Σ∗ − ‖x′ − z′‖Σ∗ ≥ ∆− s(e∗ − 1).

Since νΣ∗(y) is proportional to exp(−‖y‖2Σ∗/2) for any point y, the ratio of probabilities of

the two spheres must be at least

e−(s(1+e∗))2/2

e−(∆−s(e∗−1))2/2
= exp

{
(∆ − 2se∗)(∆ + 2s)

2

}
,

as anticipated.

Finally we need a bound on the rate at which the probability mass of a sphere, under

distribution νΣ∗ , grows as its radius increases.

Lemma 7 If radii r and s satisfy r + s ≤ 1
2σ∗

min

√
d then

νΣ∗(B(0; r + s))

νΣ∗(B(0; r))
≥
(

r + s

r

)d/2

.

Proof. Notice that

νΣ∗(B(0; r)) =

∫

B(0;r)
νΣ∗(x)dx =

(
r

r + s

)d ∫

B(0;r+s)
νΣ∗

(
y · r

r + s

)
dy

via the change in variable y = x · r+s
r . Therefore

νΣ∗(B(0; r + s))

νΣ∗(B(0; r))
=

(
r + s

r

)d
∫
B(0;r+s) νΣ∗(y)dy

∫
B(0;r+s) νΣ∗(y · r

r+s)dy
.

Learning mixtures of Gaussians 42

We will bound this ratio of integrals by considering a pointwise ratio. For any y ∈ B(0; r+s),

we know ‖y‖Σ∗ ≤ (r + s)/σ∗
min and so

νΣ∗(y)

νΣ∗(y · r
r+s)

= exp

{
−‖y‖

2
Σ∗

2

(
1− r2

(r + s)2

)}

≥ exp

{
−(r + s)2 − r2

2σ∗2
min

}

≥
(

r

r + s

)d/2

,

given the condition on r + s.

We next examine a few technical properties of the density ν of N(0, Id), as a step

towards showing that there are many data points near the centers of projected Gaussians.

Lemma 8 (Crude lower bounds) If τ ≤ 1
3 and d ≥ 10,

(a) ν(B(0; τ
√

d)) ≥ τd, and (b) ν(B(τ
√

d; τ
√

d)) ≥ τd.

Proof. Let Vd denote the volume of the unit ball in d dimensions. We will use the lower

bound Vd = πd/2

Γ(1+d/2) ≥
(2π)d/2

2(d/2)d/2
which follows from the observation Γ(1+k) ≤ kk2−(k−1) for

k ≥ 1. Now center a sphere at the mean of the Gaussian. A crude bound on its probability

mass is

ν(B(0; τ
√

d)) ≥ e−(τ
√

d)2/2

(2π)d/2
· Vd(τ

√
d)d ≥ τd.

Continuing in the same vein, this time for a displaced sphere, we get bound (b).

3.4 Estimating the projected centers

We are now in a position to prove that for an appropriate choice of the parameters

p and q, the algorithm will find one data point close to each projected center, within

Mahalanobis distance 1
2ρ
√

d. This value ρ should be thought of as a small constant which is

unrelated to (and typically much larger than) the precision ǫ demanded by the user. Denote

by µ∗
i the means of the projected Gaussians and by Σ∗ their common covariance matrix.

Let π∗ be the density of the projected mixture.

Parameter settings The parameters of the algorithm will be set to the following easily

computable values,

• p = m(wmin(ρ
8e∗)d − ǫ0), and

Learning mixtures of Gaussians 43

• q = mwminν(B(0; 3
8e∗

√
d)).

Lemma 9 There is at least one data point within Mahalanobis distance ρ
8e∗

√
d of each

center. Any such point x has at least p data points close by, in B(x; (ρ
8e∗)σ∗

max

√
d), and

thus rx ≤ (ρ
8e∗)σ∗

max

√
d.

Proof. Since all the density estimates are accurate within ǫ0, we need only show that

wminνΣ∗(E(0; (ρ
8e∗)
√

d; Σ∗)) ≥ ǫ0 and that wminνΣ∗(B(x; (ρ
8e∗)σ∗

max

√
d)) ≥ p

m + ǫ0 for

points x with ‖x‖Σ∗ ≤ (ρ
8e∗)
√

d. Transformation T and Lemma 5 convert statements about

νΣ∗ into statements about ν, in particular,

νΣ∗(E(0; (ρ
8e∗)
√

d; Σ∗)) = ν(B(0; (ρ
8e∗)
√

d)) and

νΣ∗(B(x; (ρ
8e∗)σ∗

max

√
d)) ≥ ν(B((ρ

8e∗)
√

d; (ρ
8e∗)
√

d)).

By Lemma 8 it is enough to check that wmin(ρ
8e∗)d ≥ p

m + ǫ0. This follows from the choice

of p.

This lemma gives an upper bound on rx for points x close to a center. We next need

to show that rx will be significantly larger for points further away, at Mahalanobis distance

≥ 1
2ρ
√

d from the center.

Lemma 10 Suppose rx ≤ (ρ
8e∗)σ∗

max

√
d for some point x which is at Mahalanobis distance

≥ 1
2ρ
√

d from the closest center µ∗
i and at L2 distance ≥ 1

4e∗ σ∗
min

√
d from all other centers.

Then, if d ≥ 38e∗4 ln 1
wminρ2 and ρ ≤ min{ 1

16e∗ , 1
8e∗2}, any point z within Mahalanobis

distance ρ
8e∗

√
d of µ∗

i will have rz < rx.

Proof. The conditions on x imply that

(1) ‖x− µ∗
i ‖Σ∗ ≥ 1

2ρ
√

d;

(2) ‖x− µ∗
j‖Σ∗ ≥ 1

4e∗

σ∗

min
σ∗

max

√
d = 1

4e∗2

√
d for j 6= i; and

(3) π∗(B(x; rx)) ≥ p
m − ǫ0.

Now pick any z within Mahalanobis distance ρ
8e∗

√
d of µ∗

i . We need to show that

π∗(B(z; rx)) ≥ 2ǫ0 + π∗(B(x; rx)). By Lemma 6,

π∗(B(x; rx)) = wiνΣ∗(B(x− µ∗
i ; rx)) +

∑

j 6=i

wjνΣ∗(B(x− µ∗
j ; rx))

≤ wiνΣ∗(B(z − µ∗
i ; rx)) exp(−1

2(1
2ρ + ρ

8e∗)(1
4ρ− ρ

8e∗)d)

+ νΣ∗(B(z − µ∗
i ; rx)) exp(−1

2(1
4e∗2 + ρ

8e∗)(1
4e∗2 − ρ

8e∗ − 1
4ρ)d)

≤ wiνΣ∗(B(z − µ∗
i ; rx))F

≤ π∗(B(z; rx))F

Learning mixtures of Gaussians 44

where F
def

= exp(−d
2(1

2ρ + ρ
8e∗)(1

4ρ − ρ
8e∗)) + 1

wmin
exp(−d

2(1
4e∗2 + ρ

8e∗)(1
4e∗2 − ρ

8e∗ − 1
4ρ)).

Therefore, using (3),

π∗(B(z; rx))− π∗(B(x; rx)) ≥ π∗(B(x; rx))
1 − F

F
≥
(p

m
− ǫ0

) 1− F

F
.

Due to the particular choice of p and ǫ0, this will be ≥ 2ǫ0 if 1− F ≥ min(1
4 , 3

512ρ2d). The

latter is ensured by the lower bound on d.

Lemma 10 implies roughly that within any Gaussian, the lowest rx values come from

data points which are within distance 1
2ρ
√

d of the center.

A potential problem is that a few of the Gaussians might have much higher mixing

weights than the rest and consequently have a monopoly over small rx values. In order to

handle this, after selecting a center-estimate we eliminate the q points closest to it, and

guarantee that this knocks out the high-density points near the current center while leaving

intact the high-density regions near other centers.

Lemma 11 Assume ρ ≤ min{ 1
16e∗ , 1

8e∗2 } and d ≥ 11 ln 2
wmin

. Let x be any point within

Mahalanobis distance 1
2ρ
√

d of some center µ∗
i . Then the q data points closest to x include

all data points in B(µ∗
i ;

1
4e∗ σ∗

min

√
d) and no point outside B(µ∗

i ; (
1

2e∗ − ρ
8e∗)σ∗

max

√
d).

Proof. Rewriting q
m as wminνΣ∗(E(0; 3

8e∗

√
d; Σ∗)), we notice that

wminνΣ∗(B(0; 3
8e∗ σ∗

min

√
d)) ≤ q

m
≤ wminνΣ∗(B(0; 3

8e∗ σ∗
max

√
d)).

For the first inclusion of the lemma, it is enough to show that B(x; (1
4e∗ + ρe∗

2)σ∗
min

√
d),

which contains B(µ∗
i ;

1
4e∗ σ∗

min

√
d), has fewer than q points in it, or more specifically that

π∗(B(x; (1
4e∗ + ρe∗

2)σ∗
min

√
d)) ≤ q

m
− ǫ0

The left-hand side of this expression is maximized by choosing x = µi and wi = 1. Moreover

the choice of ǫ0, q forces ǫ0 ≤ q
2m ; therefore it is enough to check that

νΣ∗(B(0; (1
4e∗ + ρe∗

2)σ∗
min

√
d)) ≤ 1

2wminνΣ∗(B(0; 3
8e∗ σ∗

min

√
d)),

which is a direct consequence of Lemma 7 if ρ ≤ 1
8e∗2 and d ≥ 11 ln 2

wmin
. The second half

of the proof is executed similarly, and requires ρ ≤ 1
16e∗ and d ≥ 10.

Lemma 12 (Accuracy of low-dimensional center estimates) Under the assumptions

stated in Theorem 3, the learned centers {µ̂∗
i } can be permuted so that for every i ≤ k,

‖µ̂∗
i − µ∗

i ‖Σ∗ ≤ 1
2ρ
√

d.

Learning mixtures of Gaussians 45

Proof. This will proceed by induction on the number of centers selected so far.

Referring back to the algorithm, the first center-estimate chosen is the point x ∈ S

with lowest rx. By Lemma 9, this rx ≤ (ρ
8e∗)σ∗

max

√
d. Let µ∗

i be the projected center closest

to x. Since the Gaussians are 1
2 -separated, x is at distance at least 1

4σ∗
min

√
d from all the

other projected centers. By Lemma 10, we then see that x must be within Mahalanobis

distance 1
2ρ
√

d of µ∗
i .

Say that at some stage in the algorithm, center-estimates Ĉ have already been chosen,

|Ĉ| ≥ 1, and that these correspond to true centers C. Select any y ∈ Ĉ; by the induction

hypothesis there is a j for which ‖y − µ∗
j‖Σ∗ ≤ 1

2ρ
√

d. S′ does not contain the q points

closest to y. By Lemma 11, this removes B(µ∗
j ;

1
4e∗ σ∗

min

√
d) from S′, yet no point outside

B(µ∗
j ; (

1
2e∗ − ρ

8e∗)σ∗
max

√
d) is eliminated from S′ on account of y.

Let z be the next point chosen, and let µ∗
i be the center closest to it which is not

in C. We have seen that z must be at distance at least 1
4e∗ σ∗

min

√
d from centers in C.

Because of the separation of the mixture, z must be at distance at least 1
4σ∗

min

√
d from all

other centers except possibly µ∗
i . Again due to the separation of the Gaussians, all points

within distance (ρ
8e∗)σ∗

max

√
d of µ∗

i remain in S′, and therefore z is potentially one of these,

whereupon, by Lemma 9, rz ≤ (ρ
8e∗)σ∗

max

√
d. By Lemma 10 then, ‖z − µ∗

i ‖Σ∗ ≤ 1
2ρ
√

d.

3.5 Choosing sets around the center-estimates

Once a center-estimate µ̂∗
i has been obtained, the l points S∗

i ⊂ S∗ closest to it are

selected. Since by assumption l
m ≤ wmin(1

2ρ)d − ǫ0, it follows from Lemmas 5 and 8 that

S∗
i ⊂ B(µ̂∗

i ;
1
2ρσ∗

max

√
d) ⊂ B(µ∗

i ; ρσ∗
max

√
d). We must now show that S∗

i contains very little

contamination from other Gaussians.

After the center-estimates have been chosen, label each data point by the true Gaus-

sian from which it was drawn (that is, choose a label based on the probability of the Gaussian

given the data point). This labelling is of course independent of the center-estimates. Let

lij be the number of points in S∗
i which are labelled j. We need to show that lij is very

small when i 6= j.

Lemma 13 Under the assumptions of Theorem 3, with probability at least 1 − δ, for all

i 6= j,
lij
l
≤ wjρ

10c∗ij
.

Learning mixtures of Gaussians 46

Proof. Pick any x ∈ S∗
i and any j 6= i. We know ‖x − µ∗

i ‖ ≤ ρσ∗
max

√
d and therefore

‖x − µ∗
j‖ ≥ c∗ijσ

∗
max

√
d − ρσ∗

max

√
d. Then, applying the general principle that ‖u‖

σ∗

max
≤

‖u‖Σ∗ ≤ ‖u‖
σ∗

min
, we can conclude

‖x− µ∗
i ‖Σ∗ ≤ e∗ρ

√
d and ‖x− µ∗

j‖Σ∗ ≥ (c∗ij − ρ)
√

d.

Therefore

P(x comes from Gj)

P(x comes from Gi)
≤ wje

−(c∗ij−ρ)2d/2

wie−(e∗ρ)2d/2
≤ wj

wmin
e−3c∗2ij d/8

since ρ ≤ 1
16e∗ while c∗ij ≥ 1

2 . Under the assumption d ≥ 16 ln 10
ρwmin

+ 8
e , and using the simple

inequality ln x ≤ x
e (for x ≥ 0), we find that P(x comes from Gj) is at most

wjρ
10c∗ij

e−3c∗ij/2.

