
Bypassing the Embedding

Algorithms for Low Dimensional Metrics

Kunal Talwar
∗

Computer Science Division
University of California, Berkeley

kunal@cs.berkeley.edu

ABSTRACT
The doubling dimension of a metric is the smallest k such
that any ball of radius 2r can be covered using 2k balls of ra-
dius r. This concept for abstract metrics has been proposed
as a natural analog to the dimension of a Euclidean space.
If we could embed metrics with low doubling dimension into
low dimensional Euclidean spaces, they would inherit sev-
eral algorithmic and structural properties of the Euclidean
spaces. Unfortunately however, such a restriction on dimen-
sion does not suffice to guarantee embeddibility in a normed
space.

In this paper we explore the option of bypassing the em-
bedding. In particular we show the following for low dimen-
sional metrics:

• Quasi-polynomial time (1+ε)-approximation algorithm
for various optimization problems such as TSP, k-median
and facility location.

• (1 + ε)-approximate distance labeling scheme with op-
timal label length.

• (1+ε)-stretch polylogarithmic storage routing scheme.

Categories and Subject Descriptors: F.2.2: Computa-
tions on discrete structures; Routing and layout

General Terms: Algorithms, Theory.

Keywords: Distance Labels, Doubling Metrics, PTAS, Rout-
ing Schemes, TSP.

1. INTRODUCTION
Starting with the seminal work of Linial, London and Ra-

binovich [34], the confluence of the rich mathematical theory
of metric spaces and theoretical computer science has proved
very fruitful for both fields. Metric embeddings have proved

∗Research partially supported by the NSF via grants CCR-
0121555, CCR-0105533 and ITR grant 331494.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

to be extremely useful tools for algorithm design, apart for
being beautiful mathematical objects in their own right.

One of the motivations for embedding a metric space into,
say, a Euclidean space is to use the simple and well stud-
ied properties of the Euclidean space for algorithm design.
However, there are metrics which require a logarithmic dis-
tortion for such an embedding.

Restrictions on the geometry have been proposed in var-
ious contexts, as a metric analog to the low dimension of a
normed space. The doubling dimension of a metric is the
smallest k such that any ball of radius 2r can be covered by
2k balls of radius r. Following [24], we say a family of metrics
is doubling if it has constant doubling dimension. Euclidean
metrics of dimension k have doubling dimension Θ(k), and
the definition is robust to constant factor distortions (see
Proposition 3). Moreover, submetrics of a metric have a
smaller dimension and this notion generalizes the growth
restriction assumption in [28] ([24] Prop. 1.2). Such low
dimension restrictions are natural in several practical ap-
plications such as peer-to-peer networks (see e.g. [36]) and
data analysis (where the input data lies on a low dimensional
manifold [42]).

If we could, for example, embed a doubling metric into a
low dimensional Euclidean space with a small distortion, we
would be able to exploit the well studied structural and al-
gorithmic properties of these spaces. However, as shown by
Laakso [32], Lang and Plaut [33] and by Gupta, Krauthgamer
and Lee [24], these restrictions do not suffice to ensure low
distortion embeddings into Euclidean spaces.

In this work, we explore the option of bypassing the em-
bedding step. A restriction on the doubling dimension itself
is sufficient in several cases to prove some nice properties of
the metric space. We show that this is the case for efficient
optimization, distance labels and compact routing schemes.

Our first result deals with approximation schemes for NP-
hard optimization problems on doubling metrics. For low
dimensional Euclidean metrics, such schemes are known for
several optimization problem; perhaps the most well-known
being the ones for the traveling salesman problem (TSP) due
to Arora [2] and Mitchell [35]. We extend the approximation
scheme for Euclidean TSP to arbitrary doubling metrics. As
one would expect, the techniques extend to a host of other
optimization problems such as k-median, facility location
and steiner tree.

Unfortunately, the dependence on the dimension is worse
than in the Euclidean case, and we are only able to show a
quasi-polynomial time approximation scheme (with running

281

time 2(log n)O(d)
for constant ε). We leave open the question

of whether this dependence in necessary; if e.g. the traveling
salesman problem is Max-SNP hard on any family of met-
rics with doubling dimension O(log n/ log log n), that would
be strong evidence of the inherence of quasipolynomiality.
At the same time, our results suggest that these optimiza-
tion problems are unlikely to be Max-SNP hard on doubling
metrics.

Next we look at some problems in compact representa-
tions of metrics. In the the distance labeling problem, we
want to assign labels to vertices of a metric X so that the
distance between any pair of vertices can be approximated
by inspecting their labels, without any additional informa-
tion. We show how to assign O(log ∆) bit labels to points
in a doubling metric (where ∆ = dmax

dmin
is the aspect ratio of

the metric), so that the distances can be estimated within
a multiplicative error of (1 + ε). The dependence on the
doubling dimension is exponential, and we show that such
a dependence is in fact inevitable. Note that for a normed
space, the coordinates themseleves serve as distance labels
of size O(d log ∆). This points to the richness of doubling
metrics, as compared to low dimensional normed spaces.

We also show an efficient routing scheme for graphs that
induce doubling metrics. Our scheme requires only polylog-
arithmic storage at each node and routes on paths that are
guaranteed to be no longer than (1 + ε) times the shortest
path. This contrasts with general networks where a polyno-
mial storage is necessary to get any constant bound on the
stretch [39]. Our routing scheme is stack based and requires
stacks of logarithmic depth.

1.1 Techniques
A crucial ingredient of our algorithms is a split-tree, which

gives a hierarchical decomposition of the metric. We show
how to get such a decomposition with several desirable prop-
erties, much like the (randomly shifted) grid in Euclidean
spaces. Another property of doubling metrics we repeatedly
use is the existence of a small nets (see definition below)
which play a role similar to grid points in Euclidean algo-
rithms. In fact, several known results for Euclidean metrics
can be easily generalized to doubling metrics using the above
substitutions! (E.g. some recent results in [27, 25]).

We reinterpret our (and previous) approximation schemes
in terms of probabilistic embeddings into low tree width
graphs. This unified view leads to derandomization of the
approximation schemes.

We also show how to construct a well-separated pair de-
composition of a doubling metric. A pair of sets (A,B) is
called well-separated if the distance between A and B is
much larger than the diameters of A and B. A well-separted
pair decomposition consists of (a small number of) well sep-
arated pairs, such that any pair of points is represented in
some pair of sets. We show how such well-separated pairs
can be used to compactly represent the distance information
in the the metric. Our techniques seem new and may be of
independent interest.

1.2 Related Work
The definition of doubling dimension is due to Gupta,

Krauthgamer and Lee [24] and inspired by a definition due
to Assouad [6]. A closely related definition was previously
studied by Clarkson [15]. Karger and Ruhl [28] studied a
stonger notion of growth restriction.

