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Abstract

MultiProtocol Label Switching (MPLS) [6, 11] is rout-
ing model proposed by the IETF for the Internet, and is be-
coming widely popular. In this paper, we initiate a theoreti-
cal study of the routing model, and give routing algorithms
and lower bounds in a variety of situations. We first study
the routing problems on the line. We then build up our re-
sults from paths through trees to more general graphs. The
basic technique to go to general graphs is that of finding a
tree cover, which is a small set of subtrees of the graph such
that for each pair of vertices, one of the trees contains an
shortest (or near-shortest) path between them. The concept
of tree covers appears to have many interesting application-
s.

1 Introduction

In most conventional network routing protocols, a packet
makes its way from source to destination in essentially the
following way. When a router gets the packet, it analyses
the packet header and decides the next hop for it. These de-
cisions are made locally and independently of other routers,
based solely on the identity of the incoming edge, and the
analysis of the packet header, which contains the destina-
tion address. For example, routers using conventional IP
forwarding typically look for a longest-prefix match to the
entries in the routing table to decide the next hop. In gen-
eral, each router has to extract out the information relevant
to it from the (much longer) packet header. Furthermore,
routers are not designed to use information about the source
of the packets from these headers.
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An alternative proposed to this routing model by the IET-
F is called MultiProtocol Label Switching or MPLS [6, 11].
In this, the analysis of the packet (network layer) header is
performed just once, and causes the packet to be assigned
a stack of labels, where the labels are usually much smaller
than the packet headers themselves [21, 20]. At each subse-
quent hop, the router examines the label at the the top of the
label stack, and makes the decision for the next hop based
solely on that label. It can then pop this label off the stack if
it so desires, and push on zero or more labels onto the stack,
before sending it on its merry way. (We shall refer to this as
label replacement.) Note that there is no further analysis of
the network layer header by any of the subsequent routers.

There are a number of advantages of this over con-
ventional network layer forwarding, the obvious one be-
ing the above-mentioned elimination of header analysis at
each hop. This allows us to replace routers by simpler fast
switches which are capable of doing label lookup and re-
placement. Furthermore, since we analyze the header and
assign the stack to the packet when it enters the network, the
ingress router may use any additional information about the
packet to route packets differently to satisfy different QoS
requirements. For example, data for time-sensitive applica-
tions may be sent along faster but more expensive channels
than regular data. Also, the ingress router can encode in-
formation about the source as well as the destination in the
labels, which cannot be done with conventional forwarding.
Apart from these factors improving network performance, it
is also much easier to do traffic engineering or network con-
trol using MPLS than conventional routing schemes, since
the entire route taken by the packet can be specified very
naturally on the stack [2]. All these reasons have made M-
PLS very popular among network and router designers, and
companies like Cisco, Juniper, Lucent and Nortel have been
developing routers which support MPLS protocols [4, 16].

Despite the fact that MPLS is becoming widespread on
the Internet, we know essentially nothing at a theoretical
level about the performance one can achieve with it, and
about the intrinsic trade-offs in its use of resources. For in-
stance, a pertinent question is the following: What is the
depth of the stack required for routing in an n-node net-
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work, and how does this interact with the label size? We
want small-sized labels, since bandwidth reservation in net-
works is often done by creating a (virtual) channel for each
label. A small number of labels ensures that the traffic is not
split too much, which usually implies a better bandwidth u-
tilization. Furthermore, having a small label space makes
the forwarding procedures simple and hence faster. On the
other hand, we want a small stack size as well, so as to
keep the space requirements in the headers small. Obvious-
ly, these goals oppose each other, and their tradeoffs seem
non-trivial. Previous papers on routing do not address such
questions, and it is not clear whether the information theo-
retic bounds are close to the truth.

Note that a very important restriction while designing
these routing protocols is that the routers can only look at
the top of the stack to decide the next hop (as well as the
set of labels to push on the stack). As an example, consider
the following question: if we are given a constant-degree
graph, it is not clear whether shortest-path routing is at all
possible when each router looks at only one label of length
O(log logn) bits, instead of having access to the entire net-
work header of O(log n) bits. Again, this is clearly a ques-
tion that needs to be addressed.