We can now use a Chernoff inequality (Appendix A.1) to bound the chance that lij is very

much more than l times this probability. Specifically, since by assumption l ≥ 30
wminρ ln k2

δ ,

P

(
lij
l

>
wjρ

10c∗ij

)

≤ e−lwjρ/30 ≤ δ

k2
,

as claimed.

4 High-dimensional reconstruction

4.1 Summary

Theorem 14 The third phase of the algorithm takes as input the sets S∗
i ⊂ R

d of size l,

and returns the averages µ̂i of the corresponding sets Si ⊂ R
n. If the following conditions

are satisfied:

• S∗
i ⊂ B(µ∗

i ; ρσ∗
max

√
d) for all i, for some ρ ≤ 1

4 ,

• the proportion of S∗
i from a different Gaussian Gj , j 6= i, is

lij
l ≤

wjρ
10c∗ij

,

• n ≥ 16 log k
δ , and

• d ≤ n
2 , c∗ij ≥ 1

2cij ≥ 1
2 ,

then with probability at least 1− δ, for each 1 ≤ i ≤ k,

‖µ̂i − µi‖ ≤
(

ρe∗

2
+

√
2

l

)
σmax

√
n.

In particular, if ρ ≤ 1
16e∗ , choosing l ≥ 2048 will make this error at most 1

16σmax
√

n.

Proof. This is shown over the course of Lemmas 15 to 17.

Learning mixtures of Gaussians 47

4.2 Details

So far we have data points S∗
i near each of the projected means. Let Si correspond

to these same points in the original space. The high-dimensional estimate µ̂i in R
n is the

mean of Si.

The random projection from R
n to R

d can be thought of as a composition of two

linear transformations: a random rotation in R
n followed by a projection onto the first d

coordinates. Since rotations preserve L2 distance, we can assume, for the purpose of bound-

ing the L2 accuracy of our high-dimensional center-estimates, that the random projection

consists solely of a mapping onto the first d coordinates. We will write high-dimensional

points in the form (x, y) ∈ R
d × R

n−d, and will assume that each such point is projected

down to x. We have already bounded the error on the first portion. How do we deal with

the rest? We start with an important

Definition Tij = points in Si drawn from the jth Gaussian Gj . As before, let lij = |Tij |.

We have seen that Si is relatively uncontaminated by points from other Gaussians,

that is,
∑

j 6=i lij is small. Those points which do come from Gi ought to (we hope) average

out to something near its mean µi. The problem is that the x coordinates could be highly

correlated with the y coordinates (depending upon the nature of Σ), and thus a small,

unavoidable error in µ̂∗
i might potentially cause the set Tii to lie far from µi in R

n. To

dismiss this possibility we need a bit of matrix analysis.

Write covariance matrix Σ in the form

(
Σxx Σxy

Σyx Σyy

)
, with Σxx = Σ∗ being the

covariance matrix of the projected Gaussians. Our operational assumption throughout

has been that Σ has finite eccentricity and is therefore positive definite. Now, what is

the relationship between the x and y components of points drawn from Gaussians with

covariance Σ?

Fact If a point drawn randomly from N(0,Σ) has x as its first d coordinates, then its

last n − d coordinates have the induced (conditional) distribution N(Ax,C), where A =

ΣyxΣ−1
xx and C = Σyy − ΣyxΣ

−1
xx Σxy. This well-known result can be found, for instance, in

Lauritzen’s (1996) book on graphical models.

We will need to tackle the question: for a point (x, y) drawn from N(0,Σ), what is

the distribution of ‖y‖ given ‖x‖? In order to answer this, we need to study the matrix A

a bit more carefully.

Learning mixtures of Gaussians 48

Lemma 15 ‖Ax‖ ≤ σmax‖x‖Σ∗

√
n/d for any x ∈ R

d.

Proof. A = ΣyxΣ
−1
xx is an (n − d) × d matrix; divide it into n

d − 1 square matrices

B1, . . . , Bn/d−1 by taking d rows at a time. Fix attention on one such Bi. The rows of

Bi correspond to some d consecutive coordinates of x; call these coordinates z. Then

we can write Bi = ΣzxΣ
−1
xx . It is well-known – see, for instance, the textbook by Horn

and Johnson (1985), or consider the inverse of the 2d × 2d positive definite covariance

matrix of (z, x) – that (Σxx − ΣxzΣ
−1
zz Σzx) is positive definite. Therefore, for any u ∈ R

d,

uT Σxxu > uT ΣxzΣ
−1
zz Σzxu, and by choosing u = Σ−1

xx v, we find

‖v‖2Σ∗ = uT Σxxu > vT BT
i Σ−1

zz Biv ≥ ‖Biv‖2λmin(Σ−1
zz) ≥ ‖Biv‖2

σ2
max

.

Therefore ‖Biv‖ ≤ σmax‖v‖Σ∗ . The pieces now come neatly together,

‖Ax‖2 = ‖B1x‖2 + · · ·+ ‖Bn/d−1x‖2 ≤ (n
d − 1)σ2

max‖x‖2Σ∗ ,

and the lemma is proved.

For the analysis we are pretending that we know the x coordinates of all the data

points but that their y coordinates have not yet been chosen. We have seen that points in

Tij roughly have conditional distribution µj + (µ̂∗
i − µ∗

j ,N(A(µ̂∗
i − µ∗

j), C)). What bounds

can be given for the average of these points? In particular we would like to bound the

deviation of mean(Tij) from µj and thereby from µi.

Lemma 16 For any j 6= i,

mean(Tij)
d
= µj + (X,AX + C1/2N(0, 1

lij
In−d)),

where X ∈ R
d is a random variable with ‖X‖ ≤ ‖µ∗

i − µ∗
j‖+ ρσ∗

max

√
d.

Proof. For the sake of convenience translate the Gaussians and data points by −µj.

This centers the jth Gaussian Gj at the origin and centers Gi at µi − µj. The translated

S∗
i now lies within B(µ∗

i − µ∗
j ; ρσ∗

max

√
d). Recall that Tij consists of those points in Si

which come from Gaussian Gj . Therefore, for our purposes we can pretend that each point

(Xa, Ya) ∈ Tij, in the translated space, is generated in the following fashion:

• Pick Xa ∈ B(µ∗
i − µ∗

j ; ρσ∗
max

√
d) ⊂ R

d in some unknown manner.

• Choose Ya
d
= N(AXa, C).

Learning mixtures of Gaussians 49

In this manner we choose lij = |Tij | points, with mean value some (X,Y). The range of

the Xa coordinates constrains ‖X‖ to be at most ‖µ∗
i −µ∗

j‖+ ρσ∗
max

√
d. To understand the

distribution of Ya, we notice (Ya−AXa)
d
= N(0, C)

d
= C1/2N(0, In−d), and taking averages,

Y
d
= AX + C1/2N(0, 1

lij
In−d).

Armed with this result we can prove the correctness of this phase of the algorithm.

Lemma 17 Under the conditions of Theorem 14, with probability at least 1 − δ, for all

1 ≤ i ≤ k, ‖µ̂i − µi‖ ≤
(

ρe∗

2 +
√

2
l

)
σmax

√
n.

Proof. Fix any i. The normed difference between µi and the mean of Si, which we hope

is close to zero, is given by

‖mean(Si)− µi‖

≤

∥∥∥∥∥∥

k∑

j=1

(mean(Tij)− µj)
lij
l

∥∥∥∥∥∥
+
∑

j 6=i

‖µj − µi‖
lij
l

≤
k∑

j=1

lij
l

{(
‖µ∗

i − µ∗
j‖+ ρσ∗

max

√
d
)(

1 +
σmax

σ∗
min

√
n

d

)}
+ ‖C1/2Nl‖+

∑

j 6=i

‖µj − µi‖
lij
l

≤
k∑

j=1

lij
l

(
5c∗ije

∗σmax

√
n
)

+ ‖C1/2Nl‖

where Nl has distribution N(0, 1
l In−d) and the second inequality uses Lemmas 15 and 16.

It remains to bound these last two terms.

(a) Since C = Σyy−ΣyxΣ
−1
xx Σxy and each of these two right-hand terms is positive semidef-

inite, λmax(C) ≤ λmax(Σyy) ≤ σ2
max and therefore ‖C1/2Nl‖ ≤ σmax‖Nl‖. Bounding ‖Nl‖

is routine (Lemma A.3). In particular, if d ≤ 1
2n,

P(‖Nl‖ >
√

2n
l) ≤ e−n/16 ≤ δ

k .

(b) By assumption, lij ≤ lwjρ
10c∗ij

. Applying this bound immediately yields the lemma.

5 Consolidation in the high-dimensional space

The first three phases of the algorithm obtain very rough estimates of the high-

dimensional centers. These are enough to cluster the data almost perfectly, and with this

clustering we can obtain sharp estimates of the means, covariances, and mixing weights.

Associate each data point in S with its closest center-estimate µ̂i. It can be shown

that the expected proportion of misclassified points in this hard clustering is small, roughly

Learning mixtures of Gaussians 50

O(ke−Ω(n)). The proof is not difficult but requires some care because of the dependence

between the data and the estimated centers.

Lemma 18 Suppose the true mixture {(wi, µi,Σ)} is 1-separated, and that the estimated

centers µ̂i satisfy

‖µ̂i − µi‖ ≤ 1
16σmax

√
n.

In the hard clustering, a point x drawn from N(µi,Σ) will not be misclassified as belonging

to N(µj ,Σ), j 6= i, if

(a) ‖x− µi‖ ≤ 5
4cijσmax

√
n and

(b) (x− µi) · µj−µi

‖µi−µj‖ ≤
1
6cijσmax

√
n.

Proof. Pick any x from N(µi,Σ) and any j 6= i. We will show that under the conditions

above, ‖x− µ̂i‖ < ‖x− µ̂j‖, and thus x will not be misclassified.

We start by rewriting ‖x− µ̂j‖2−‖x− µ̂i‖2, which we hope is positive, as ‖µ̂i− µ̂j‖2−
2(x− µ̂i) · (µ̂j− µ̂i). The quantity ‖µ̂j− µ̂i‖ differs from ‖µj−µi‖ by at most 1

8σmax
√

n, and

thus is at least 7
8cijσmax

√
n. The second term, meanwhile, depends upon the interaction of

the data and the estimated centers, and so we would like to rewrite it in terms of the data

and the true centers.

(x− µ̂i) · (µ̂j − µ̂i) =

(x− µi) · (µj − µi)− (x− µi) · ((µj − µ̂j)− (µi − µ̂i))− (µ̂i − µi) · (µ̂j − µ̂i)

≤ (x− µi) · (µj − µi) + ‖x− µi‖ · (‖µj − µ̂j‖+ ‖µi − µ̂i‖) + ‖µ̂i − µi‖ · ‖µ̂j − µ̂i‖

≤ 1

6
cij‖µj − µi‖σmax

√
n +

5

4
cijσmax

√
n · 1

8
σmax

√
n +

1

16
σmax

√
n · ‖µ̂j − µ̂i‖

=
1

6
c2
ijσ

2
maxn +

5

32
cijσ

2
maxn +

1

16
σmax

√
n · ‖µ̂j − µ̂i‖

<
1

2
‖µ̂j − µ̂i‖2.

Therefore ‖x− µ̂j‖2 − ‖x− µ̂i‖2 > 0, as we had hoped.

This lemma makes it easy to show that the hard clustering is close to optimal.

Lemma 19 Fix any two indices i 6= j, and draw X randomly from N(µi,Σ). Then the

probability that X violates either condition (a) or (b) of the previous lemma is at most

e−c2ijn/20 + 6
cij

√
2πn

e−c2ijn/72, assuming as before that cij ≥ 1.

Learning mixtures of Gaussians 51

Proof. By Lemma A.3,

P(‖X − µi‖ > 5
4cijσmax

√
n) ≤ e−c2ijn/20.

For any unit direction γ, the random variable (X −µi) ·γ has distribution N(0, γT Σγ), and

this variance γT Σγ is at most σ2
max. Therefore, for any j 6= i,

P((X − µi) · µj−µi

‖µj−µi‖ > 1
6cijσmax

√
n) ≤ P(Z > 1

6cij

√
n),

where Z is a standard normal random variable. This last probability can routinely be

bounded (Durrett, 1996, p.7) to complete the lemma.

This more or less completes the proof. The chance that a particular point is misclassi-

fied in phase four is at most k times this value, which is miniscule if n is large. Specifically,

if m′ = 2
ǫ2wmin

ln k
δ points are chosen randomly from the data set, then with probability

at least 1 − δ, there will be at least 2
ǫ2 points from each Gaussian. The chance that none

of these points is misclassified is very high, at least 1 − δ if n ≥ Ω(d + log 1
ǫ). And, 2

ǫ2

points from a Gaussian are enough to specify its mean within L2 distance ǫσmax
√

n, with

probability at least 1− e−n/8. In other words, by computing statistics of the points in each

“hard” cluster, we can expect to get good estimates of the means, as well the mixing weights

and covariance matrix.

The final phase of the algorithm is similar to a single ‘M’ step of EM (although it

uses a hard clustering like k-means) while phases one, two, and three are devoted to finding

a reasonable initial solution. In particular, the accuracy required of the first three phases,

which we have been calling ρ, is unrelated to the accuracy the user demands.