Efficient nearest neigbour algorithms for under such re-
strictions have been studied by Clarkson [15], Karger and
Ruhl [28], Hildrum et.al. [26] and Krauthgamer and Lee [30,
31].

Approximation schemes for various optimization problems
on Euclidean metrics have been studied, e.g. in [2, 35, 3,
5, 41, 29]. For more details on approximation schemes for
Euclidean metrics, see the recent survey by Arora [4].

Distance labels were first studied by Peleg [38], and fur-
ther work has appeared in [22, 20, 21]. Gavoille et.al. [22]
showed several lower bounds on the lengths of such labels,

e.g. Ω(n) for general graphs, Ω(log2 n) for trees and Ω(n
1
3)

for planar graphs. The relevance of distance labeling schemes
for communication networks has been discussed in [38]. Some
potential applications that have been suggested are “memory-
free” routing, bounded broadcast protocols and topology up-
date mechanisms.

On the other hand, distance labels fall into the general
class of compact graph representation problems, and approx-
imate distance oracles have been studied, amongst others by
Thorup and Zwick [43]. Such oracles for the geometric set-
ting have been explored in [23]. Compact routing schemes
have been widely studied, e.g. [39, 7, 8, 16, 17, 44]. For a
general overview of efficient routing schemes, see [37].

2. DEFINITIONS AND PRELIMINARIES
We first define some terms and notation used, and show

some simple properties of doubling metrics.
A metric (X, d) is a set X endowed with a distance func-

tion d : X ×X → �0, satisfying d(x, x) = 0, symmetry and
triangle inequality.

The neighbourhood B(x, r) of a point x ∈ X for a real
number r is the set {y ∈ X : d(x, y) ≤ r}. The doubling
dimension of a metric (X, d) is the smallest constant kX
such that any neighbourhood B(x, 2r) is contained in the
union of at most 2kX neighbourhoods B(yi, r). We shall
often refer to kX as the dimension and denote it by k when
X is obvious from context. We say a family of metrics is
doubling if there is a constant C such that kX ≤ C for every
X in the family.

For a finite subset Y ⊆ X, the aspect ratio of Y is defined

to be
maxy,y′∈Y d(y,y′)
miny,y′∈Y d(y,y′) .

An r-cover of X is a set of points Y such that for any point
x ∈ X, there is a point y ∈ Y such that d(x, y) ≤ r. A set of
points Y is an r-packing if for any y, y′ ∈ Y , d(y, y′) > 2r.

We say a set Y is an r-net in X if it is both an r-cover of X
and an r

2
-packing. Note that such a net can be constructed

greedily, since any minimal r-cover is an r-net.

Preliminaries. We shall be using the following important
property of doubling metrics, proved in [24]:

Proposition 1
Let (X, d) be a doubling metric and Y ⊆ X with aspect

ratio ∆. Then |Y | ≤ 2kX ·�log2 ∆�.

Proof. (sketch) Recursively apply definition.

An approximate converse of the above is proved, e.g. in
[31].

Proposition 2
Let (X, d) be a doubling metric. Then there is a subset
Y ⊆ X with aspect ratio 4 such that |Y | ≥ 2kX .

282

Proof. (sketch) By definition, there is a ball B(x, 2r)
that requires 2kX balls B(yi, r) to be covered. The points
yi satisfy the required property.

The last two propositions thus give an approximately equiv-
alent definition of doubling dimension: A metric has dou-
bling dimension O(k) if and only if the largest 4-uniform
submetric is of size 2k. This also leads to an O(n22kX log ∆)
time algorithm (based on greedy k-center approximation) for
approximating the doubling dimension of any metric.

We can now derive the following robustness property of
the doubling dimension:

Proposition 3
[Robustness] Let (X, d) and (Y, d′) be metric spaces such
that there is a bijective map f : X → Y satisfying d(x1, x2) ≤
d′(f(x1), f(x2)) ≤ D · d(x1, x2). Then kY ≤ 2kX · �log 4D�.

Proof. By proposition 2, it suffices to show that any sub-
metric Z in (Y, d′) with aspect ratio 4 has at most 2kX ·�log 4D�

points. By the bilipschitz condition, the preimage f−1(Z)
in X has aspect ratio 4D. By proposition 1, the claim fol-
lows.

This implies that distortion roughly preserves doubling
dimension. Hence a distorted version of a 2 dimensional
Euclidean metric has constant doubling dimension.

3. RANDOMIZED SPLITTREES
An important ingredient of our results is the construction

of a split-tree, which plays a role analogous the the shifted
quadtree in Euclidean spaces.

A decomposition of the metric X is a partitioning of X into
subsets, which we call clusters. A hierarchical decomposition
is a sequence of decompositions P0,P1, . . . ,Pl, such that
every cluster in Pi is the union of clusters in Pi−1. Given
such a decomposition, the clusters in Pi are referred to as
level i clusters. A complete hierarchical decomposition will
be one where Pl = {X} and P0 = { {x} : x ∈ X}, i.e. the
level l cluster is the whole metric and each point is its own
level 0 cluster.

A split-tree of the metric stems naturally from a complete
hierarchical decomposition - the root node corresponds to
the single level l cluster X and the children of a level i cluster
are the level (i − 1) clusters comprising it. The leaves are
the singletons.

We shall show how to construct a complete hierarchical
decomposition (split-tree) with the following properties:

(1) The number of levels is δ + 2.

(2) Each level i cluster has diameter at most 2i+1

(3) Each level i cluster is the union of at most 2O(k) level
(i− 1) clusters.

(4) For any pair of points (u, v) the probability that u and

v fall in different level i clusters is at most O(k)· d(u,v)

2i .

We note that for points in �k, the shifted quadtree has
all the above properties.

Algorithm. We now describe our algorithm for this hier-
archical decomposition. This is close to the decomposition
algorithm used in [24], and is based on techniques used in
[12, 18, 19].

1

2

3

4

5

6

7

8

Figure 1: A sample decomposition. The dark points
are in Yi and the circled dark points in Yi+1. The
numbers indicate the permutation π.

Without loss of generality, the smallest distance in the
metric is 1, and let ∆ = 2δ be the diameter. We first con-
struct a nested sequence X = Y0 ⊇ Y1 ⊇ Y2 . . . ⊇ Yδ of sets
such that Yi is a 2i−2-net of Yi−1. It follows, by triangle
inequality that Yi is then a 2i−1-cover of X, and still a 2i−3-
packing. Given this sequence of sets, the algorithm works
as follows.

Algorithm Decompose
1. Pick ρ uniformly at randmom in [1

2
, 1)

2. Pick a random permutation π of X
3. Let Pδ+1 = {X}.
4. For i = δ downto 0
4.1 Let ri = 2iρ.
4.2 For each cluster Cl ∈ Pi+1

4.2.1 For each y ∈ Yi, define a new level i cluster
Cy
l = {x ∈ Cl : x ∈ B(y, ri) and
(∀z ∈ Yi : π(z) < π(y))[x �∈ B(z, ri)]}

In words, at level i each point in Yi comes in order of π
and cuts out a cluster Cy

l consisting of all unassigned points
in a ball of radius ri around it. See figure 1.

