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Abstract

We show that any embedding of the level k£ diamond graph of Newman and Rabi-
novich [4] into L,, 1 < p < 2, requires distortion at least \/k(p —1)+ 1. An imme-
diate corollary is that there exist arbitrarily large n-point sets X C L; such that any
D-embedding of X into £¢ requires d > n®(/ D*) | This gives a simple proof of a recent
result of Brinkman and Charikar [2] which settles the long standing question of whether
there is an L, analogue of the Johnson-Lindenstrauss dimension reduction lemma [3].

1 The diamond graphs

We recall the definition of the diamond graphs {G\} whose shortest path metrics are known
to be uniformly bi-lipschitz equivalent to a subset of L. The diamond graphs were used in [4]
to obtain lower bounds for the Euclidean distortion of planar graphs. The same graphs were
used in [2], but our proof is entirely independent, and unlike the linear programming based
argument appearing there, relies on geometric intuition.

G consists of a single edge of length 1. G; is obtained from G;_; as follows. Given an edge
(u,v) € G;_1, it is replaced by a quadrilateral u, a, v, b with edge lengths 27%. In what follows,
(u,v) is called an edge of level i — 1, and (a, b) is called the level i anti-edge corresponding to

(u,v).

2 Proof

Lemma 2.1. Fizx 1 <p <2 and x,y,z,w € L,. Then,
ly = 25 + (0 = Dllz = wlly <z = yl7 + ly — wllp + [w = 2[5 + ||z — 2|3

Proof. For every a,b € Ly, |la + b|[2 + (p — 1)[|a — b]|2 < 2(||a|/? + [|b]|2). A simple proof of

this classical fact can be found, for example, in [1]. Now,
ly =2l + (0 = Dy — 22 + 2| < 2[ly — =[5 + 2|z — 2|}

and
ly — 2117 + (0 = Dlly — 2w + 2|[; < 2[ly — wlf + 2[jw — 2|5
Averaging these two inequalities yields

ly — 22z + 2|2 + |ly — 2w + 2||2
2

The required inequality follows by convexity. O

< lz = ylp + ly = wlp + [lw — 2|5 + |12 — 2[5,

ly—z|2+ (p—1)



Lemma 2.2. Let A; denote the set of anti-edges at level i and let {s,t} = V(Gy), then for
1<p<2andany f:Gr— Ly,

1£(s) — F)IIZ + —12 Noolf@ -tz Y. f@) - fwl.

i=1 (z,y)€A; (z,y)€E(Gk)
Proof. Let (a,b) be an edge of level i and (c,d) its corresponding anti-edge. By Lemma 2.1,
£ (@) = fFOI[; + (= DI f(c) = F(@DIl; < 11f(a) = fe)llz + 1) = fFI; + £ (d) = fla)ll; +
If(d) — f(b)[|2. Summing over all such edges and all i = 0,...,k — 1 yields the desired
result. O

Theorem 2.3. Any embedding of Gy, into L,, 1 < p < 2, incurs distortion at least \/1 + (p — 1)k.

Proof. Let f : G — L, be a non-expansive D-embedding. Since |A;| = 4~ and the length
of a level i anti-edge is 21 ¢ applying Lemma 2.2 yields 7(” U+l <, O

Corollary 2.4. For every n € N, there exists an n-point subset X C Ly such that for every
D > 1, if X D-embeds into E‘f, then d > n1/D?),
Proof. Since £¢ is O(1)-isomorphic to Kg when p =1+ @ and Gy, is O(1)-equivalent to a

subset X C Ly, it follows that /1 + Oﬂ)‘;gd") = O(D). O
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