Well-separated spherical Gaussians in very high dimension are easy to learn. Data

drawn from them can be clustered just by looking at interpoint distances. However, spherical

clusters are unlikely to occur naturally in data because different attributes are typically

measured along different scales. Random projection helps to make arbitrary Gaussians

look spherical. We will also see that it makes a wide range of different distributions look

Gaussian, in the sense of the “weak Gaussian assumption”. These beneficial effects get

more pronounced as the projected dimension is lowered.

Our algorithm therefore lowers the dimension as much as possible, in the hope of

making the data look almost spherical-Gaussian. This dimension is so low that efficient

clustering can be managed but is no longer trivial.

Learning mixtures of Gaussians 52

6 Shortcomings

The least satisfactory part of this algorithm is the subroutine which estimates centers

in low dimension. Some of its problems are fairly minor. For instance, the need to assess

distances between all pairs of points, unthinkable for very large data sets, can be made

tolerable by instead computing distances from all points to a small random sample of the

data. However, there are two particular flaws which deserve careful attention. First, the

“weak Gaussian assumption” might not be quite weak enough. The practical applicability

of the algorithm would be more believable if it could be shown to robustly handle data

which at some time satisfied the weak assumption but which has since been corrupted by

a small amount of adversarial noise. The second inadequacy is the requirement that all

clusters have approximately the same radius. Rectifying this would be a significant advance

in current clustering technology.

Open Problem 1 Is there a simple algorithm which correctly learns the centers of a

mixture of spherical Gaussians with widely differing radii?

A seemingly easier question is what to do when the number of clusters is unknown.

The algorithm of this chapter will behave predictably if given the wrong value of k. There-

fore, it should be possible to test various values, k = 1, 2, . . ., but there must be a cleaner

approach.

Open Problem 2 Can our algorithm be modified to accommodate situations in which

the exact number of clusters is unknown but a loose upper bound can reliably be guessed?

7 More general mixture models

The recent machine learning literature contains some interesting work on clusters

whose empirical distributions are non-Gaussian in the sense of being discrete or “fat-tailed”.

Kearns, Mansour, Ron, Rubinfeld, Schapire and Sellie (1994) have considered a dis-

crete analogue of spherical Gaussians which they call Hamming balls. These are specified

by a center µ ∈ {0, 1}n and a corruption probability p ∈ (0, 1). The distribution is then

(B(p)×B(p)×· · ·×B(p))⊕µ, where B(p) denotes a Bernoulli random variable with bias p

(it has value one with probability p and value zero otherwise) and ⊕ is exclusive-or. Given

data from a mixture of k such balls, the authors show how to find a mixture of O(k log k)

Learning mixtures of Gaussians 53

balls which comes close in distribution to the original mixture. Freund and Mansour (1999)

consider the related model of product distributions over {0, 1}n, that is, distributions of the

form B(p1)× · · · ×B(pn) for some p1, . . . , pn ∈ (0, 1). They present a simple algorithm for

estimating the parameters of a mixture of two such distributions, in a learning framework

similar to ours.

Discrete product distributions seem similar enough in spirit to Gaussians that it

should be possible to extend the techniques of this chapter to accommodate them. Fat-

tailed distributions, on the other hand, can contain strong dependencies between different

coordinates. Rather than attempt a precise definition we shall, roughly speaking, describe

as fat-tailed any distribution over vectors X ∈ R
n for which ‖X‖2 falls off significantly more

slowly than in the Gaussian case, in other words, either E‖X‖2 does not exist, or if it does,

P(‖X‖2 > cE‖X‖2) = e−o(c2n).

Example 1 One generic way of constructing such a distribution is from a stable law of

exponent less than two. The standard Cauchy density in R
1,

γt(x) =
1

π
· t

t2 + x2
,

approaches zero with such hesitation that its expectation does not exist. Therefore, a

high-dimensional distribution with Cauchy coordinates will be fat-tailed.

Example 2 It might be of greater practical interest to consider distributions whose co-

ordinates are bounded, perhaps even Boolean. In such cases, a fat tail is the result of

dependencies between the various attributes. For example, consider a distribution D over

vectors X = (X1, . . . ,Xn) ∈ {0, 1}n which is constructed by first choosing Y = (Y1, . . . , Y√
n)

uniformly at random from {0, 1}
√

n and then setting Xi = Y⌈i/√n⌉. Therefore X1 is indepen-

dent of X√
n+1 but is always equal to X2, . . . ,X√

n. The squared length ‖X‖2 can be written

as
√

n‖Y ‖2 and has expectation E‖X‖2 = 1
2n. What is the chance of a large deviation from

this expected value?

P(‖X‖2 ≥ 3
4n) = P(Y1 + · · ·+ Y√

n ≥ 3
4

√
n) = eθ(

√
n),

and so the distribution is fat-tailed.

Basu and Micchelli (1998) report experiments which attempt to model speech data

using mixtures of fat-tailed densities

p(x) ∝ exp
(
−c((x− µ)T Σ−1(x− µ))α

)

Learning mixtures of Gaussians 54

where α < 1 (the case α = 1 produces a Gaussian). It turns out that this particular family

of distributions can be accommodated by an algorithm similar to EM. In reading this and

other such highly specialized results, the main question that comes to mind is whether

there exists a unified way of dealing with a heterogeneous collection of distributions, some

of which may be discrete or fat-tailed?

7.1 Some consequences of the central limit theorem

A random point X = (X1, . . . ,Xn) drawn uniformly from the n-dimensional cube

{−1, 1}n has i.i.d. coordinates with mean zero and variance one. The central limit theorem

can be applied to the projection of X in the direction γ = 1√
n
(1, 1, . . . , 1),

γ ·X =
1√
n

(X1 + · · ·+ Xn)
d−→ N(0, 1)

as n increases to infinity. That is to say, the projection of this discrete distribution in the

particular direction γ looks like a Gaussian. In fact, this will hold for almost any randomly

chosen direction.

A celebrated paper of Diaconis and Freedman (1984) studies this phenomenon in

detail. They find a large family of high-dimensional distributions almost all of whose one-

dimensional projections are close to Gaussian. This is terrible news for anyone who is

trying to “visualize” a cluster by projecting it onto random lines, but for us it immediately

suggests a simple and unexpected methodology for learning a large class of mixture models:

project the data into a random low-dimensional subspace in the hope that this will make

the clusters more Gaussian, learn these clusters under a Gaussian assumption, and then

perform some kind of high-dimensional reconstruction. Before we get carried away, we

should take a closer look at the fine print. First we review a classical result of Berry and

Esséen (see Feller, 1966, or Petrov, 1995).

Theorem 20 (Rate of convergence in the central limit theorem) Let X1,X2, . . . be

a sequence of independent random variables with EXi = 0 and EX2
i = σ2

i . Write sn =
√

σ2
1 + · · ·+ σ2

n. Then there is a universal constant C > 0 such that for all n, the distri-

bution Fn of the normalized sum 1
sn

(X1 + · · · + Xn) is close to the distribution Φ of the

standard normal N(0, 1) in that

sup
−∞<a<b<∞

|Fn(a, b)− Φ(a, b)| ≤ Cs−3
n

n∑

i=1

E|Xi|3.

Learning mixtures of Gaussians 55

Theorem 21 (Diaconis and Freedman, 1984) Suppose vectors X ∈ R
n have i.i.d. co-

ordinates with mean zero, variance one and third absolute moment ρ3. Then for almost all

unit vectors γ, the distribution Fn of γ ·X is close to normal in the sense that

sup
−∞<a<b<∞

|Fn(a, b)− Φ(a, b)| ≤ 2Cρ3n
−1/2.

Proof. Fix a direction γ ∈ R
n. Applying the Berry-Esséen theorem to the independent

random variables γ1X1, . . . , γnXn reveals that the distribution Fn
d
= γ ·X satisfies

sup
−∞<a<b<∞

|Fn(a, b)− Φ(a, b)| ≤ Cρ3

n∑

i=1

|γi|3.

A randomly chosen γ from the unit sphere in R
n has distribution

γ
d
=

(Z1, Z2, . . . , Zn)√
Z2

1 + · · ·+ Z2
n

,

where the Zi are independent standard normals. This means in particular that

n∑

i=1

|γi|3 d
=

∑n
i=1 |Zi|3

(
∑n

i=1 Z2
i)3/2

= n−1/2 · (1/n)
∑n

i=1 |Zi|3
((1/n)

∑n
i=1 Z2

i)3/2
.

Since EZ2
i = 1 and E|Zi|3 = 4/

√
2π < 2, it follows by applying large deviation bounds to

the numerator and denominator that the chance (over choice of γ) that the final quotient

is more than two is e−Ω(n).

Similar statements can be made when the coordinates of the vector X are independent

but not identically distributed. Presumably this closeness to normality continues to hold

when the random projection is to a d-dimensional space rather than a line, for small d. In

this more general case, we are interested in the discrepancy on spherical regions, for the

weak Gaussian assumption.

Open Problem 3 Do these results still hold for projections onto random subspaces of

(small) dimension d? Let B denote the class of all spheres in R
d. By how much does the

projected distribution differ from normal on sets in B? How does this difference scale as a

function of d?

7.2 Distributions with non-independent coordinates

The distribution D of Example 2 contains heavy dependencies between some of the

coordinates. Recall that a vector X = (X1, . . . ,Xn) is drawn from D by first selecting

Learning mixtures of Gaussians 56

Y = (Y1, . . . , Y√
n) uniformly at random from {0, 1}

√
n and then setting Xi = Y⌈i/√n⌉.

What can we expect of its random projection?

For a unit direction γ,

γ ·X d
= α1Y1 + · · · + α√

nY√
n,

where αi = γ(i−1)
√

n+1 + · · · + γi
√

n. If γ is chosen randomly then (α1, . . . , α√
n), when

normalized to unit length, will itself be a random unit vector; therefore the results for

the i.i.d. case will apply once more, except this time the distance from normality will be

proportional to n−1/4 rather than n−1/2.

Open Problem 4 If a distribution over vectors X ∈ {0, 1}n has entropy at least nΩ(1),

it is true that for most random unit directions γ, the projected distribution Fn = γ · X,

suitably normalized, satisfies supa<b |Fn(a, b)− Φ(a, b)| ≤ n−Ω(1) ?

Example 3 This one is due to David Zuckerman. Consider a distribution D′ on {0, 1}n

which is uniform over

T = {strings with exactly 1
3n ones} ∪ {strings with exactly 1

3n zeros}
and is zero elsewhere. D′ has high entropy θ(n) because the size of T is exponential in n.

However, a vector X = (X1, . . . ,Xn) drawn randomly from D′ will not satisfy the law of

large numbers because 1
n(X1 + · · · + Xn) cannot be close to its expected value 1

2 ; it will

always be either 1
3 or 2

3 . This means that the distribution of (X1 + · · ·+Xn)/
√

n is far from

Gaussian. The open problem expresses the hope that, nevertheless, for most directions γ,

the projection γ ·X will look Gaussian.

57

Chapter IV

Probabilistic nets

1 Background

Directed probabilistic nets can express distributions far more complicated than Gaus-

sian mixtures. They pay for this representational power by residing in a thick swamp of

computational intractability. However there are a few positive algorithmic results (Ed-

monds, 1967; Chow and Liu, 1968; Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Jaakkola

and Jordan, 1999), quite modest in scope, and to which the current popularity of proba-

bilistic nets can directly be traced. Before reviewing these we as usual need to agree upon

a barrage of notation.

A directed probabilistic net over the random variables X1, . . . ,Xn assigns each a node

and imposes a directed acyclic graph structure upon them. Let Πi ⊆ {X1, . . . ,Xn} denote

the parents of node Xi, that is, the nodes which point to Xi. Then Xi is reciprocally called

a child of any member of Πi. The indegree of Xi is the number of parents it has, |Πi|.
The acyclic structure makes it inevitable that at least one node will have no parent. Such

nodes are called sources. A distribution over the net is specified via conditional probability

distributions P(Xi|Πi) whose product is the joint distribution on (X1, . . . ,Xn).

A maximal structure has nodes with indegrees 1, 2, . . . , n−1 (Figure 1, left-hand side)

and can represent all distributions over the random variables. Often, however, a distribution

exhibits various approximate conditional independencies which can be exploited to reduce

the complexity of the structure graph. A tension is thus created, in which model size is

reduced at the expense of accuracy.

Probabilistic nets 58

1.1 Conditional probability functions

The conditional probability distributions can be specified explicitly in the form of

tables if the random variables have a finite number of possible values. These are predictably

called conditional probability tables (CPTs). If all random variables are binary-valued, then

a node Xi with k parents Πi requires a CPT of size 2k. Each entry in the table denotes the

probability that Xi is one given a particular setting of Πi.

Restrictive alternatives to CPTs are frequently used in the interest of saving space.

The most popular of these appears to be the noisy-OR gate. For a node Xi = X with parents

Πi = {Z1, . . . , Zk}, all binary-valued, a noisy-OR conditional probability distribution is

specified by k + 1 numbers ∆, p1, . . . , pn ∈ [0, 1], where

P(X = 0|Z1, . . . , Zk) = (1−∆)

k∏

i=1

(1− pi)
Zi .

This is meant to be a probabilistic OR gate. Raising any of the parent values Z1, . . . , Zk

can only increase the chance that X is one, so the noisy-OR might be inappropriate if X is

not an increasing function of its parents. Writing wi = − ln(1 − pi) and w0 = − ln(1−∆),

we can express the distribution of X in a clearer pseudo-linear form,

P(X = 0|Z1, . . . , Zk) = exp

(
−w0 −

k∑

i=1

wiZi

)
.

If the variables can take on a continuous range of values and a decision is made not to

discretize them, the most common choice of conditional probability function is the linear-

Gaussian. For X with parents Z1, . . . , Zk as before, this is specified by a vector v ∈ R
k and

a noise parameter ǫ:

X
d
= v · (Z1, . . . , Zk) + N(0, ǫ2).