Properties. Since Yi is a 2i−1-cover of X and ri ≥ 2i−1,
each x ∈ X is contained in some B(y, ri) and hence the
clustering Pi defines a partitioning of X. By constuction
this partitioning is hierarchical. Moreover, since r0 < 1,
the lowest level clusters are singletons. Each level i cluster
has radius at most 2i and hence diameter no more than 2i+1.
Thus we get a complete hierarchical clustering satisfying (1)
and (2).

Consider a level (i + 1) cluster Cj ⊆ B(z, 2i+1) for some
z. Any y ∈ Yi such that B(y, 2i) ∩ Cj is nonempty must
satisfy d(y, z) ≤ 3 · 2i. Moreover, Yi is a 2i−3 packing. By
proposition 1, there can be at most 12k such y’s. Since each
level i cluster in Cj is centered at some such y, property (3)
follows.

Property (4) requires a slightly longer argument. It fol-
lows from arguments in [18, 19, 24]; we sketch a proof here.
Consider a pair of points u, v ∈ X. Let us arrange the
points in Yi in increasing order of min{d(u, y), d(v, y)}, say
y1, y2, ...,. We say y cuts the pair (u, v) if exactly one of u
and v falls in B(y, ri) and B(z, ri) ∩ {u, v} is empty for all
z satisfying π(z) < π(y). For yj to cut (u, v), ri must fall

283

in [d(y, u), d(y, v)] and conditioned on this, π(yj) should be
smaller than π(yk) whenver k < j. Thus the probability the

yj cuts (u, v) is at most (d(u,v)

2i−1)(1
j
). Moreover, assuming

w.l.o.g. d(u, v) ≤ 2i, by proposition 1, the number of yj ’s
that lie within distance 2i of (u, v) is at most 12k. Hence
the overall probability of (u, v) being cut is at most

12kX

j=1

Pr[yj cuts (u, v)]

≤
12kX

j=1

(
d(u, v)

2i−1
)(

1

j
)

≤ O(k)
d(u, v)

2i

Theorem 4
The algorithm described above results in a split-tree satis-
fying properties (1)-(4).

4. APPROXIMATION SCHEMES

4.1 The traveling salesman problem
In this section, we outline the approximation scheme for

the traveling salesman problem on doubling metrics. The
algorithm is a divide and conquer algorithm, along the lines
of the algorithm for Euclidean spaces given by Arora [2].
The split tree decomposition replaces the quadtree decom-
position used in the previous algorithms. The Euclidean
algorithms use points on a the lower dimensional boundary
of the clusters as portals. We instead use points in a suitably
fine cover of the clusters as portals.

Let T be a split tree decomposition with depth δ = log ∆
and a degree K at each node. For each cluster A in the tree,
let NA be a set of portals. We say a tour is portal respecting
if it enters and leaves A only through points in NA. We
say a tour is r-light if it crosses the boundary of A at most
r times. We first show how to compute the best r-light
portal respecting tour with respect to a split tree and a set
of portals. This is a dynamic programming algorithm, along
the lines of [2]. We call a tour (path) valid with respect to a
split tree and a set of portals, if it is both r-light and portal
respecting. We call a set of paths valid if each path in the
set is valid. We say a collection of paths is A-spanning if
each point in A is visited by at least one of the paths.

The dynamic program Consider a node A in the decom-
position. Any valid tour enters and leaves the set A at most
r times and does so only at portals. Thus the part of the
tour in A consists of an A-spanning valid collection of at
most r paths, starting and ending at portals. Let (si, ei) be
the starting and ending points of the rth segment. A con-
figuration is defined to be a set of r such pairs of portals;
clearly there are atmost (NA)2r of them. Moreover, we have
the independence necessary for writing a dynamic program:
the portion of any optimum valid tour inside A is the opti-
mum A-spanning valid collection of upto r paths, for some
configuration C.

We now show how to compute, for a node A in the tree,
and for each of the |NA|2r configurations of entering/leaving
A, the optimum A-spanning valid collection of upto r paths
starting and ending at (si, ei). Let A1, . . . , AK be the chil-
dren of A in T , and suppose we have computed, for every

possible configuration Ci of Ai, the best Ai-spanning valid
collection of paths respecting configuration Ci.

Consider any combination C1, . . . , CK of configurations
for A1, . . . , AK respectively. To compute the best C respect-
ing combination of C1, . . . , CK , we need to consider all ways
of stitching together all the path segments in the Ci’s to
get r C-respecting paths. This is essentially an instance of
the following problem: Given a weighted graph G and a set
of r pairs of points (si, ei), find the least cost G-spanning
collection of paths starting and ending at (si, ei). The path
segments in Ci’s are the internal vertices in G and there are
at most Kr of them. Thus this is an optimization problem
on a small graph and by enumerating all possibilities, we
can compute the optimal one in time (Kr)!.

Thus for a configuration C, we can try out each of the
combinations of the Ci’s and compute the optimal one in
time Πi|NAi |2r · (Kr)!. Assuming each NA is at most m,
this is at most (mKr)2Kr. The total number of table entries
is at most m2r, and there are only O(nδ) nodes in the tree.

Thus we get an overall running time of nδ(mKr)O(Kr).

Theorem 5
Given a split-tree decomposition with degree K and depth
δ and a set of upto m portals for each cluster, the best r-
light portal-respecting tour of X can be computed in time
nδ(mKr)O(Kr).

Structure Theorem. We now argue that for a suitable
choice of m and r, the expected cost of the best valid tour
is within (1 + ε) times the optimal tour.

We show how to convert any tour T to a valid tour T ′′, at
small expected cost, where the expectation is taken over the
randomness used in the decomposition. To get a valid tour,
we need to make the tour portal respecting, and r-light.
We do these in order. First consider an edge e = (u, v)
in the optimal tour T . The probability that u and v fall
in different level i clusters is at most kd(u, v)/2i. We shall
take a β · 2i net to be our set of portals in a level i clus-
ter. When u and v do fall in different level i clusters, we
need to adjust the tour so that it enters and leaves the
level i clusters at portals. Since the nearest portals to u
and v are at a distance at most β2i, the overhead of this
portalizing is at most 4β2i, and this is incurred with prob-
ability O(k)d(u, v)/2i. Thus the expected overhead is at
most

P
i k(d(u, v)/2i)4β2i = 4βkδd(u, v). Taking β = ε

4kδ
,

this is at most εd(u, v), and hence the overall expected cost
of the resulting portal respecting tour T ′ is no more than
(1 + ε)OPT . Note that the number of portals m is then
β−k = (4kδ/ε)k.