In this paper, we initiate a theoretical study of the pro-
tocol, and give routing algorithms and lower bounds in a
variety of situations. We first study the routing problems on
the line. We then build up our results from paths through
trees to more general graphs. The basic technique to go to
general graphs is that of finding a tree cover, which is a s-
mall set of subtrees of the graph such that for each pair of
vertices, one of the trees contains an (almost-)shortest path
between them. The concept of tree covers is interesting in
its own right.

The Model: Before we give our results, let us formalize
the model. Each packet carries a stack S of labels. The
labels are drawn from a set � of size L, which is identified
with the set f1; 2; � � � ; Lg.

The network is an undirected graph G = (V;E), where
each node is a router and runs a routing protocol. If the
protocol does not depend of the node on which it is running,
the protocol is called uniform. When a packet reaches a
router v on edge e = fu; vg, the router pops the top t(S) of
the stack and examines it. (If the stack is empty, the packet
should be destined for v.) The protocol at vertex v is just
a function f : Ev � � ! (Ev � ��), where Ev is the set
of edges incident to v. If f(e; t(S)) = (e0; �), the router
pushes the string � on the stack, and then sends the packet
along edge e0.

Note that there is no bound on the number of labels that
can be pushed on and hence, for ease of exposition, we
force the top of the stack be popped off when reaching a
router. The quantity of interest is the maximum stack depth
required for routing between any two vertices, which we

denote by s. An (L; s) protocol is one which uses O(L)
labels, and has maximum stack-depth O(s).

Our Results: As a first step, we study routing on the path
Pn, where we show a large gap between uniform and non-
uniform protocols. We show that uniform protocols on the
line with L labels require s = �(Ln1=L). However, we
give a non-uniform protocol using L labels requiring stack
depth O(logL n) only. Note that this is within a constant
factor of the information-theoretic bound.

These protocols serve as building-blocks when we go to
arbitrary trees. We use them in conjunction with the so-
called caterpillar decomposition [15, 12] of trees into path-
s to get a (� + k; kn1=k logn) uniform protocol, and a

(� + k; log
2 n

log k ) non-uniform protocol. In the case of uni-
form protocols, we prove an almost matching lower bound
when k is O(logn). (Note that if the maximum degree of
a tree is �, then we clearly require at least � � 1 label-
s.) Note that the latter protocol can give us stack depth
O(log2 n= log logn) with �+O(log n) labels: we improve
this non-uniform protocol to get a (�+log logn; logn) pro-
tocol as well.

Finally, we turn to the case of general graphs. Here, we
use the protocols for trees as our basic tools. We define a
tree cover of a graph, which is a small set of subtrees of the
graph such that for each pair of vertices, one of the trees
contains an (almost-)shortest path between them. (See Def-
inition 4.1 for a formal definition.) If we have a graph with
a tree cover with t trees, we can run the tree routing algo-
rithm on the appropriate tree. Note that we lose just a factor
of t in the number of labels by this idea. Unfortunately, it
can be shown that general graphs do not have (logn)-sized
tree covers unless the trees are allowed to stretch distances
by 
(logn).

Since a non-constant stretch is inadmissible in our ap-
plications, we look at special classes of graphs, and as our
first result, show that graph families with r(n)-sized bal-
anced vertex-separators have O(r(n) log n) sized tree cov-
ers with no stretch. This result also gives O(

p
n)-sized tree

covers for planar graphs, which we show tight by exhibit-
ing a simple length-assignment to the edges of the n-vertex
grid. However, we then go on to show that allowing a s-
mall stretch (of 3) improves matters considerably: we can
find a O(logn) sized tree cover for all planar graphs. The
proof of this fact uses the Lipton Tarjan planar separator
theorem [13] in a novel way, which we feel may have other
implications.

As the above discussion indicates, our algorithms are ex-
tremely modular in nature, and hence improvements in rout-
ing strategies for (say) the path will result in improvements
for trees and graphs. Furthermore, though we have made
no significant efforts to optimize constants, the constants
involved are small, and hence the algorithms can be imple-
mented in practice.
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Previous Work: Distributed packet routing problems in
networks has been widely studied, e.g., see [7, 8, 19, 18, 5],
or [9] for a survey of some of the issues and techniques. In
these papers, the emphasis has been to reduce the sizes of
the routing tables and the sizes of the packet headers while
performing near-shortest path routing. Our work is incom-
parable to this line of work. In MPLS, setting up the initial
stack may require more memory than conventional routing
problems, but once the stack is set up, the memory need-
ed by each router to just forward the packets is very smal-
l. For example, in traditional routing on planar networks,
the best result known for minimizing the total memory (i.e.,
summed over all the routers) is ~O(n4=3). In our case, setting
up the stack requires more memory, but for just forwarding
the packet, the total memory required is ~O(n). Furthermore,
many previous results giving small storage allow the ver-
tices to be labeled by the algorithm, whereas we make no
assumptions on the vertex names.