In other words, X is assumed to be a linear function of its parents, with some independent

Gaussian noise added in to make whole thing look stochastic.

1.2 Inference

Probabilistic nets can be used to address arbitrary conditional probability queries

about the represented random variables, to evaluate probabilities such as P(X1 = 1|X2 =

0,X3 = 1,X4 = 0). The QMR-DT net described in the introduction (Figure I.2) would not

be especially useful if one could not ask “what is the chance the patient has an ulcer given

Probabilistic nets 59

that he has the following symptoms: . . . ?” The process of answering such queries is called

inference in the artificial intelligence literature.

Since probabilistic nets are a generalization of Boolean circuits, any inference pro-

cedure can be used to solve NP-complete problems like “does this Boolean circuit ever

produce the result zero?” It follows immediately that inference is NP-hard to perform even

approximately, to within any multiplicative factor (Cooper, 1990). Dagum and Luby (1993)

show that inference is also NP-hard to perform within a constant additive accuracy, even

for probabilistic nets in which all indegrees and outdegrees are small, say three or less.

These hardness results very seriously call into question the practicality of probabilistic

nets, and make it critically important to find subclasses of nets for which efficient, possibly

approximate, inference is possible. The most notable such class is that of directed trees,

called polytrees in some of the literature, which permit exact inference to be performed

quickly by dynamic programming, or by a convenient message-passing formalism (Pearl,

1988).

There are a few other positive results for inference. The junction tree algorithm (Lau-

ritzen, 1996) works efficiently for a small class of graphs whose characterization is somewhat

intricate but which includes polytrees. For nets composed of layers of noisy-OR gates (or

various other classes of conditional probability functions), variational approximations can

be used as part of an inference heuristic (Jaakkola and Jordan, 1999). The quality of these

approximations differs between instances, but in each case the final result is accompanied

by nontrivial bounds on its error. This technique has worked impressively on the QMR-DT

net.

2 A maximum-likelihood learning model

2.1 Entropy

The entropy of a random variable X with discrete distribution D is defined as

H(X) = H(D) =
∑

x

D(x) log2
1

D(x)
.

This value is best thought of as a measure of the inherent randomness content of X, scaled

so that a fair coin has unit entropy. A biased coin has a slightly less random outcome and

therefore has entropy less than one. A deterministic event has zero entropy.

Probabilistic nets 60

If X,Y are discrete random variables with distribution D, the conditional entropy of

X given Y is the average amount of randomness left in X once Y is known, and is defined

as

H(X|Y) =
∑

y

D(Y = y)H(X|Y = y).

This definition of randomness has various satisfying properties (Cover and Thomas, 1991).

• H(X) ≥ 0.

• H(X,Y) = H(X) + H(Y |X).

• H(X,Y) ≤ H(X) + H(Y), with equality if and only if X and Y are independent.

Therefore H(Y |X) ≤ H(Y).

• If X can only take values in some finite set S then H(X) ≤ log2 |S|, with equality if

and only if X is uniformly distributed over S.

2.2 Maximizing likelihood

Suppose a collection of m data points is obtained from some arbitrary target distri-

bution D over (X1, . . . ,Xn), and a probabilistic net is sought which fits this data well. The

log-likelihood of a particular model θ is

LL(θ) =
1

m

m∑

i=1

log (Probability that θ assigns to the ith data point).

Let Πθ
i be the parents that θ chooses for Xi. The maximum-likelihood choice is to set the

conditional probabilities P(Xi = xi|Πθ
i = πi) to their empirically observed values. The

log-likelihood then becomes

LL(θ) = −
n∑

j=1

H(Xi|Πθ
i),

where H(Xi|Πθ
i) is computed with respect to the empirical distribution consisting of the m

samples.

The question “how many samples are needed so that a good fit to the data reflects

a good fit to D?” has been considered elsewhere (Dasgupta, 1997; Höffgen, 1993), and so

we will not dwell upon sample complexity issues here. Henceforth we blur the distinction

between D and the empirically observed distribution.

Probabilistic nets 61

Maximizing the log-likelihood now corresponds to choosing a directed graph G so as

to minimize the cost function

cost(G) =
n∑

j=1

H(Xi|ΠG
i),

where the conditional entropy is with respect to D and ΠG
i denotes the parents that G

assigns to node Xi. The target distribution has an inherent randomness content H(D) and

there is no graph whose cost is less than this. The most naive structure, which has n nodes

and no edges, will have cost
∑

i H(Xi), and there is similarly no graph of higher cost.

Choosing G to be maximally connected will ensure that the target distribution can

be modelled perfectly and that the minimum possible cost, H(D), is achieved. However the

corresponding CPTs are of size exponential in n and so this is hardly a compact represen-

tation of D. The size of one of these models is directly related to the number of parents

that nodes are allowed to have. The core combinatorial problem is therefore

SL(k): Assume the random variables Xi are drawn from some finite set Σ.
Given the conditional entropy H(X|Π) for each variable X and each set of k
parents Π, find a directed acyclic graph G which minimizes cost(G) subject to
the constraint that all of its indegrees are at most k.

SL is shorthand for “structure learning”. In general, SL(k) might be used as a subroutine in

a model selection procedure which finds good nets for different values of k and then chooses

between them by appropriately penalizing large models. We will mostly be concerned with

the cases k = 1 and k = 2.

2.3 Other learning problems

The machine learning literature would describe SL as addressing the unknown struc-

ture, fully-observable case. This means that the structure G needs to be learned and that

there are no hidden variables, that is to say the samples contain values for all n attributes.

The use of hidden variables can lead to significantly more compact probabilistic nets.

For instance, if n-tuples (X1, . . . ,Xn) are generated from a mixture of two product distri-

butions over {0, 1}n then a fully-observable probabilistic net with nodes X1, . . . ,Xn will

typically require a large amount of connectivity to accurately model this data. If, however,

a single hidden node Y is introduced then a very simple structure (Figure 1) will suffice.

Here Y functions as a mechanism for distinguishing clusters in the data. A different and

Probabilistic nets 62

5

X3

X1

X2

X4

X
versus

1 X2 X3 X4X X5

Y

Figure 1: A single hidden node can tremendously simplify a probabilistic net.

less subtle use of hidden nodes, for storing intermediate results to reduce indegree, was

mentioned in the introduction (Figure I.3).

Despite the tremendous importance of hidden variables, almost nothing is known

about when and how to use them given “observable” data, except in a few of the simple

clustering scenarios that we have mentioned. We too will steer clear of this difficult subject.

In the fixed structure scenario, the underlying graph of the probabilistic net has al-

ready been constructed by “experts” and cannot be changed even if it poorly matches the

actual data. All that remains is to assign the conditional probabilities. If these take the

form of CPTs, then the maximum-likelihood choice is to set them to their empirically ob-

served values. Setting the parameters of a noisy-OR gate is only slightly more complicated,

since the space of possibilities ranked by likelihood can be shown to be concave.

3 SL(k)

Once again, in the SL(k) problem we assume we know H(X|Z1, . . . , Zk) for all choices

of X,Z1, . . . , Zk, and the goal is to find a directed acyclic graph G which has all indegrees

≤ k, so as to minimize

cost(G) =
n∑

i=1

H(Xi|ΠG
i).

We could pick the best k parents for each node Xi: the parents which convey the most

information about Xi, which leave the least amount of randomness in Xi. The problem

is that the resulting graph might not be acyclic. Thus the two conditions which together

make the optimization task hard are the degree restriction and acyclicity. Remove either of

these, and the problem is trivial.

Example 1 Suppose X1 by itself looks like a random coin flip but its value is determined

Probabilistic nets 63

completely by X2 and X3. That is, H(X1) = 1 but H(X1|X2,X3) = 0. There is then a

temptation to add edges from X2 and X3 to X1, but it might ultimately be unwise to do

so because of problematic cycles that this creates.

Example 2 Let X2,X3, and X4 be independent random coin flips, with X1 = X2⊕X3⊕X4,

where ⊕ denotes exclusive-or. Then adding edges from X2,X3, and X4 to X1 will reduce

the entropy of X1 by one. However, any proper subset of these three parents provides no

information about X1; for instance, H(X1|X2,X3) = H(X1) = 1.

The cost of a candidate solution can lie anywhere in the range [0, O(n)]. The most in-

teresting situations are those in which the optimal structure has very low cost (low entropy),

since it is in these cases that there is structure to be discovered.

3.1 Previous work

The central positive result in this field was the very first one, when in 1967 Edmonds

demonstrated an algorithm for SL(1). Directed graphs of indegree bounded by one are

called branchings. Edmonds showed that the maximum-likelihood branching can be found

in quadratic time by a simple greedy procedure. In fact, the symmetric relationship

H(X)−H(X|Y) = H(Y)−H(Y |X)

(the amount by which knowing Y decreases the entropy of X equals the amount by which

knowing X decreases the entropy of Y) makes it possible to reduce SL(1) to a single min-

imum spanning tree computation. This was observed by Chow and Liu (1968), with the

result that branchings are often called Chow-Liu trees by artificial intelligence researchers.

The next candidate, SL(2), was shown to be NP-hard by Chickering (1996). His proof

assumes a Bayesian setting in which there is a prior distribution on graph structures, but

the techniques can be adapted to our maximum-likelihood framework.

The algorithms used to solve SL(k) in practice are generally local search heuristics,

including some based on gradient descent (Russell, Binder, Koller and Kanazawa, 1995)

and EM (Friedman, 1997). These procedures start with some initial guess of a structure,

and then incrementally change it by adding and removing single edges. They will also

accommodate hidden nodes. Example 2 illustrates one inherent limitation of such schemes.

Probabilistic nets 64

3.2 SL(2) is hard to approximately solve

The NP-hardness of SL(2) closes one door but opens many others. Over the last three

decades, provably good approximation algorithms have been developed for a whole host

of NP-complete optimization problems. Do such algorithms exist for learning structure?

We now present a further negative result showing that for some constant c > 1, unless

P = NP there is no polynomial-time procedure which c-approximates SL(2), that is, which

consistently returns a graph whose cost is within a multiplicative factor c of optimal. From

a practical viewpoint this is a weak result, since it does not rule out the possibility of, say,

2-approximation, or O(log n)-approximation, either of which would be a tremendous boon.

Its importance lies instead in bringing into sharper focus some of the aspects of SL(2) that

make it a difficult problem, and thereby providing valuable insight into the hurdles that

must be overcome by good algorithms.

Theorem 1 There exists some constant c > 1 for which c-approximating SL(2) is an NP-

hard optimization problem.

Proof. The proof takes the form of a triplet of reductions,

SAT −→ VC(4) −→ FVS′ −→ SL(2).

These problems are defined in Figure 2. The first reduction is standard (Arora and

Lund, 1996; Papadimitriou and Yannakakis, 1991; Alimonti and Kann, 1997). Specifically,

it is well-known that there is a universal constant ǫ > 0, an efficiently computable function τ

which sends instances of SAT to instances of VC(3), and an efficiently computable integer-

valued function f on instances of SAT, such that

φ ∈ SAT =⇒ VC(3)(τ(φ)) = f(φ), and

φ 6∈ SAT =⇒ VC(3)(τ(φ)) > f(φ)(1 + ǫ).

This is often described by saying that VC(3) has an approximability gap of 1 + ǫ. A similar

result must hold for VC(4) since the graphs produced by τ can be altered to be four-regular

by repeatedly connecting the gadget in Figure 3 to pairs of distinct vertices u, v. The gadget

itself has a vertex cover of size four, regardless of the status of the two vertices it is hooked

into. We will use the fact that f(φ) is always at least some constant fraction of the number

of vertices in τ(φ); call this constant r ∈ (0, 1).

The second reduction converts instances G = (V,E) of VC(4) to instances G′ =

(V ′, E′) of FVS′. This is managed by first replacing each undirected edge {u, v} in E by a

Probabilistic nets 65

SAT: Boolean satisfiability

Input: A Boolean formula φ in conjunctive normal form.

Question: Is there some assignment to the variables which satisfies φ?

VC(k): Vertex cover

Input: An undirected graph (V,E) whose nodes all have degree exactly k.

Output: A set of vertices S ⊂ V such that every edge in E has at least one
endpoint in S.

Objective: Minimize |S|.

FVS′: Restricted feedback vertex set

Input: A directed graph G = (V,E) in which each vertex has indegree
exactly two and outdegree either one or four. It is also guaranteed that G
contains no triangles, that is, no undirected cycles of length three.

Output: A set of vertices S ⊂ V whose removal makes G acyclic.

Objective: Minimize |S|.

Figure 2: SAT and various NP optimization problems.

u

v

Figure 3: This gadget increases the degree of u and v by one.

Probabilistic nets 66

zxw

u

y

u

w yx z

u

z

u

1

1 2

zxw

u

y

Figure 4: Mapping VC(4) to FVS′.

directed cycle u ←→ v in E′, and then reducing the indegree of each node u from four to

two by introducing two intermediate nodes u1 and u2 which lead to u and each of which

handles two of u’s inputs (Figure 4). The number of nodes is tripled, so the optimal solution

to G′ has size at least 1
3r|V ′|, while the approximability gap remains 1 + ǫ.

We can finally start on the main reduction. We have chosen FVS′ as a starting

point because, like SL(2), it requires finding an acyclic subgraph. Given an n-node graph

G = (V,E) as input to FVS′, we will create a very similar directed graph G′ which specifies

a probability distribution P . This distribution (more specifically, conditional entropy values

generated from it) will be used as input to SL(2).