We now show how to convert T ′ to a r-light tour T ′′.
Unfortunately, unlike [3], we are currently unable to show
how to do this for a constant r. As a result our running
time is quasipolynomial (much like Arora’s first result [2]).
We also note that since we can only manage to make the
tour r-light for r ≈ m, the patching has little significance.
However, we hope the techniques used here may prove useful
in eventually getting a PTAS.

We first show the following simple lemma:

Lemma 6
(Small spanning trees lemma) Let Y be a collection of
r points and let L be the diameter of Y . Then the minimum

spanning tree on Y has cost no more than 4L · r1− 1
k .

Proof. We show how to construct a spanning tree of
small cost. The minimum spanning tree (MST) is only

284

cheaper. Consider the closest pair of points (u, v) in X.
We shall add the edge (u, v) and recurse on V \ {u}. We
now show that the closest pair of points should be close.

By the doubling property, Y can be covered by 2k balls of
diameter L/2, and recursing, by 2ik balls of diameter L/2i.
For i = �(1

k
log2 r)� − 1, this means that Y can be covered

by (strictly) less than r balls of diameter L/2i = 2L · r− 1
k .

Thus by the pigeonhole principle, the closest pair of points

is closer than 4L · r− 1
k .

Thus, if f(r) is the worst MST cost for r points, we have

shown that f(r) ≤ f(r−1)+4Lr−
1
k . The claim follows.

We now use the patching lemma from [2]. Consider any
tour that crosses a set A, r′ times. The patching lemma
shows that number of crossings can be reduced to 2, at an
additional cost of 4MSTr′ , where MSTr′ is an upper bound
on the cost of the minimum spanning tree on r′ points in A.
Let rA be the number of times the tour T ′ crosses the set
A. Whenever, rA > r, we reduce the number of crossings to
2, by using the patching lemma. The cost of this is at most

8LA · r1−
1
k

A , where the diameter of A is L. We do this for all
sets A in the tree. The total cost of this is

X

A∈T

8LA · r1−
1
k

A =
δX

i=1

X

A at level i

8LA · r1−
1
k

A

≤ 8

δX

i=1

X

A at level i

2irA · r−
1
k

= 8
δX

i=1

2ir−
1
k

X

A at level i

rA

Each edge (u, v) in T , in expectation, contributes kd(u, v)/2i

to the number of level i crossings. Thus the expected num-
ber of level i crossings is at most kOPT/2i. Note that the
patchings can be done in a top down manner and patching
inside a set A does not affect the tour outside A, and thus
cannot possibly increase the number of crossings. More-
over, the patching at level i does not increase the number
of crossings at level (i − 1) or smaller. Thus the expected

cost of patching is at most
Pδ

i=1(2ir−
1
k) · (kOPT/2i) =

(δkr−
1
k)OPT . Taking r = (δk/ε)k, we get a tour T ′′ with

expected cost at most (1 + ε)OPT .

Theorem 7
Given a tour τ on n points in (X, d) and a random split-tree,
if m ≈ r ≈ (kδ/ε)k, there is a valid tour τ ′′ such that

E[cost(τ ′′)] ≤ (1 + ε)cost(τ)

where the expectation is taken over random choice of the
split-tree.

Finally, we show how to bound δ. Let us first scale the
metric so that the diameter is n/ε. Now consider a 1-net Y
of X, and consider a new instance defined by Y . Note that
the optimum of this new instance is only smaller. We shall
approximate this instance to within (1 + ε). It is easy to
see that given a tour of Y , a tour of X can be derived at an
additional overhead of at most 2n. Since OPT is at least the
diameter of X, this overhead is at most 2εOPT , and hence
we get a (1+O(ε))-approximation to the traveling salesman
problem on X.

The net, on the other hand, has aspect ratio n/ε and
hence δ for this instance is log(n/ε). Since we require m ≈
r ≈ (kδ/ε)k, the overall running time can be bounded by

n(k log(n/ε)/ε)O((k log(n/ε)/ε)k) = n2(
k log n

ε
)O(k)

.

Theorem 8
There is a randomized algorithm that, with high probability,
computes a tour of cost at most (1 + ε) times the optimum

traveling salesman tour and runs in time n2(
k log n

ε
)O(k)

4.2 Derandomization via small sample space
In this section, we show how to derandomize the above

algorithm by enumeration. To this end, we first show how
to implement the randomized split-tree decomposition using
very little randomness.

The algorithm in section 3 uses randomness at two places:
in choosing the value ρ and in choosing the random permuta-
tion π. Since there are

�
n
2

�
distances in the metric, there are

at most that many relevant values of ρ and hence O(log n)
bits of randomness suffice to pick ρ.

The permutation π requires a little more work. A look at
the proof of property (4) in section 3 shows that a sufficient
condition for the argument to hold is that for any set Z ⊆ X,
|Z| ≤ 12k and any fixed z ∈ Z,

Prπ[minw∈Z{π(w)} = π(z)] =
1

|Z|

Let K = 12k. It is easy to see that if we use K-wise inde-
pendent random 0-1 strings of length O(log n) to generate
π 1, this property is guaranteed.

Moreover, we can afford to lose a constant factor in the
separation probability in property (4). Thus it suffices to
ensure that for any set Z ⊆ X, |Z| ≤ K and any fixed z ∈ Z,

Prπ[minw∈Z{π(w)} = π(z)] ≤ 2

|Z|

This is precisely the notion of approximate restricted min-
wise independent family of permutations studied in [11].
They show how to construct such families using only O(K+
(logK log log n)) random bits.

Thus we have shown how to implement the split-tree de-
composition using only O(log n+K+logK log log n) bits of
randomness. Thus enumerating over all possible coin tosses
gives us a deterministic algorithm with only a polynomial
overhead in running time.

4.3 Probabilistic Embeddings and Derandom-
ization

In this section, we interpret the approximation scheme
above in a different light, leading to a different approach to
derandomization. We first define the notion of a probabilis-
tic embedding [1, 9].

Definition 1 Given a metric (X, d), we say a distribution
D over metrics α-probabilistically approximates d if for ev-
ery x, y ∈ X,

• For every metric d′ ∈ D, d′(x, y) ≥ d(x, y)

• Ed′∈D[d′(x, y)] ≤ α · d(x, y).

1i.e. pick a string for each vertex; π is determined by the
sorted order of these strings; w.h.p. there are no ties.

285

A graph G has tree-width at most κ if the vertices of
G can be decomposed into a tree-like structure of sets of
vertices, with each set having cardinality at most κ + 1.
More formally,

Definition 2 A tree-decomposition of a graph G is a pair
(T,X), where T is a tree and X = (Xt, t ∈ V (T)) is a family
of subsets of V (G) with the following properties:

1. ∪t∈V (T)Xt = V (G)

2. For every edge e = (x, y) ∈ E(G) there exists t ∈ V (T)
such that x, y ∈ Xt

3. for t, t′, t′′ ∈ V (T), if t′ is on the path of T between t
and t′′ then Xt ∩Xt′′ ⊆ Xt′ .