There has also been lot of work on finding sparse span-
ners of graphs [1, 3]. However, these results are interesting
only when the graph is not sparse, whereas the problems
we address in this paper are non-trivial even for bounded
degree graphs.

Another different (but related) large corpus of work
has studied the problem of distance labeling of graph-
s [23, 17, 10]. Distance labeling problem involves assigning
short labels to vertices, so that an algorithm given the labels
of any two vertices in the graph can deduce the shortest dis-
tance between them. (Note that the algorithm does not have
any other knowledge of the graph). Although this appears to
be similar to problem, they turn out to be technically quite
disparate.

To begin with, the distance labeling problem is trivial
when the input is a path, but finding good MPLS routing
schemes for the path is already non-trivial. In the case of
trees, the proof that all trees have O(log2 n) size distance
labels [17] relies on balanced vertex separators. This con-
cept can be used to give a (�+ logn; logn) MPLS routing
scheme on trees, but there is no obvious way to improve
this result. However, our techniques allow us to get a better
(� + log logn; logn) MPLS scheme. On the other hand,
some of our MPLS results can be used to improve known
results on distance labelings. In the case of planar graphs,
we can use our ideas to get a stretch-3 distance labelings
of size O(log2 n) for planar graphs. Previously, no sub-
polynomial labeling schemes were known for planar graphs
(even with constant distortion) [10].

A recent paper of Thorup and Zwick [22] gives construc-
tions of a slightly different variety of tree covers. Though
their definitions differ from ours, they can also be used for
MPLS routing. Their results imply that for general graphs,
there exist tree covers of size ~O(n1=k) with stretch O(k).
This gives an MPLS routing scheme with ~O(n1=k) labels,

poly-logarithmic stack depth and stretch O(k). We, how-
ever, concentrate on cases where it is possible to get poly-
logarithmic stack depth and labels, and constant stretch.

2 Routing on the line
In this section, we give shortest-path routing schemes for

the path graph Pn. This is the basic building block which
we shall use to route on trees in the next section. We give
two routing strategies, depending on whether nodes are al-
lowed to have different routing protocols or not. We show
that if the routers must run the same protocol, then the s-
tack depth goes as �(Ln1=L); however, if they are allowed
to use the information of their own position, then a very
simple strategy allows us to have s = O(logL n), which is
within constants of the best possible.

2.1 Uniform protocols

In this case, we assume that each router must run the
same protocol. To achieve the upper bound of O(Ln1=L),
we have the following simple strategy: nothing is pushed
onto the stack when a 1 is seen, and seeing an i > 1 causes
n1=L copies of (i�1) to be pushed onto the stack. It is easy
to see that the total stack depth need only be Ln1=L. The
following theorem shows that the construction is tight up to
constants.

Theorem 2.1 Any uniform routing protocol must require a
stack depth of 
(Ln1=L).This bound can be achieved by the
scheme outlined above.

Proof of Theorem 2.1: In the following discussion, let the
labels be given by the integers f1; 2; : : : ; L). Consider a
graph with the labels as vertices, and draw an edge from j
to i if seeing label i causes j (among others) to be pushed
on the stack. Note that any label that lies on a directed cycle
is not useful, since the stack can never empty if this label
reaches the top of the stack. Hence, let us look at the set of
vertices that do not lie on cycles: they form a DAG.

Let us look at a topological sort of this DAG, which
(say) places the labels ascending order. Then each label
i just corresponds to placing some specific number of la-
bels 1; : : : ; i � 1 on the stack, and hence the ordering of
the labels on the stack does not make a difference. Let
ki be the number of copies of label i on the stack; hence
k1 + k2 + � � � + kL � s. Since, the ordering of these
labels does not matter, it follows that the number of solu-
tions to this equation,

�
s+L
L

�
, must be at least n. Hence

s = 
(Ln1=L), proving that the above strategy was optimal
up to constants.