We have already seen how directed acyclic graphs can generate probability distribu-

tions. However, the graph G′ will contain many cycles. We will ensure that its induced

distribution P is well-defined by making certain that influences do not propagate very far

in G′. That is, all correlations are local, or equivalently, any node (random variable) in G′

can only affect the values of nodes very close to it, so there is no fear of influences travelling

around cycles of G′.

An algorithm for SL(2) will attempt to model P by some directed acyclic graph G′′

whose indegrees are all at most two. We will show that G′′ can be used to produce a good

solution for the original FVS′ instance. In particular, the parents of node u ∈ G′′ will be

either the parents of u in G (in which case the FVS′ solution retains node u), or a special

set of default parents (in which case the FVS′ solution discards node u). These defaults

are extra random variables whose behavior is coordinated through the gadget shown in

Figure 5.

In this device, A1 and A2 are random B(1
2) coin flips (B(p) stands for Bernoulli(p),

that is, a {0, 1}-valued random variable with probability p of being one), C1 = (A1 ∧A2)⊕
B(q), C2 = (A1 ∨A2)⊕B(q), and L = C1 ⊕C2, for some specific q ∈ (0, 1

2) whose value we

Probabilistic nets 67

2

A1 C1

C2A

L

Figure 5: Gadget used in the reduction from FVS′ to SL(2).

z
z2 z3

z4

y4

1

w

u

v

Figure 6: A node u in G.

shall not dwell upon. The entropy of the gadget’s distribution is H0 = 2H(1
2) + 2H(q) =

2 + 2H(q). Any attempt to model the same distribution by a different degree-two-bounded

structure in which L has less than two inedges will increase the cost to H0 + ∆, where

∆ = min{1
2 − 1

2H(q),H(2q(1 − q)) − H(q)} > 0 is some small constant. Moreover, this

suboptimal cost can be achieved by an arrangement, or , in which there are no

edges into L.

We can now describe the directed graph G′ in detail. Pick any node u ∈ G, with

inedges from v and w and outedges to z1, . . . , zl, l ≤ 4 (Figure 6). G′ will contain a gadget

for u, but the L node of this gadget, denoted Lu, will be incorporated into a special random

variable Xu. The remaining gadget nodes, A1u, A2u, C1u, C2u, will exist as Boolean random

variables. In other words, there are five nodes corresponding to u in G′: Xu and the four

gadget nodes (Figure 7).

Xu has 64 possible values which can be segregated into six binary-valued fields, Lu,

Iu, and O
(1)
u , . . . , O

(4)
u . The Ou’s are output fields containing information to be passed on

to the Xzi . Each O
(i)
u has distribution B(p), for some p ∈ (0, 1

2), independent of everything

except Izi , to which it is passed. If u has less than four outedges, then some of these output

Probabilistic nets 68

u

Ou
1

Xu
A1u C1u

C2uA2u

Ou
3 Ou

4

Ou2
Iu

z3

z

L

3

w
X X

3O 4O

X

I

v w

v

Figure 7: What u becomes in G′.

Probabilistic nets 69

fields contain random values that never get sent anywhere. Iu receives inputs from the

output fields of Xv and Xw, and its value is their exclusive-or. Xv and Xw provide a lot of

information about Xu. The next most informative set of parents for Xu is {C1u, C2u}.
G′ contains many cycles, of course, but specifies a unique probability distribution

P . To see this, notice that no piece of information can travel very far in this graph – it

originates in an O node and moves to an I node, where it is forgotten. To sample from this

distribution, first generate values for all the gadgets, then for all the O nodes, and finally

set each I node based upon the O nodes of its parents.

We now ask an SL(2) algorithm to find the best indegree-two network that models

P . How will this algorithm pick the parents of each vertex? By construction, the only pairs

of nodes which give any information at all about Xu must be chosen from the nodes of u’s

gadget, and the nodes Xw, Xv, Xzi , Xyi , and Xy′

i
, where yi is the other parent of zi in G,

and y′i is a child of yi in G. By considering the various combinations in turn, we find that

there are effectively just two sensible choices for Xu’s parents:

• {Xv ,Xw} (v and w being the parents of u in the original graph), which costs (a total

conditional entropy of) some H1 = H0 + ∆ + 4H(p) for the five nodes affiliated with

u and can potentially produce cycles; and

• {C1u, C2u}, which entails an entropy cost of H2 = H0 + 4H(p) + H(2p(1 − p)), and

can never result in the formation of cycles.

Any other choice of parents incurs cost at least H3 = H0 +∆+4H(p)+min{H(2p(1−p))−
H(p), 2H(p) −H(2p(1 − p))}. By setting p and q carefully, for instance p = 0.07, q = 0.25,

we ensure that H3 > H2 = H1 + δ, for a small constant δ > 0.

Thus an SL(2) algorithm will always be able to choose two parents for each node

Xu. As far as possible it ought to choose the node’s parents in the original graph G. This

corresponds to retaining that node for FVS′ purposes. Otherwise, the parents might as well

be chosen from that node’s gadget, which corresponds to removing the node in G. More

precisely, a solution of FVS′(G) in which j nodes are removed corresponds to a solution

G′′ ⊂ G′ of the SL(2) problem with cost(G′′) = nH1+jδ. Since δ and H1 are constants, and

since instances of FVS′ with optimal solutions of size at least 1
3rn are hard to approximate

within a constant, we see that SL(2) is also hard to approximate within a constant.

Probabilistic nets 70

The next question is whether there exists an even more damaging hardness result.

Consider the following generalization of SL.

HT: Given a non-negative weight w(X,Π) for each variable X and each set
of k parents Π, find a directed acyclic graph G which minimizes

∑
i w(Xi,Π

G
i)

subject to the constraint that all of its indegrees are at most k.

This problem is hard to approximate within O(log n), by reduction from Set Cover

(Höffgen, 1993). Therefore, any algorithm which seeks a better performance guarantee for

SL must rely upon the fact that the weights w(X,Π) are not arbitrary but are conditional

entropies. The proofs of the next chapter will make heavy use of this.

Open Problem 1 Standard tricks for reducing fan-in and fan-out can be deployed to

show that FVS′ is not substantially easier to approximate than the general FVS problem,

for which the best known algorithm (Seymour, 1995) achieves an approximation ratio of

O(log n log log n). However, our proof technique can demonstrate at most an O(1) approx-

imability gap for SL because the distribution P created by the reduction has entropy Ω(n).

Reducing the entropy of P would require allowing its dependency graph to contain long-

range (that is, non-local) influences. Can these be introduced in such a way that there are

no inconsistencies around cycles?

Conversely, is there a constant-factor approximation algorithm for SL? For instance,

the gadget in Figure 5 has the interesting property that any optimal arrangement of the

edges which satisfies the degree bound must include the edges C1 → L and C2 → L.

Is there some generic way to identify these connections as being particularly valuable?

Another direction of attack might be to initially limit attention to distributions in which

all correlations are deterministic, that is, any set of parents Π either completely determines

X or gives no information whatsoever about X. An example follows.

Example 3 A useful test distribution for greedy heuristics is one which is produced by

a directed graph (Figure 8) with 2
√

n sources X1, . . . ,X√
n, Y1, . . . , Y√

n, each i.i.d. B(1
2).

The sources generate Xij = Xi ⊕Xj and Yij = Yi ⊕ Yj, for all i, j such that |i − j| is odd.

Finally all combinations Zij = Xij ⊕ Yij are present. There are a total of about 2
√

n + 3
4n

random variables.

The optimal structure shown in the figure has entropy 2
√

n. There are no correlated

triples of variables other than those of the types mentioned. For instance, there are no

Probabilistic nets 71

k

zjk

Yjk

YkXi

Zij

Yij

Xj

xjkXij

Yi
Yj

X

Figure 8: Finding the 2
√

n source variables might not be easy.

relationships Xij ⊕Xik = Xjk because at least one of the differences |i − j|, |i − k|, |j − k|
must be even. Thus any greedy scheme which iteratively identifies strong correlations and

then chooses arbitrarily amongst them will end up picking θ(n) of the Xij or Yij as sources,

giving an overall entropy of θ(n).

Open Problem 2 In this deterministic setting, SL reduces to finding sources of the optimal

structure. To what extent does this “source discovery” problem capture the hardness of

SL?

72

Chapter V

Learning polytrees

1 Why polytrees?

The theoretical terrain of the structure learning problem so far contains just two major

landmarks: it is easy to learn branchings and difficult to learn general probabilistic nets

of bounded indegree. With these two endposts in mind, it is natural to ask whether there

is some subclass of nets which is more general than branchings, and for which a provably

good learning algorithm can be found. Even if this learning problem is NP-hard, it may

well be the case that a good approximation algorithm exists. We will now take a small step

in this direction by considering the task of learning polytrees from data. Polytrees have

more expressive power than branchings, and have turned out to be an important class of

directed probabilistic nets, largely because they permit fast exact inference (Pearl, 1988).

In strict analogy with SL, we define

PT: Assume the random variables Xi are drawn from a finite set Σ. Given the
conditional entropy H(X|Π) for each variable X and each set of parents Π, find
a polytree G which minimizes cost(G).

In deference to sample complexity considerations, we will also consider

PT(k): just like PT, except that each node is allowed at most k parents (we
shall call these k-polytrees).

It is not at all clear that PT is any easier than SL. However, we will see that, first,

the optimal branching constitutes a provably good approximation to the best polytree, and

second, it is not possible to do very much better, because there is some constant c > 1

Learning polytrees 73

for which it is NP-hard to c-approximate PT(2). That is to say, if on input I the cost of

the optimal solution to PT(2) is denoted OPT (I), then it is NP-hard to consistently find

2-polytrees of cost ≤ c ·OPT (I).

There has been some work on reconstructing a polytree given data which actually

comes from a polytree distribution – for instance, by Geiger, Paz and Pearl (1990) and by

Acid, de Campos, González, Molina and Pérez de la Blanca (1991). We, on the other hand,

are trying to approximate an arbitrary distribution by a polytree.

2 An approximation algorithm

We will show that the optimal branching has cost (and therefore log-likelihood) close

to that of the optimal polytree. They are different by at most a multiplicative factor

which is not an universal constant but depends upon the nature of the individual attributes

(nodes). For instance, if the attributes individually resemble fair coin flips, then the cost of

the optimal branching is always at most twice that of the optimal polytree. This is a very

significant performance guarantee, given that this latter cost can be as low as one or as high

as n, and instantly gives us an O(n2)-time approximation algorithm for learning polytrees.

2.1 A simple bound

The following definition will be crucial for the rest of the development.

Definition For any probability distribution over variables X1, . . . ,Xn, let U = maxi H(Xi)

(that is, the highest entropy of an individual node) and L = mini H(Xi).

Example 1 If all the variables are Boolean and each by itself is a random coin flip, then

U = L = 1. Similarly, if some variables have values in the range {1, 2, . . . , 100} and the rest

are Boolean, and each variable by itself looks pretty uniform-random (within its range),

then U ≈ log2 100 < 7 and L ≈ 1. It is always true that the cost of the optimal polytree (or

the optimal branching, or the optimal directed probabilistic net) lies in the range [L, nU].

We warm up with an easy theorem which provides useful intuition about PT.

Theorem 1 The cost (negative log-likelihood) of the optimal branching is at most (1 + U
L)

times than that of the optimal polytree.

Learning polytrees 74

Proof. Let the optimal polytree have total cost H∗ (we have chosen the letter H because

the cost is essentially an entropy rating, and it is helpful to think of it as such). We will use

this polytree to construct a branching of cost ≤ H∗(1+ U
L), and this will prove the theorem.

In the optimal solution, let S denote the vertices with indegree more than one. Since

the total number of edges in the structure is at most n − 1, each node of high indegree

is effectively stealing inedges away from other nodes (cf. Example IV.1). In particular

therefore, the polytree must have at least |S|+ 1 sources (that is, nodes with no parents),

implying that H∗ ≥ |S|L.

If we remove the edges into the vertices of S (so that they become sources in the

graph), we are left with a branching. Each vertex of S has entropy at most U , and so the

cost of this branching is ≤ H∗ + |S|U ≤ H∗(1 + U
L).

Thus in cases where the nodes have approximately equal individual entropies, the

optimal branching is at most about a factor of two worse than the optimal polytree, in

terms of log-likelihood. What happens when the ratio U
L is pretty large? This is especially

a danger when different variables have vastly different ranges. Over the course of the next

few lemmas, we will improve the dependence on U
L to O(log U

L), and we will show that this

is tight. We start with a very crude bound which will be useful to us later.

2.2 A better performance guarantee

First we establish some simple

Notation. Let the optimal polytree have cost H∗, as before. Whenever we talk about

parents and ancestors henceforth, it will be with respect to this solution. We say X is a

parent of Y if there is an edge from X to Y ; the definitions of child and ancestor follow

from this. A source is a node with no inedges and a sink is a node with no outedges.

Denote by TX the induced subgraph consisting of node X and its ancestors. That is, TX is

a (directed) subgraph of the polytree such that its only sink is X and all the other nodes in

it have directed paths to X (Figure 1). Let |TX | then signify the number of nodes in this

subtree. For each node Z with parents Π, let ∆(Z) = H(Z|Π), the entropy that remains in

Z even after its parents are known. Clearly H∗ =
∑

Z ∆(Z). Extend ∆ to subgraphs TZ

in the natural way: ∆(TZ) =
∑

X∈TZ
∆(X).