The width of the tree-decomposition (T,X) is defined to
be maxt∈V (T)(|Xt| − 1).

The tree width of a graph is the minimum possible width
of a tree decomposition of the graph. Note that under this
definition, the family of tree width 1 graphs is exactly the
family of trees.

We say a metric d′ is a tree width κ-metric if it is the
shortest path metric on a graph of tree width at most κ.
We now show the following:

Theorem 9
Let (X, d) be a metric with doubling dimension k and aspect
ratio ∆ = 2δ. Given any ε > 0, (X, d) can be (1 + ε) proba-
bilistically approximated by a family of tree width κ-metrics
for κ ≤ 2O(k)�(4kδ

ε
)k�.

Proof. We first construct the split-tree decomposition as
in the section 3. We pick a suitably fine cover of each cluster
in this decomposition, and use only these points (portals) to
connect the points inside the cluster to points outside the
cluster. More precisely, start with a complete graph on X
and delete an edge leaving a cluster C unless its endpoint
inside the cluster is a portal. If we had m portals per cluster,
and maximum degree K in the split-tree, we would end up
with a graph with tree width at most mK. Moreover, since
this graph has been formed by deleting some edges from
a graph representing the original metric, the distances can
only increase.

The argument about the expected distortion being (1+ ε)
closely mimics the portalizing cost analysis in the TSP sec-
tion. We omit the details from this extended abstract.

The traveling salesman problem (and several other opti-
mization problems) can be solved using dynamic program-
ming in time polynomial in n and κκ on graphs of tree width
κ. Moreover, as argued in [9, 10, 19], an α-probabilistic em-
bedding couple with an exact algorithm for metrics from the
host space leads to an efficient randomized α-approximation
algorithm for the original metric. This gives an alternate
view of the quasi-polynomial approximation scheme for the
traveling salesman problem.

Derandomization This also leads to an alternate way to
derandomize the approximation scheme along the lines of
Charikar et.al. [14]. The idea is to obtain a distribution over
a small number of low tree width metrics. Thus enumerating
over all trees in the support gives a deterministic algorithm.

First note that the problem of probabilistically embed-
ding a metric (X, d) into a family L of metrics (such that

d′(x, y) ≥ d(x, y) for all x, y ∈ X, for all d′ ∈ L) can be writ-
ten as the following linear program (with infinitely many
variables)

minimize α

subject to
X

d′∈L
pd′d

′(x, y) ≤ α · d(x, y) ∀x, y ∈ X

X

d′∈L
pd′ = 1

pd′ ≥ 0 ∀d′ ∈ L
Since the above program has only n2 + 1 constraints, it

follows that there exists a solution with small support. This
problem can also be looked at as a packing problem and thus
the linear programming solution can be well approximated
using the techniques of Plotkin, Shmoys and Tardos [40].
Charikar et.al. [14] show how to adopt the PST algorithm
to give a distribution over O(n log n) metrics, if one is given
a subroutine to solve the following dual problem:

Dual problem: Given metric (X, d) and weights wxy on
pairs of vertices, find a metric d′ from the family L such
that

P
x,y∈X wxy · d′(x, y) ≤ α

P
x,y∈X wxy · d(x, y).

The algorithm outlined in the proof of theorem 9 gives a
randomized algorithm for the above problem, which can be
easily derandomized via the method of conditional expecta-
tion (see e.g. [12, 18, 19]).

4.4 Other problems
We note that the same techniques used here apply to other

optimization problems as well. The minimum steiner tree
problem has an approximation scheme similar to the one for
traveling salesman above, with a quasipolynomial running
time. The dynamic program for k-median and facility loca-
tion problems proceeds along the lines of Arora, Raghavan
and Rao [5], and gives a similar running time. We omit the
details from this extended abstract.

5. WELL-SEPARATED PAIRS
Consider a metric with aspect ratio ∆ = 2δ , and assume,

without loss of generality, that the smallest distance is at
least 1. We assume we are given a split-tree as obtained in
section 3. 2

Let T be a split tree for X. Note that T is a tree with
nodes labeled by subsets of X, with singletons at the leaves,
and the set X at the root. Recall that a cluster A at level
i has diameter at most 2i+1. For any node A in the tree,
we shall let l(A) denote this upper bound on the diameter;
for a singleton, we set l({x}) = 0. We say a pair of clusters
{A,B} is t-well separated if d(A,B) ≥ t · max{l(A), l(B)}.

We now show how to obtain a well separated pairs decom-
position from this split tree decomposition. This follows an
argument similar to that for the Euclidean case used by
Callahan and Kosaraju [13].

We start by formally defining a well separated pair de-
composition. The definition uses a separation parameter t.

Definition 3 Let A and B be subsets of a metric X. The
interaction product of A and B is defined as

A⊗B = {{x, y} : x ∈ A and y ∈ B and x �= y}
2In fact, we only need properties (1)-(3) here, and a simple
deterministic construction suffices.

286

Note that X ⊗X is the set of all pairs of distinct points in
X.

Definition 4 A set {{A1, B1}, . . . , {As, Bs}} is said to be
a t-well separated pair decompostion of A⊗B if

1. Ai ⊆ A and Bi ⊆ B for i = 1, 2, . . . , s.

2. Ai and Bi are disjoint for each i.

3. (Ai ⊗Bi) and (Aj ⊗Bj) are disjoint for i �= j.

4. ∪s
i=1(Ai ⊗Bi) = A⊗B.

5. d(Ai, Bi) ≥ t · max{l(Ai), l(Bi)} for each i.

The algorithm is recursive.

Procedure Well-separate(A, B)
1. If {A,B} is t-well separated, the return {{A,B}}.
2. If A = B = {x} for some x ∈ X, return Φ.
3. Assume l(A) ≥ l(B) (swap if necessary).
4. Let A1, . . . , AK be the children of A in the tree T .
5. Return ∪i Well-separate(Ai , B)

It is easy to check that calling Well-separate(X,X) gives a
well separated pair decomposition D of X. Moreover, for
each pair {A,B} in D, both A and B are nodes in T . We
first show the following simple but useful proposition.

Proposition 10
If the algorithm above makes a call to Well-separate(A,B),
then

• 1
2
l(A) ≤ l(B) ≤ 2l(A).

• d(A,B) ≤ 2(t + 1) min{l(A), l(B)}.
Proof. We show the claim by induction on the depth of

the recursion. At the base, clearly the pair (X,X) satisfies
the two properties. Now assume that the pair (A,B) sat-
isfies the properties, and the algorithm splits A. Then we
shall show that for any a child A′ of A, (A′, B) satisfies the
property. First note that since we split A, we have l(A) ≥
l(B) and d(A,B) ≤ t · l(A). Since l(A′) = l(A)/2, we get
2l(A′) ≥ l(B). Inductively we have l(B) ≥ 1

2
l(A) = l(A′).

Thus the first property holds.
Moreover by triangle inequality, d(A′, B) ≤ d(A,B) +

l(A), since the diameter of A is at most l(A). Let l(A) = r.
Then d(A′, B) ≤ tr + r = (t + 1)r. Hence d(A′, B) ≤
2(t + 1) min{l(A′), l(B)}. Hence the claim.

We now argue that for each node A in the tree T , there
is a small number of B such that the pair {A,B} ∈ D. We
show something stronger.

Lemma 11
For any node A in T , the number of nodes B such that a call
to Well-separate(X,X) leads to a call to Well-separate(A,B)

is at most (c(t+ 3))(kX), for some universal constant c.

Proof. Consider a node A in T with l(A) = 2 · 2i =
r. From the previous proposition, each such B lies within
distance 2(t + 1)r from A. Moreover, l(B) ∈ [r/2, 2r] and
hence B is at level (i− 1), i or (i+ 1). Consider a particular
level. The centers of the B’s all come from Yi−1 and are
all at a distance closer than 2(t + 3)r from the center of A.
Thus by proposition 1, there are at most (16(t + 3))k such
B’s. Hence the claim.

Thus we have shown how to obtain a t-well separated
pair decomposition containing at most (c(t + 3))knδ pairs.
In the next section, we shall use this to construct compact
representations of the metric.

6. COMPACT REPRESENTATIONS

6.1 Approximate Distance Labeling
First note that for each pair {A,B} in the decomposi-

tion, d(A,B) is a (1 + 2
t
) approximation to the distance

between any pair (a, b) : a ∈ A, b ∈ B. Thus if {A,B} is
well separated, d(A,B) is a good estimate for d(a, b) for any
a ∈ A, b ∈ B.

Labels For a node A in the tree, we first describe how to
name it. The root has an empty string for its name. The
name of the ith child of a node A is formed by concatenating
the name of A with a binary representation of i. Note that
since each node has at most K = 2O(k) children, i can be
described using O(k) bits. Since the depth of the tree is δ,
we get a O(kδ) length name name(A) for each node. Note
that under this naming scheme, names of the ancestors of a
node are prefixes of its own name.

For a node A in the tree, let NA = {B : {A,B} ∈ D}.
We define sublabel(A) for each node A to contain the pair
(name(B),d(A,B)) for each node B in NA. Since each NA

has size tO(k), each node has a sublabel of O(ktO(k)δ) bits.
Thus if we stored for each x ∈ X, a label label(x) consisting
of the sublabels of each of the O(δ) sets it occurs in, we can
computea (1 + ε) approximation to the distance between a

and b given label(a) and name(b). This is an O(ktO(k)δ2)
length distance labeling.

Shorter Labels We now argue how to obtain even shorter
distance labels. We shall try to shrink the sublabels of each
node in the tree. Note first that for a pair (A,B) ∈ D, the
distance d(A,B) is at least t·l(A) by the separation property.
On the other hand by proposition 10, d(A,B) ≤ 2(t+1)l(A).
Thus d(A,B) lies in the interval [t · l(A), 4t · l(A)] (since

t ≥ 1). Hence, (d(A,B)
t·l(A)

) is a small constant, and can be

specified upto an error of (1+ ε) by using only O(log 1
ε
) bits.

Shrinking the identities of the sets in NA is more subtle,
and is done at a more global level. Since we cannot store the
whole name, we store in some sense, a trace or a transcript
of the run of the algorithm Well-separate. For each node
A, we argued that there are a constant number of nodes
B such that we called Well-separate(A, B). Now note that
from the run of the algorithm, it follows that if we ever call
Well-separate(A,B), then for some ancestor B′ of B (possi-
bly B itself), we must have called Well-separate(p(A), B′).
Moreover, from proposition 10, it follows that this ancestor
should be at most three levels above B. Thus, if we knew the
set of nodes B′ such that we called Well-separate(p(A), B′),
of which there are at most tO(k), we would get a set of at
most tO(k)K3 candidates for B such that we ever call Well-
separate(A, B) (where K = 2O(k) is the maximum degree
of any node in T). Thus, using a constant number of bits,

we can select the appropriate tO(k) nodes that are paired up
with A (say by storing the characteristic vector, with lexico-

graphic order on the tO(k)K3 nodes), and store the answer

for each. Thus storing O(tO(k)K3) bits for each sublabel of a
node suffices. Since k and t are constants, the overall label

287

length is then O(log ∆) for a doubling metric with aspect
ratio ∆.

Theorem 12
For a metric X with doubling dimension k and any ε > 0,
there exists a (1 + ε)-approximate distance labeling scheme
with label length ((c

ε
)kk log ∆

ε
) bits per node.

Corollary 13
For a metric as above, there is an (1 + ε)-approximate dis-
tance oracle with O(n(c

ε
)kk log ∆

ε
) bits of storage which can

answer approximate distance queries in timeO((c
ε
)kk log ∆

ε
).

6.2 Shortest Path Oracles
Consider the following problem: Given a graph G = (V,E)

with distances d on edges, preprocess the graph so that
shortest path queries can be quickly answered. On general
graphs, just computing the shortest path on demand using
Dijkstra’s algorithm leads to a O(m) sized data structure
where answering queries takes time O(m+ n log n). On the
other hand, by computing the all pair shortest paths, one
can construct an Õ(n2) size data structure to answer such

queries in Õ(l) time, where l is the number of hops in the
answer.

For graphs whose shortest path metric is doubling, we
show how to do better: we show a data structure of size
n(log n)O(1) that returns a (1+ε)-approximate shortest path

in time l(log n)O(1) time. When m = ω(n) or when l is o(n)
this significantly improves on the naive approaches above.

The basic idea is to augment the labels of the previous sec-
tion with some path information. More precisely, for well-
separated pair (A,B), let a,w1, w2, . . . , wp, b be the short-
est A-B path, where a ∈ A, b ∈ B and wi ∈ V \ (A ∪
B). We now augment the pair (name(B),d(A,B)) in sub-
label(A) with name(a), name(w1), name(wq), name(wq+1),
name(wp) and name(b), where q is chosen so that d(a,wq) ≤
d(A,B)

2
≤ d(a,wq+1).

To find the path from u ∈ A to v ∈ B, we

1. Recursively find a path from u to a.

2. Recursively find a path from w1 to wq.

3. Recuresively find a path from wq+1 to wp.

4. Recursively find a path from b to w.

5. Concatenate them appropriately.

We shall now show that this path has length no more than
(1 + ε) times the shortest path, for an appropriate choice of
the separation parameter t.

Lemma 14
Let t = 3δ

ε
for any 0 < ε < 1

2
. For any pair (u, v), the

procedure described above returns a path of length no more
than (1 + ε) times the shortest path.