The ensuing discussion will perhaps most easily be understood if the reader thinks of

∆(Z) as some positive real-valued attribute of node Z (such that the sum of these values

Learning polytrees 75

X

T

Child

Parent

Source

Sink

x

Figure 1: Notation

over all nodes is H∗) and ignores its original definition in terms of Z’s parents in the optimal

polytree. This is because we will be doctoring the optimal polytree while leaving the ∆(Z)

fixed. We start with a few examples to clarify the notation.

Example 2 Suppose that in the optimal polytree, node X has parents Y1, . . . , Yk. Then

the subtrees TY1
, . . . , TYk

are disjoint parts of TX and therefore

k∑

i=1

∆(TYi) ≤ ∆(TX) ≤ H∗.

Decompositions of this kind constitute the bread and butter of the proofs that follow.

Example 3 For any node X, we can upper-bound its individual entropy,

H(X) ≤ ∆(TX),

since the right-hand term is the total entropy of the subtree TX which includes X. Here is

another way to think of it: denote by S the variables (including X) in the subtree TX . Then

TX is a polytree over the variables S, and so ∆(TX) is at least the inherent entropy H(D|S)

of the target distribution D restricted to variables S, which in turn is at least H(X).

Given the optimal polytree, we need to somehow construct a branching from it which

approximates it well. Nodes with zero or one parent can remain unchanged, but for each

node Z with parents Y1, Y2, . . . , Yl, l ≥ 2, we must eliminate all but one inedge. Naturally,

the parent we choose to retain should be the one which contributes the most information to

Learning polytrees 76

Z. The information lost by removing parent Yi is at most its entropy H(Yi), which in turn

is upper-bounded by ∆(TYi) (see Example 3). Therefore, we will use the simple rule: retain

the parent with highest ∆(TYi). Formally, the increase in cost occasioned by removing all

parents of Z except Yj can be bounded by

H(Z|Yj)−H(Z|Y1, Y2, . . . , Yl) ≤
∑

i6=j

H(Yi) ≤
∑

i6=j

∆(TYi) =
∑

i

∆(TYi)−max
i

∆(TYi).

This motivates the following

Definition For any node Z with l ≥ 2 parents Y1, . . . , Yl in the optimal polytree, let the

charge C(Z) be
∑

i ∆(TYi)−maxi ∆(TYi). For nodes with less than two parents, C(Z) = 0.

So we apply our rule to each node with more than one parent, and thereby fashion

a branching out of the polytree that we started with. All these edge removals are going to

drive up the cost of the final structure, but by how much? Well, there is no increase for

nodes with less than two parents. For other nodes Z, we have seen that the increase is at

most C(Z).

In this section, we will charge each node Z exactly the amount C(Z), and it will turn

out that the total charges are at most 1
2H∗ log n. Most of the work is done in the following

Lemma 2 For any node Z, the total charge for all nodes in subgraph TZ is at most

1
2∆(TZ) log |TZ |.

Proof. Let C(TZ) =
∑

X∈TZ
C(X) denote the total charge for nodes in subgraph TZ . We

will use induction on |TZ |. If |TZ | = 1, Z is a source and trivially C(TZ) = 0. So, assume

the claim is true for all subtrees of size less than |TZ |. If Z has just one parent, say Y , then

C(TZ) = C(TY), and we are done. Assume, then, that Z has parents Y1, . . . , Yl, l ≥ 2, and

let δi = |TYi |/|TZ |. Then δ1 + · · ·+ δl ≤ 1, and

C(TZ) =
∑

i

C(TYi) + C(Z)

≤
∑

i

1
2∆(TYi)log δi|TZ |+

∑

i

∆(TYi)−max
i

∆(TYi)

≤ 1
2∆(TZ) log |TZ |+

∑

i

∆(TYi)(1 + 1
2 log δi)−max

i
∆(TYi)

≤ 1
2∆(TZ) log |TZ |,

where the second line applies the inductive hypothesis to subtrees TY1
, . . . , TYl

, the third

line follows from ∆(TZ) ≥∑i ∆(TYi) (because these l subtrees are disjoint), and the fourth

Learning polytrees 77

line is the result of (1) ignoring all δi smaller than 1
4 , (2) applying Jensen’s inequality, and

(3) using the fact that maxi ai dominates any convex combination of {ai}.

Now we apply this to selected subgraphs of the optimal polytree. Our aim, again, is

to bound the additional cost incurred by removing edges necessary to convert the optimal

polytree into a branching. Specifically, we want to show

n∑

i=1

C(Xi) ≤ 1
2H∗ log n =

n∑

i=1

∆(Xi) · 1
2 log n.

Theorem 3 The cost of the optimal branching is at most (1+ 1
2 log n) times the cost of the

optimal polytree.

Proof. Suppose the optimal polytree were the union of a few disjoint subtrees TZ1
, . . . , TZl

(equivalently, suppose each connected component had just one sink). Then we would be in

business, because we could apply the previous lemma to each of these subtrees and sum the

results. We would get

n∑

i=1

C(Xi) =

l∑

i=1

C(TZi)

≤
l∑

i=1

1
2∆(TZi) log |TZi |

≤
n∑

i=1

1
2∆(Xi) log n

= 1
2H∗ log n,

where the second line uses Lemma 2 and the third line uses |TZi | ≤ n.

If the optimal polytree is not of this convenient form, then it must have some con-

nected component which contains two sinks X and Y such that TX and TY share a common

subgraph TU (Figure 2).

Say that TU is connected to the rest of TY through the edge (U, V), V ∈ TY − TU .

Remove this edge, and instead add the edge (X,V). This has the effect of moving TY − TU

all the way up TX . After this change, X is no longer a sink, and for every node Z in the

graph, ∆(TZ) (and thus C(Z)) has either stayed the same or increased, because each node

has all the ancestors it had before and maybe a few more (recall that we are thinking of

each ∆(W) as a fixed value associated with node W and that ∆(TZ) is the sum of these

values over W ∈ TZ). It is also the case, and this will be useful later, that the indegree of

Learning polytrees 78

U

X Y

V

U

X

Y

V

Figure 2: TX and TY contain a common subtree.

each node remains unchanged. In this manner we alter the structure so that it is a disjoint

union of single-sink components, and then apply the previous argument.

In the optimal polytree, let n0 denote the number of nodes with no parents (that is,

the number of sources), and n≥2 the number of nodes with at least 2 parents. By examining

what happens to nodes of different indegree in the above proof, we notice that the theorem

remains true if we replace n by n0 +n≥2, that is, if we ignore nodes with exactly one inedge.

2.3 The final improvement

In the argument so far, we have bounded the entropy of a node X by H(X) ≤ ∆(TX).

This is a fairly tight bound in general, except when these entropy values start getting close

to the maximum entropy U . We factor this in by using a slightly more refined upper bound.

Definition For any node Z, let C ′(Z) = min{C(Z), U}. Then C ′(Z) is an upper bound on

the extra cost incurred at node Z due to the removal of all but one parent.

This gives us the final improvement. Once again, we start by considering a single subtree.

Lemma 4 For any node Z, the total cost incurred by nodes in the subtree TZ is at most

C ′(TZ) ≤ (5
2 + 1

2 log U
L)∆(TZ).

Proof. Let T ⊆ TZ denote the polytree induced by all nodes X ∈ TZ such that ∆(TX) > U ;

that is, T consists of these nodes, and any edges between them in TZ . Note that T must be

Learning polytrees 79

0

In T2 In T1

In T

V

T

B

Z

Figure 3: The regions T,B ⊂ TZ .

connected, because if X ∈ T , and Y ∈ TZ is a child of X, then Y must also be in T (since

∆(TY) ≥ ∆(TX)). Let Tj ⊆ T be those nodes of T which have j parents in T . And let B

be the border nodes right outside T , that is, nodes which are in TZ − T and have children

in T (Figure 3).

What are the charges for the various nodes in T ?

(1) Each node X ∈ T1 has all but one parent outside T , and therefore gets charged at most

the sum of ∆(TY) over its parents Y outside T (and in B). The total charge for nodes in

T0 and T1 is
∑

X∈T0

C ′(X) +
∑

X∈T1

C ′(X) ≤
∑

Y ∈B

∆(TY) ≤ ∆(TZ),

where the final inequality follows by noticing that the preceding summation is over disjoint

subtrees of TZ (cf. Example 2).

(2) Nodes X ∈ T2, T3, . . . have at least two parents in T , and so get charged exactly U ;

however, since T is a tree we know that |T0| ≥ 1 + |T2|+ |T3|+ · · ·, and thus

∑

X∈Ti,i≥2

C ′(X) ≤ U · |T0| ≤
∑

X∈T0

∆(TX) ≤ ∆(TZ),

where once again the disjoint subtrees property is used.

Thus nodes in T have total charge at most 2∆(TZ). It remains to assess the charges for

nodes in TZ but outside T . Split these nodes into their disjoint sub-polytrees {TV : V ∈ B},
and consider one such TV . Since ∆(TV) ≤ U and each source in TV has entropy at least L,

Learning polytrees 80

we can conclude that TV has at most U
L sources and therefore at most 2U

L nodes of indegree

6= 1. The charge C ′(TV) is therefore, by Lemma 2, at most 1
2∆(TV) log 2U

L . We sum this

over the various disjoint {TV : V ∈ B} and find that the total charge for TZ − T is at most

1
2∆(TZ) log 2U

L , whereupon C ′(TZ) ≤ (5
2 + 1

2 log U
L)∆(TZ), as promised.

Theorem 5 The cost of the optimal branching is at most (7
2 + 1

2 log U
L) times the cost of

the optimal polytree.

Proof. It can be verified as in Theorem 3 that for charging purposes we may assume the

optimal solution is a disjoint union of single-sink subgraphs. Apply the previous lemma to

each of these subtrees in turn, and sum the results.

Example 4 The bound on the ratio between the best branching and the best polytree has

to depend upon log U
L . To see this, consider a polytree which is structured as a complete

binary tree (with 1
2n + 1 leaves) and with edges pointing towards the single sink. All

nodes are binary-valued, each internal node is the exclusive-or of its two parents, and each

source has some small entropy ǫ = θ(1/n). The nodes on the next level up each have

approximately double this entropy, and so on, so that the sink has entropy about θ(1). The

optimal polytree has cost (1
2n + 1)ǫ = θ(1) whereas the best branching loses θ(ǫn) entropy

on each level and therefore has cost about θ(ǫn log n) = θ(log n) = θ(log U
L).

3 A hardness result

Needless to say, it is NP-hard to learn the optimal degree-bounded polytree. However,

the news is considerably worse than this – we will prove a hardness barrier which rules out

the possibility of a polynomial time approximation scheme. Edmonds’ algorithm solves

PT(1) optimally; it will now turn out that if nodes are allowed a second parent then the

problem becomes hard to approximately solve.

Theorem 6 There is some constant c > 1 for which the problem of finding a 2-polytree

whose cost is within c times optimal is an NP-hard optimization problem.

Proof. We shall reduce from the following canonical problem (ǫ > 0 is some universal

constant).

Learning polytrees 81

1 X2R1 R2

C1 C3C2

XnRnX

Cm

Figure 4: Broad view of the distribution created from φ.

Max3SAT(3)

Input: A Boolean formula φ in conjunctive normal form, in which each clause
contains at most three literals and each variable appears exactly three times. It
is guaranteed that either there is an assignment which satisfies all the clauses
(that is, φ is satisfiable) or no assignment satisfies more than a (1− ǫ) fraction
of the clauses.

Question: Is φ satisfiable?

This is a decision (true/false) version of the corresponding approximation problem

(find an assignment which comes close to maximizing the number of clauses satisfied). In

a celebrated result of the early 1990s, it was shown that this problem is NP-hard; a good

starting point for further details is a survey article by Arora and Lund (1996).

Suppose we are given a formula φ = C1 ∧ C2 ∧ · · · ∧ Cm over variables x1, . . . , xn, and

with the stated guarantees. We will show that there is some constant c > 1, depending only

upon ǫ, such that any algorithm which can learn a 2-polytree within a multiplicative factor

c of optimal can also be used to decide whether φ is satisfiable.

For this reduction we construct a probability distribution out of the formula φ. The

distribution will be specified by the probabilistic net shown in Figure 4. The edges in this

graph represent correlations. Circles denote regular nodes. The squares are slightly more

complicated structures whose nature will be disclosed later; for the time being they should

be thought of as no different from the circles. There are three layers of nodes.

1. The top layer consists of i.i.d. B(p) random variables, one per clause, for some p ∈
(0, 1). This entire layer has entropy mH(p).

2. The middle layer contains two nodes per variable xi: a principal node Xi which is

Learning polytrees 82

Ri

Xi

C1 ⊕ C2

C3 ⊕B(p)⊕Ri

Pi Ni

Figure 5: The R and X nodes for a specific variable in φ.

correlated with the nodes for the three Cj ’s in which xi appears, and a B(1
2) satellite

node called Ri. Let us focus on a particular variable xi which appears in clauses

C1, C2 with one polarity and C3 with the opposite polarity – this is the general case

since each variable appears exactly three times. For instance, C1 and C2 might contain

xi while C3 contains xi. Then the nodes Ri,Xi will have the structure shown in

Figure 5. Here Pi and Ni are both B(1
2), and stand for “previous” and “next.” Each

Ri is Boolean with entropy one and each Xi is a four-tuple of Boolean values, with

entropy H(2p(1− p)) + 3. Thus the sum of the entropies of the second layer nodes is

n(H(2p(1 − p)) + 4).

3. The third layer (of n−1 nodes) joins together consecutive nodes Xi,Xi+1 of the second

layer. The value of the ith node in this level, 1 ≤ i ≤ n − 1, is Ni ⊕ Pi+1, and the

entire level has entropy n− 1.

To sample randomly from this distribution, pick the Ci’s, Ri’s, Pi’s, and Ni’s inde-

pendently and at random, and then set the Xi’s based upon these.