Proof. We claim that for any u, v ∈ X, the path from u
to v returned by the above procedure has length atmost

d′(u, v) ≤ d(u, v)(1 +
3 log(d(u, v))

t
)

We shall establish this by induction on �log2 d(u, v)�. In the
base case, d(u, v) ≤ 1. So (u, v) must be a single edge and
the claim trivially holds.

Inductively, we know that the d′(u, a) and d′(b, v) are each

bounded by d(u,v)
t

(1 + 3 log(d(u,v)/t)
t

). Since t ≥ 6δ, we get

d′(u, a) + d′(b, v) ≤ 3d(u,v)
t

.
On the other hand, the selected paths from w1 to wq and

wq+1 to wp inductively have lengths at most (1+ 3 log(d(u,v)/2)
t

)
times their shortest distances. The total cost of the selected
path is

d′(u, v) ≤ d′(u, a) + d(a, v1) + d′(v1, vq) + d(vq, vq+1)

+d′(vq+1, vp) + d(vp, b) + d′(b, v)

≤ 3d(u, v)

t
+ d(a, v1) + d(v1, vq)

+d(vq , vq+1) + d(vq+1, vp) + d(vp, b)

+(1 +
3(log d(u, v)/2)

t
)(d(v1, vq) + d(vq+1, vp))

≤ d(u, v)(1 +
3 log d(u, v)

t
).

Hence the induction holds.
The claim follows by plugging in the value of t and noting

that the diameter of the metric is at most 2δ .

Plugging in the value of t in Lemma 11, we get O(nδ(3δ
ε

)k)
well separated pairs in all, leading to a data structure of to-
tal size O(nk(3 log ∆

ε
)k(log2 ∆)). Optimizing the parameters

(number of intermediate hops stored), we can improve the
bound to O(nk(6 log ∆

εk
)k(log2 ∆)).

Theorem 15
Given a weighted graph G = (V,E) inducing a metric with
doubling dimension k and aspect ratio ∆, it can be prepro-
cessed to give a data structure of size O(nk(6 log ∆

εk
)k(log2 ∆)),

such that (1 + ε)-approximate shortest paths can then be

computed in time Õ(l) time, where l is the number of hops
in the path output by the algorithm.

6.3 Compact Routing Schemes
Note that the scheme described in the previous section

is very local in nature. To route from u to v, we used
the augmented label of u and the name of v to figure out
a,w1, wq, wq+1, wp and b. Thus if each node in a network
stored its label, we can use a stack based routing protocol.
A node u, when it sees v on the top of the stack, pops it
out and pushes (v, b, wp, wq+1, wq, w1, a) onto the stack and
continues. If it has an edge to v, it just pops off v and send
the packet along the edge to v.

The maximum stack depth is easily seen to be O(log ∆)
(with each entry being a name of O(log ∆) bits). The amount
of routing information each node needs to store is only poly-
logarithmic. The stretch is guaranteed to be at most (1+ ε).

Theorem 16
Given a weighted graph G = (V,E) inducing a metric with
doubling dimension k and aspect ratio ∆ on V , there ex-
ists a routing scheme with stretch (1 + ε) that requires only
O(k(6 log ∆

εk
)k(log2 ∆)) bits of routing information per node,

and has O(k log2 ∆) bit headers.

This improves on a result of Thorup and Zwick [44] for

general graphs where they get stretch (2k − 1) and Õ(n
1
k)

storage per node for any integer k ≥ 2 (The minimum
stretch is thus 3).

288

6.4 Lower Bounds
We note that our distance labels have size exponential in

the doubling dimension k. We now show that this depen-
dence is necessary. Note that in contrast, for a d-dimensional
normed space, the coordinates (or rather, an appropriate
truncation) serve as approximate distance labels of length
linear in the dimension.

Theorem 17
For any k and any large enough n there exists an n-point
metric X with doubling dimension k such that any 2 − ε
approximate distance oracle requires storage Ω(n2k).

Proof. Consider the set of all 1-2 metrics over K = 2k

points, i.e. the set of all metrics on the set {1, 2, . . . , n} such
that d(i, j) = 1 or 2 for any i �= j. It is easy to check that
every distance function in this set is a metric. Moreover, the

number of such metrics is 2(K
2).

To get an asymptotic family with fixed doubling dimen-
sion, one can place such metric on a large line metric, i.e.
consider the metric over points [K]×[m], where d((i, j), (i′, j′)) =
M |j−j′| if j �= j′ and chosen from {1, 2} otherwise, for some
large enough M . The doubling dimension of this metric is
still k (while, it has n = Km points).

Now consider any (2−ε)-approximate distance oracle with
R bits of storage. The number of such oracles is 2R. Since
the distortion between any two distinct metrics in the orig-
inal class is 2, any (2 − ε)-distance labeling must result in
a distinct oracle for each metric in the class. Thus 2R ≥
2m(K

2), and hence R must be at least mK(K − 1)/2 =
Ω(n2kX).

Corollary 18
Any (2 − ε)-approximate distance labeling scheme requires
label length exponential in the doubling dimension.

Corollary 19
There exists a metric X such that any distortion (2 − ε)

embedding of X into :dp, must have d = 2Ω(kX).

Proof. Consider any such embedding of a 1-2 metric in
the previous theorem. It is easy convert it into an embedding
where each coordinate of each vertex has absolute value at

most 2. If we round each coordinate after log d
1
p

ε
bits, the

change in any distance is at most ε. Since this gives a (1+ε)-
approximate distance labeling with O(d log d) bits per label,
the claim follows.

7. CONCLUSIONS
We have shown that some important algorithmic and struc-

tural properties of Euclidean spaces are shared by doubling
metrics. What other properties of Euclidean spaces are
shared, and what properties depend intrinsically on the spa-
tial structure?

Our approximation scheme for the traveling salesman prob-
lem has a quasipolynomial running time. On the other hand,
the known algorithms for the TSP in d-dimensional Eu-

clidean metrics run in time O(n log n)+2
1
ε

O(d)
. Moreover as

shown be Trevisan [45], this doubly exponential dependence
on dimension in inherent, unless NP has subexponential al-
gorithms. Is our worse dependence on dimension necessary,
or can the algorithms above be modified to run faster?

8. ACKNOWLEDGEMENTS
I would like to thank Christos Papadimitriou, Satish Rao,

James Lee, Robert Krauthgamer and Santosh Vempala for
helpful discussions. I would also like to thank Sariel Har-
Peled and Piotr Indyk for making available preprints of [25]
and [27] respectively.

9. REFERENCES
[1] N. Alon, R. M. Karp, D. Peleg, and D. West. A

graph-theoretic game and its application to the
k-server problem. SIAM J. Comput., 24(1):78–100,
1995.

[2] S. Arora. Polynomial time approximation schemes for
Euclidean TSP and other geometric problems. In 37th
Annual Symposium on Foundations of Computer
Science, pages 2–11, Burlington, Vermont, 14–16 Oct.
1996. IEEE.

[3] S. Arora. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric
problems. J. ACM, 45(5):753–782, 1998.