Suppose that the learning algorithm knows the exact conditional entropies for all

combinations of variables. What kind of polytree can it construct? We will show that:

• If φ is satisfiable then there is a 2-polytree whose cost is some value H∗ which can

easily be computed from φ.

• If φ is not satisfiable (and so at most m(1− ǫ) clauses can be satisfied by any assign-

ment) then there is no 2-polytree of cost less than cH∗.

Thus, any algorithm which can find a 2-polytree within factor c of optimal, can also decide

whether φ is satisfiable.

Learning polytrees 83

iR

BA

B(1

2
)

A1⊕B1,...,Ak⊕Bk

A1,A2,...,Ak B1,B2,...,Bk

Figure 6: A device which provides two default inedges to node Ri.

How can we prove this? A good polytree must somehow tell us a satisfying assignment

for φ. If the polytree that is learned has an edge from Cj to Xi, we will say “Cj chooses Xi”

and will take this as meaning that clause Cj is satisfied on account of variable xi. There are

several steps towards showing this assignment is well-defined.

First we will force the square nodes to have no inedges. This is quite easy to achieve;

for instance, R1, ostensibly a single coin flip, can be rigged to avoid inedges by giving

it two default inedges via the little gadget of Figure 6. Here A and B are two extra

nodes, independent of everything but R1, which each contain k i.i.d. copies of B(q), called

A1, A2, . . . , Ak and B1, . . . , Bk, for some constants q < 1
2 and k > 1. R1 has now expanded

to include A1 ⊕ B1, . . . , Ak ⊕ Bk. On account of the polytree constraint, there can be at

most two edges between A,B, and R1. The optimal choice is to pick edges from A and B

to R1. Any other configuration will increase the cost by at least k(H(2q(1−q))−H(q)) > 1

(the constant k is chosen to satisfy this). These suboptimal configurations might permit

inedges from outside nodes which reveal something about the B(1
2) part of R1; however

such edges can provide at most one bit of information and will therefore never be chosen

(they lose more than they gain). In short, these gadgets ensure that square nodes will have

no inedges from the nodes in the overall graph (Figure 4).

Next we will show that any half-decent polytree must possess all 2(n−1) connections

between the second and third levels. Any missing connection between consecutive Xi,Xi+1

causes the cost to increase by one and in exchange permits at most one extra edge among

the Xi’s and Cj’s, on account of the polytree constraint. However we will see that none of

these edges can decrease the cost by one.

Therefore, all the consecutive Xi’s are connected via the third layer, and each clause-

node Cj in the first level can choose at most one variable-node Xi in the second level

Learning polytrees 84

(otherwise there will be a cycle).

We now need to make sure that the clauses which choose a variable do not suggest

different assignments to that variable. In our example above, variable xi appeared in C1, C2
with one polarity and C3 with the opposite polarity. Thus, for instance, we must somehow

discourage edges from both C1 and C3 to Xi, since these edges would have contradictory

interpretations (one would mean that xi is true, the other would mean that xi is false). The

structure of the node Xi imposes a penalty on this combination.

Choose p so that H(p) = 1
2 , and define δ to be 1 −H(2p(1 − p)) > 0. Assume that

we start with a structure that has no edges in the first and second layers (apart from the

hidden edges in the square nodes). The goal of the learning algorithm is to add edges from

the Cj ’s and Ri’s to the Xi’s which will bring the cost down as much as possible. Which

edges is it likely to add? What are the possible parents of the Xi depicted above?

• Just Ri: the entropy of Xi is decreased by δ.

• Ri, and one of C1, C2, C3: the entropy of Xi is decreased by 1
2 .

• C1, C2: the entropy decrease is 1− δ.

• C1, C3 or C2, C3: the entropy decrease is 1
2 − δ.

Thus C1 and C3 will not both choose variable Xi, and more generally, the assignment

embodied in the edges from clause-nodes to variable-nodes will be well-defined. Each node

Xi can earn an entropy reduction of δ by merely having an inedge from Ri. In addition,

each satisfied clause will reduce entropy further by 1
2 − δ. Suppose m′ clauses are satisfiable

(either m′ = m or m′ ≤ m(1 − ǫ)). Then the edges into the Xi’s will decrease the cost of

the second layer by m′(1
2 − δ) + nδ.

In this way, if φ is satisfiable, then the optimal structure has some cost H∗ = θ(m),

whereas if only (1− ǫ)m of φ’s clauses are satisfiable, then the optimal cost is H∗ +θ(ǫm) ≥
cH∗ for some constant c > 1 which depends only upon ǫ and not upon φ. Thus PT(2) is

hard to approximate within some fixed constant factor.

Open Problem 1 This proof relies heavily upon the degree restriction as a source of

hardness. It should be possible to produce similar effects using just the polytree constraint.

Learning polytrees 85

Open Problem 2 We have seen that the optimal branching, in which each node has at

most one parent, is a good approximation to the optimal polytree, in terms of log-likelihood.

Any algorithm with a better performance guarantee must be able to give nodes two or more

parents when necessary. What are good heuristics for doing this?

Open Problem 3 Polytrees are currently the most natural class of directed graphs for

which efficient inference algorithms are known. But in fact the junction tree algorithm

works quickly for any directed graph whose moralized, triangulated, undirected version has

very small cliques. Is there a larger class of directed graphs with simple characterization

which permits fast inference and for which efficient, provably good learning algorithms can

be constructed?

86

Chapter VI

Conclusions and open problems

1 Mixture models

The most important contribution of this thesis to the theory of mixture models is its

suggestion that random projection be used to reduce the dimension of data sets. This has

a wide range of benefits, the first of which is that arbitrarily high-dimensional data from

a mixture of k well-separated distributions can be mapped into just O(log k) dimensions.

Another especially helpful effect is a reduction in the eccentricity of the Gaussians.

Open Problem 1 Lemma II.4 bounds the eccentricity of a projected Gaussian in terms

of its original eccentricity and the initial and reduced dimensions. Is this bound tight?

Mixtures of identical spherical Gaussians in high dimension are easy to learn. How-

ever, real clusters are unlikely to be spherical-Gaussian, if only because different attributes

are typically measured in different units. Our approach has been to exploit the fact that

random projection makes a variety of different distributions, including very ellipsoidal Gaus-

sians, look more spherical-Gaussian, in the sense of the “weak assumption” of Chapter III.

This beneficial effect deserves much more detailed treatment than it has received here.

There is one question that is particularly beguiling.

Open Problem 2 Let X be a random vector chosen uniformly from a subset S of the

hypercube {0, 1}n. If S is large, say |S| = 1
2 · 2n, is it the case that for most unit directions

γ, the distribution of γ ·X is close to normal? How close?

The particular promise of this approach makes it important to develop algorithms

Conclusion 87

which are adept at learning mixtures of well-separated spherical Gaussians in relatively low

dimension. We have analyzed one such algorithm which has the unfortunate requirement

that the Gaussians all have about the same radius.

Open Problem 3 Is there a simple algorithm which will learn a mixture of spherical

Gaussians with widely differing radii?

A related project is to obtain a better theoretical understanding of some of the local

search heuristics which are currently used for learning mixture models.

Open Problem 4 Is there a suitable method of initialization under which EM affords

strong finite-sample performance guarantees for learning spherical mixtures of Gaussians?

Can such a result be shown under the weak Gaussian assumption?

2 Directed probabilistic nets

We have identified SL as the core combinatorial problem in the task of learning the

maximum-likelihood directed probabilistic net from data. The central proof of Chapter IV,

showing that SL(2) is hard to c-approximate for some constant c > 1, requires an unusual

reduction in which a probability distribution is explicitly constructed from some instance

of a graph problem. Can these techniques be extended to show stronger hardness results?

Open Problem 5 Can SL(2) be shown to be as hard as Set Cover or FVS? Conversely,

is there any algorithm for SL(2) with a nontrivial performance guarantee?

Learning the maximum-likelihood polytree might not be any easier than SL. However,

we have seen that the representational power of polytrees is not vastly superior to that of

branchings. It would be a significant theoretical advance to develop a PT(2) algorithm

whose performance guarantees did not rely solely upon this fact, an algorithm which could

make principled decisions about when to assign a node more than one parent.

Open Problem 6 Does PT have a polynomial-time c-approximation algorithm, for some

small constant c?

88

Appendix A

Large deviation bounds

1 Chernoff-Hoeffding bounds

These are reproduced from the book by Kearns and Vazirani (1991).

Lemma 1 (Chernoff-Hoeffding) Let X1, . . . ,Xn be a sequence of i.i.d. Bernoulli trials

with EXi = p. Let Sn denote the sum X1 + · · ·+ Xn. Then for any 0 ≤ γ ≤ 1,

(a) P(Sn > (p + γ)n) ≤ e−2nγ2

;

(b) P(Sn < (p − γ)n) ≤ e−2nγ2

;

(c) P(Sn > (1 + γ)pn) ≤ e−npγ2/3; and

(d) P(Sn < (1− γ)pn) ≤ e−npγ2/2.

The restriction γ ≤ 1 makes these bounds useful only for modest deviations; for the

γ > 1 regime the following, from Motwani and Raghavan (1995), can be applied.

Lemma 2 (Chernoff-Hoeffding) Let X1, . . . ,Xn be a sequence of i.i.d. Bernoulli trials

with EXi = p. Let Sn denote the sum X1 + · · ·+ Xn. Then for any ∆ > 0,

P(Sn > ∆pn) ≤
(

e∆−1

∆∆

)pn

.

In particular, when ∆ ≥ 2 the right-hand side is at most exp(−1
4 pn∆ ln∆).

2 Large deviation bounds for high-dimensional Gaussians

The next few results are straightforward and presumably well-known. Proofs are

included for the sake of completeness.

Large deviation bounds 89

Lemma 3 Randomly draw s points Y1, . . . , Ys from N(µ, In). Then for any ∆ ≥ 1√
s
,

P

(∥∥∥∥
Y1 + · · ·+ Ys

s
− µ

∥∥∥∥ ≥ ∆
√

n

)
≤
(

es∆2−1

s∆2

)−n/2

.

Proof. Let Zi = Yi − µ
d
= N(0, In). The mean 1

s (Z1 + · · ·+ Zs) has distribution N(0, 1
sIn),

and its squared L2 norm has moment-generating function φ(t) = (1− 2t
s)−n/2 for t ≤ s

2 . By

Markov’s inequality,

P

(∥∥∥∥
Z1 + · · ·+ Zs

s

∥∥∥∥ ≥ ∆
√

n

)
≤ φ(t)

et∆2n
;

the lemma follows by choosing t = s
2 (1− 1

∆2s
).

Lemma 4 Let X1, . . . ,Xn be i.i.d. N(0, 1) random variables. Pick any sequence of positive

coefficients λ1 ≤ λ2 ≤ · · · ≤ λn, and define λ = 1
n(λ1 + · · · + λn) and r =

√
λn/λ1. Notice

that
∑

i λiX
2
i has expectation λn. Then for any 0 < ǫ ≤ 1,

P
(∣∣∣

n∑

i=1

λiX
2
i − λn

∣∣∣ > ǫλn
)
≤ 2 exp

(
− nǫ2

24r2

)
.

Proof. Each X2
i has moment-generating function (1 − 2t)−1/2, for t ≤ 1

2 . Therefore,

applying Markov’s inequality,

P
(n∑

i=1

λiX
2
i > (1 + ǫ)λn

)
= P

(
exp(

∑
i tλiX

2
i) > exp(t(1 + ǫ)λn)

)

≤
∏

i EetλiX2
i

etλn(1+ǫ)

=
1

etλn(1+ǫ)

(
∏

i

1

1− 2tλi

)1/2

for 0 < t ≤ 1
2λn

. Choose t = 1
2λn

1
1+ǫ/2 ln(1+ ǫ/2) to bound this expression by exp(− ǫ2λn

24λn
) ≤

exp(− nǫ2

24r2). Similarly, for t ≥ 0,

P
(∑

i

λiX
2
i < (1− ǫ)λn

)
= P

(
exp(−∑i tλiX

2
i) > exp(−t(1 + ǫ)λn)

)

≤
∏

i Ee−tλiX2
i

e−tλn(1−ǫ)

= etλn(1−ǫ)

(
∏

i

1

1 + 2tλi

)1/2

.

This is at most ≤ exp(−nǫ2

8r2) if you pick t = 1
2λn

1
1−ǫ/2 ln 1

1−ǫ/2 .

Large deviation bounds 90

Lemma 5 Let λ1 ≤ λ2 ≤ · · · ≤ λn be any increasing sequence of positive coefficients, and

define λ = 1
n(λ1 + · · ·+ λn) and r =

√
λn/λ1. If U is a random unit vector in R

n, then for

any 0 < ǫ ≤ 1,

P
(∣∣∣

n∑

i=1

λiU
2
i − λ

∣∣∣ > ǫλ
)
≤ exp

(
−Ω
(nǫ2

r2

))
.

Proof. Let X = (X1, . . . ,Xn) be a vector of n i.i.d. N(0, 1) random variables. Then U has

the same distribution as 1
‖X‖(X1, . . . ,Xn), and

n∑

i=1

λiU
2
i

d
=

λ1X
2
1 + · · ·+ λnX2

n

X2
1 + · · ·+ X2

n

.

The numerator has expectation nλ while the denominator has expectation n. The previous

lemma provides large deviation bounds for each.