[4] S. Arora. Approximation schemes for NP-hard
geometric optimization problems: a survey.
Mathematical Programming, 97(1–2):43–69, 2003.

[5] S. Arora, P. Raghavan, and S. Rao. Approximation
schemes for Euclidean k-medians and related
problems. In ACM Symposium on Theory of
Computing (STOC), 1998.

[6] P. Assouad. Plongements lipschitziens dans Rn. Bull.
Soc. Math. France, 111(4):429–448, 1983.

[7] B. Awerbuch, A. B. Noy, N. Linial, and D. Peleg.
Improved routing strategies with succinct tables. J.
Algorithms, 11(3):307–341, 1990.

[8] B. Awerbuch and D. Peleg. Routing with polynomial
communication-space trade-off. SIAM J. Discret.
Math., 5(2):151–162, 1992.

[9] Y. Bartal. Probabilistic approximation of metric
spaces and its algorithmic applications. In 37th
Annual Symposium on Foundations of Computer
Science, pages 184–193. IEEE, 1996.

[10] Y. Bartal. On approximating arbitrary metrices by
tree metrics. In 30th Annual ACM Symposium on
Theory of Computing, pages 161–168. ACM, 1998.

[11] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. Journal of Computer and System
Sciences, 60(3):630–659, 2000.

[12] G. Calinescu, H. Karloff, and Y. Rabani.
Approximation algorithms for the 0-extension
problem. In 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 8–16. SIAM, 2001.

[13] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. J.
ACM, 42(1):67–90, 1995.

[14] M. Charikar, C. Chekuri, A. Goel, S. Guha, and
S. Plotkin. Approximating a finite metric by a small
number of tree metrics. In Proceedings of the 39th
Annual Symposium on Foundations of Computer
Science, page 379. IEEE Computer Society, 1998.

[15] K. L. Clarkson. Nearest neighbor queries in metric
spaces. Discrete Comput. Geom., 22(1):63–93, 1999.

289

[16] L. J. Cowen. Compact routing with minimum stretch.
J. Algorithms, 38(1):170–183, 2001.

[17] T. Eilam, C. Gavoille, and D. Peleg. Compact routing
schemes with low stretch factor (extended abstract).
In Proceedings of the seventeenth annual ACM
symposium on Principles of distributed computing,
pages 11–20. ACM Press, 1998.

[18] J. Fakcharoenphol, C. Harrelson, S. Rao, and
K. Talwar. An improved approximation algorithm for
the 0-extension problem. In ACM-SIAM Symposium
on Discrete Algorithms. 2003.

[19] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight
bound on approximating arbitrary metrics by tree
metrics. In 35th Annual ACM Symposium on Theory
of Computing. ACM, 2003.

[20] C. Gavoille, M. Katz, N. A. Katz, C. Paul, and
D. Peleg. Approximate distance labeling schemes. In
Proceedings of the 9th Annual European Symposium
on Algorithms, pages 476–487. Springer-Verlag, 2001.

[21] C. Gavoille and D. Peleg. Compact and localized
distributed data structures. Distrib. Comput.,
16(2-3):111–120, 2003.

[22] C. Gavoille, D. Peleg, S. Perennes, and R. Raz.
Distance labeling in graphs. In ACM-SIAM
Symposium on Discrete Algorithms, pages 210–219,
2001.

[23] J. Gudmundsson, C. Levcopoulos, G. Narasimhan,
and M. Smid. Approximate distance oracles for
geometric graphs. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete
algorithms, pages 828–837. Society for Industrial and
Applied Mathematics, 2002.

[24] A. Gupta, R. Krauthgamer, and J. Lee. Bounded
geometries, fractals and low-distortion embeddings. In
Foundations of Computer Science, 2003.

[25] S. Har-Peled and S. Mazumdar. Coresets for k-means
and k-median clustering and their applications. In
These Proceedings, 2004.

[26] K. Hildrum, J. Kubiatowicz, S. Ma, and S. Rao. A
note on finding the nearest neighbor in
growth-restricted metrics. In Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 553–4, 2004.

[27] P. Indyk. Algorithms for dynamic geometric problems
over data streams. In These Proceedings, 2004.

[28] D. Karger and M. Ruhl. Finding nearest neighbors in
growth-restricted metrics. In 34th Annual ACM
Symposium on the Theory of Computing, pages 63–66,
2002.

[29] S. Kolliopoulos and S. Rao. A nearly linear-time
approximation scheme for the Euclidean k-median
problem. In ESA: Annual European Symposium on
Algorithms, 1999.

[30] R. Krauthgamer and J. Lee. Navigating nets: simple
algirithms for proximity search. In Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2004.

[31] R. Krauthgamer and J. Lee. Nearest neighbour search
in the blackbox model. Manuscript, 2004.

[32] T. J. Laakso. Plane with A∞-weighted metric not
bi-Lipschitz embeddable to RN . Bull. London Math.
Soc., 34(6):667–676, 2002.

[33] U. Lang and C. Plaut. Bilipschitz embeddings of
metric spaces into space forms. Geom. Dedicata,
87(1-3):285–307, 2001.

[34] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995.

[35] J. S. B. Mitchell. Guillotine subdivisions approximate
polygonal subdivisions: A simple polynomial-time
approximation scheme for geometric TSP, k-MST,
and related problems. SIAM Journal on Computing,
28(4):1298–1309, Aug. 1999.

[36] T. S. E. Ng and H. Zhang. Predicting internet
network distance with coordinates-based approaches.
In 21st Annual Joint Conference of the IEEE
Computer and Communications Society
(INFOCOM-02), pages 170–179, 2002.

[37] D. Peleg. Distributed computing: a locality-sensitive
approach. Society for Industrial and Applied
Mathematics, 2000.

[38] D. Peleg. Proximity preserving labeling schemes.
Journal of Graph Theory, 33:167–176, 2000.

[39] D. Peleg and E. Upfal. A trade-off between space and
efficiency for routing tables. J. ACM, 36(3):510–530,
1989.

[40] S. A. Plotkin, D. B. Shmoys, and Éva Tardos. Fast
approximation algorithms for fractional packing and
covering problems. Math. Oper. Res., 20(2):257–301,
1995.

[41] S. B. Rao and W. D. Smith. Approximating
geometrical graphs via spanners and banyans. In
Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 540–550. ACM Press,
1998.

[42] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A
global geometric framework for nonlinear
dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[43] M. Thorup and U. Zwick. Approximate distance
oracles. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 183–192.
ACM Press, 2001.

[44] M. Thorup and U. Zwick. Compact routing schemes.
In Proceedings of the thirteenth annual ACM
symposium on Parallel algorithms and architectures,
pages 1–10. ACM Press, 2001.

[45] L. Trevisan. When Hamming meets Euclid: The
approximability of geometric TSP and steiner tree.
SICOMP: SIAM Journal on Computing, 30, 2000.

290