3 An elementary proof of the Johnson-Lindenstrauss lemma

Lemma 6 (Johnson-Lindenstrauss, 1984) Fix some 0 < ǫ < 1 and 0 < δ < 1. Pick

any m data points x1, . . . , xm ∈ R
n. If these points are projected into a randomly chosen

subspace of dimension d ≥ 12
ǫ2 log m2

δ then with probability > 1 − δ, the projected points

x∗
1, . . . , x

∗
m satisfy

(1− ǫ)
d

n
≤
‖x∗

i − x∗
j‖2

‖xi − xj‖2
≤ (1 + ǫ)

d

n
for all i 6= j.

The original proof of Johnson and Lindenstrauss was simplified by Frankl and Mae-

hara (1988), using geometric insights and refined approximation techniques. The proof

given here, joint work with Gupta (1999), uses elementary probabilistic techniques to ob-

tain essentially the same results.

We start by estimating the length of a unit vector in R
n when it is projected into

a randomly chosen d-dimensional subspace. This length has the same distribution as the

length of a random unit vector projected into a fixed d-dimensional subspace. We take this

fixed subspace to be that spanned by the first d coordinate vectors, for simplicity.

Let X1, . . . ,Xn be i.i.d. N(0, 1) random variables. Then the distribution of Y =

1
||X||(X1, . . . ,Xn) is uniform over the surface of the n-dimensional unit sphere. Let the

vector Y ∗ ∈ R
d be the projection of Y onto its first d coordinates, so E‖Y ∗‖2 = d

n . We will

show that ‖Y ∗‖2 is tightly concentrated around this mean value.

Large deviation bounds 91

Lemma 7 Choose any d < n. Let X1, . . . ,Xn be i.i.d. N(0, 1) random variables and let

Y ∗ denote the first d coordinates of Y = 1
||X||(X1, . . . ,Xn).

(a) If β < 1 then

P(‖Y ∗‖2 ≤ βd/n) ≤ βd/2

(
1 +

(1− β)d

(n− d)

)(n−d)/2

≤ exp

(
d

2
(1− β + ln β)

)
.

(b) If β > 1 then

P(‖Y ∗‖2 ≥ βd/n) ≤ βd/2

(
1 +

(1− β)d

(n− d)

)(n−d)/2

≤ exp

(
d

2
(1− β + ln β)

)
.

Proof. The proofs are similar to those for Chernoff-Hoeffding bounds. We use the fact

that if X
d
= N(0, 1), then X2 has moment-generating function (1− 2t)−1/2, for t < 1

2 .

P(‖Y ∗‖2 ≤ βd/n) = P(n(X2
1 + · · ·+ X2

d) ≤ dβ(X2
1 + · · ·+ X2

n))

= P(dβ(X2
1 + · · ·+ X2

n)− n(X2
1 + · · · + X2

d) ≥ 0)

= P(exp
{
t(dβ(X2

1 + · · ·+ X2
n)− n(X2

1 + · · ·+ X2
d))
}
≥ 1)

≤ E(exp
{
t(dβ(X2

1 + · · ·+ X2
n)− n(X2

1 + · · ·+ X2
d))
}
)

= E(exp
{
tdβX2

}
)(n−d)E(exp

{
t(dβ − n)X2

}
)d

= (1− 2tdβ)−(n−d)/2(1− 2t(dβ − n))−d/2,

for t ≥ 0, tdβ < 1
2 , and t(dβ−n) < 1

2 . Choosing t = t0 = (1−β)
2β(n−dβ) then completes the proof

of (a). The proof of (b) is almost exactly the same. By the same calculations,

P(‖Y ∗‖2 ≥ βd/n) = P(n(X2
1 + · · · + X2

d) ≥ dβ(X2
1 + · · ·+ X2

n))

= (1 + 2tdβ)−(n−d)/2(1 + 2t(dβ − n))−d/2

for 0 < t < 1
2(n− dβ). This time use t = −t0.

Lemma 8 Fix any δ, ǫ ∈ (0, 1). Let u, v be any two points in R
n. Suppose these points are

projected into a randomly chosen subspace of dimension d < n, where

d ≥ 2

ǫ2/2− ǫ3/3
ln

2

δ
.

If u∗, v∗ denote the projected points, then with probability at least 1 − δ over the choice of

projection,

(1− ǫ) ‖u− v‖2 d

n
≤ ‖u∗ − v∗‖2 ≤ (1 + ǫ) ‖u− v‖2 d

n
.

Large deviation bounds 92

Proof. Without loss of generality ‖u − v‖ = 1. Then ‖u∗ − v∗‖ has the same distribution

as ‖Y ∗‖ in Lemma 7. Applying that lemma with β = 1 − ǫ and β = 1 + ǫ and using the

inequalities ln(1− x) ≤ −x− x2/2 (for x ≥ 0) and ln(1 + x) ≤ x− x2/2 + x3/3 (for x ≥ 0),

we get

P(‖u∗ − v∗‖2 ≤ (1− ǫ)d/n) ≤ exp(−dǫ2/4),

P(‖u∗ − v∗‖2 ≥ (1 + ǫ)d/n) ≤ exp(−d(ǫ2/2− ǫ3/3)/2),

and the sum of these failure probabilities is at most δ.

The Johnson-Lindenstrauss lemma follows immediately by applying Lemma 8 to all
(m

2

)
pairs of distinct points and then taking a union bound.

93

Literature cited

Acid, S., de Campos, L.M., González, A., Molina, R. & Pérez de la Blanca, N. (1991)

Learning with CASTLE. In Symbolic and Quantitative Approaches to Uncertainty, Lec-

ture Notes in Computer Science 548, 99-106. Berlin: Springer-Verlag.

Alimonti, P. & Kann, V. (1997) Hardness of approximating problems on cubic graphs. Third

Italian Conference on Algorithms and Complexity, Lecture Notes in Computer Science

1203, Berlin: Springer.

Arora, S. & Lund, C. (1996) Hardness of approximations. In Approximation algorithms for

NP-hard problems, ed. D. Hochbaum. Boston: PWS.

Bellman, R.E. (1961) Adaptive control processes: a guided tour. Princeton: Princeton

University Press.

Basu, S. & Micchelli, C.A. (1998) Parametric density estimation for the classification of

acoustic feature vectors in speech recognition. Nonlinear Modeling, eds. J. Suykens and

J. Vandewalle. Boston: Kluwer.

Cheeseman, P. & Stutz, J. (1995) Bayesian Classification (AutoClass): Theory and Results.

Advances in Knowledge Discovery and Data Mining, eds. U. Fayyad, G. Piatetsky-

Shapiro, P. Smyth and & R. Uthurusamy. Menlo Park, CA: AAAI Press.

Chickering, D.M. (1996) Learning Bayesian networks is NP-complete. Learning from data:

AI and Statistics V, 121-130. New York: Springer.

Chow, C.K. & Liu, C.N. (1968) Approximating discrete probability distributions with de-

pendence trees. IEEE Transactions on Information Theory, 14:462-467.

Cooper, G. (1990) The computational complexity of probabilistic inference using Bayesian

belief networks. Artificial Intelligence, 42:393-405.

Cover, T.M. & Thomas, J.A. (1991) Elements of information theory. New York: John

Wiley.

Literature cited 94

Dagum, P. & Luby, M. (1993) Approximate probabilistic reasoning in Bayesian belief net-

works is NP-hard. Artificial Intelligence, 60:141-153.

Dasgupta, S. (1997) The sample complexity of learning fixed-structure Bayesian networks.

Machine Learning, 29:165-180. Boston: Kluwer.

Dasgupta, S. & Gupta, A. (1999) An elementary proof of the Johnson-Lindenstrauss lemma.

Technical Report 99-006, International Computer Science Institute, Berkeley.

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977) Maximum-likelihood from incomplete

data via the EM algorithm. J. Royal Statist. Soc. Ser. B, 39:1-38.

Diaconis, P. & Freedman, D. (1984) Asymptotics of graphical projection pursuit. Annals

of Statistics, 12:793-815.

Duda, R.O. & Hart, P.E. (1973) Pattern Classification and Scene Analysis. New York:

John Wiley.

Dudley, R.M. (1979) Balls in Rk do not cut all subsets of k + 2 points. Advances in

Mathematics, 31:306-308.

Durrett, R. (1996) Probability: Theory and Examples. Belmont, CA: Duxbury.

Edmonds, J. (1967) Optimum branchings. Journal of Research of the National Bureau of

Standards, 71B(4):233-240.

Feder, T. & Greene, D. (1988) Optimal algorithms for approximate clustering. ACM Sym-

posium on Theory of Computing.

Feller, W. (1966) An Introduction to Probability Theory and its Applications, vol. II. New

York: Wiley.

Frankl, P. & Maehara, H. (1988) The Johnson-Lindenstrauss lemma and the sphericity of

some graphs. Journal of Combinatorial Theory Ser. B, 44:355-365.

Friedman, N. (1997) Learning Bayesian networks in the presence of missing values and

hidden variables. International Conference on Machine Learning.

Freund, Y. & Mansour, Y. (1999) Estimating a mixture of two product distributions. ACM

Conference on Computational Learning Theory.

Geiger, D., Paz, A. & Pearl, J. (1990) Learning causal trees fron dependence informa-

tion. Proceedings of the Eighth National Conference on Artificial Intelligence, 770–776.

Cambridge: AAAI Press.

González, T.F. (1985) Clustering to minimize the maximum intercluster distance. Theoret-

ical Computer Science, 38:293-306. North-Holland.

Gupta, A. (1999) Embedding tree metrics into low dimensional Euclidean spaces. ACM

Literature cited 95

Symposium on Theory of Computing.

Haussler, D. (1992) Decision-theoretic generalizations of the PAC model for neural net and

other learning applications. Information and Computation, 100:78-150.

Hochbaum, D.S. & Shmoys, D.B. (1985) A best possible heuristic for the k-center problem.

Mathematics of Operations Research, 10(2):180-184.

Höffgen, K.-U. (1993) Learning and robust learning of product distributions. Proceedings

of the Sixth Annual ACM Conference on Computational Learning Theory, 77-83.

Horn, R.A. & Johnson, C.R. (1985) Matrix Analysis. Cambridge University Press.

Jaakkola, T. & Jordan, M. (1999) Variational probabilistic inference and the QMR-DT

network. Journal of Artificial Intelligence Research, 1:1-15.

Jelinek, F. (1997) Statistical methods for speech recognition. Cambridge: MIT Press.

Johnson, W.B. & Lindenstrauss, J. (1984) Extensions of Lipschitz mapping into Hilbert

space. Contemp. Math., 26:189-206.

Kaelbling, L.P. & Ortiz, L. (1999) Accelerating EM: an empirical study. Uncertainty in

Artificial Intelligence.

Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R. & Sellie, L. (1994) On the

learnability of discrete distributions. ACM Symposium on Theory of Computing.

Kearns, M.J. & Vazirani, U.V. (1994) An Introduction to Computational Learning Theory.

Cambridge: MIT Press.

Kettenring, J. & Pregibon, D., eds. (1996) Statistics and Massive Data Sets, Report to the

Committee on Applied and Theoretical Statistics, National Research Council, Washing-

ton, DC.

Lauritzen, S. (1996) Graphical models. Oxford: Oxford University Press.

Lauritzen, S. & Spiegelhalter, D. (1988) Local computations with probabilities on graphical

structures and their application to expert systems. Journal of the Royal Statistical

Society, Series B, 50:157-224.

Lewis, D.D. (1996) Challenges in machine learning for text classification. Proceedings of the

Ninth Annual Conference on Computational Learning Theory, New York: ACM Press.

David Lewis’ homepage, www.research.att.com/˜lewis, can be consulted for details on

the Reuters data set.

Lindsay, B. (1995) Mixture Models: Theory, Geometry, and Applications. American Statis-

tical Association, Virginia.

Longsworth, L.G. (1942) Recent advances in the study of protein by electrophoresis. Chem-

Literature cited 96

ical Review, 30:323-340.

Meilă, M. & Heckerman, D. (1998) An experimental comparison of several clustering meth-

ods. Microsoft research technical report MSR-TR-98-06.

Motwani, R. & Raghavan, P. (1995) Randomized algorithms. New York: Cambridge Uni-

versity Press.

Pach, J. & Agarwal, P. (1995) Combinatorial Geometry. Wiley.

Papadimitriou, C. & Yannakakis, M. (1991) Optimization, approximation, and complexity

classes. Journal of Computer and System Sciences, 43:425-440.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems. San Mateo, CA: Morgan

Kaufmann.

Pearson, K. (1894) Contributions to the mathematical theory of evolution. Phil. Trans.

Royal Soc. Ser. A, 185:71-110.

Petrov, V.V. (1995) Limit Theorems of Probability Theory. New York: Oxford University

Press.

Rabiner, L. (1989) A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257-285.

Redner, R.A. & Walker, H.F. (1984) Mixture densities, maximum likelihood and the EM

algorithm. SIAM Review, 26(2):195-239.

Russell, S., Binder, J., Koller, D. & Kanazawa, K. (1995) Local learning in probabilis-

tic networks with hidden variables. Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence. Los Altos, CA: William Kaufmann.

Seymour, P.D. (1995) Packing directed circuits fractionally. Combinatorica, 15(2):281-288.

Shwe, M., Middleton, B., Heckerman, D., Henrion, M., Horvitz, E., Lehmann, H. & Cooper,

G. (1991) Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR

knowledge base I. Methods of Information in Medicine, 30:241-255.

Titterington, D.M., Smith, A.F.M. & Makov, U.E. (1985) Statistical Analysis of Finite

Mixture Distributions. London: John Wiley.

Valiant, L. (1984) A theory of the learnable. Communications of the ACM, 27:1134-1142.

Xu, L. & Jordan, M. (1996) On convergence properties of the EM algorithm for Gaussian

mixtures. Neural computation, 8:129-151.