2.2 Non-uniform protocols

Interestingly, the case for non-uniform protocols, where
each vertex can run a different protocol, the relationship be-
tween s and L is much closer to the information-theoretic
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Figure 1. Proof of Theorem 2.2.

bound. We will consider the case when L = 2: in this case,
it is easy to see that the stack depth must be 
(logn) for us
to encode n distinct addresses. As an upper bound, we offer
the following theorem:

Theorem 2.2 There is a constant c > 1 for which there ex-
ists a non-uniform routing protocol with 2 labels and stack
depth at most c logn.

Proof: Since we will be doing shortest-path routing, each
node will simply forward the packet in the direction of its
travel (unless, of course, the stack is empty). The difference
is in what the vertices push on to the stack once the top is
popped off and handed to them.

To specify this, let us give a recursive construction of a
path of n nodes and a (2; 3 logn)-protocol for it. Nodes
will either be diamonds, squares or circles. (See Figure 1.)
Also, note that it is not relevant to specify the shape of the
last vertex. The graph G1 is just an edge with a diamond
at its left end. G2 consists of two copies of G1 with an
edge attached to the left end of this, the new vertex being a
square. For all higher i, Gi consists of two copies of Gi�1

with an edge attached to the left end, the new vertex being a
circle. (The dotted edges are used for the argument below.)

Each node, when it sees a 1, does not push anything on
to the stack. A diamond is guaranteed never to see a 2. On
seeing a 2, a square pushes on two 0’s, while a circle pushes
on two 1’s. To send a packet from i to j > i, we look at the
graph with both dotted and solid edges, and find the direct-
ed path with fewest hops. The stack is now filled with the
encoding of this path, the dotted edges corresponding to 2’s
and the solid edges to 1’s. It can be seen that the (direct-
ed) diameter of this graph is O(log n), and if the vertices
behave as specified above, the stack on reaching vertex k
(with i < k < j) encodes the shortest path from k to j,
completing the proof.

As an aside, we can get (k; logn=log k) routing proto-
cols as a result of this theorem, since a log k bit label can be
easily used to encode the top 
(log k) bits of the stack.

3 An algorithm for trees

In this section, we consider the problem of routing on
trees. Since we already have developed algorithms for the
line that are within constants of the best possible, we first
show how to use them to get protocols for trees. We then
refine these to get better tradeoffs.

Let the tree be T , and let it be rooted at r. All the algo-
rithms use the so-called caterpillar decomposition of a tree
into edge-disjoint paths. The caterpillar dimension [15, 12]
of a rooted tree T , henceforth denoted by �(T ), is defined
thus: For a tree with a single vertex, �(T ) = 0. Else,
�(T ) � k + 1 if there exist paths P1; P2; : : : ; Pt beginning
at the root and pairwise edge-disjoint such that each compo-
nent Tj of T�E(P1)�E(P2)�: : :�E(Pt) has �(Tj) � k,
where T �E(P1)�E(P2)� : : :�E(Pt) denotes the tree
T with the edges of the Pi’s removed, and the components
Tj are rooted at the unique vertex lying on some Pi. The
collection of edge-disjoint paths in the above recursive def-
inition form a partition of E, and are called the caterpillar
decomposition of T . It is simple to see that the unique path
between any two vertices of T intersects at most 2�(T ) of
these paths. It can also be shown that �(T ) is at most logn
(see, e.g., [15]).

Now, given a pair of vertices to route between, there are
O(logn) paths to travel on, and O(logn) changes of paths
to specify. Hence, if we have a (L; s) routing protocol for
the line, we could get a (�(T ) + L; s�(T )) protocol for
the tree. Plugging in the values from the previous section,
we get the following theorem. (See the Appendix A for a
formal definition of uniform protocols for trees.)

Theorem 3.1 Given a tree T with maximum degree �,
there exists a (�+k; kn1=k�(T )) uniform routing protocol
and a (�+k; (logk n) �(T )) non-uniform routing protocol
for T .

In the Appendix, we also prove the following almost
matching lower bound for k = logn.

Theorem 3.2 There exists a binary tree T such that any u-
niform routing protocol with O(log n) labels requires stack

depth 
(
�

log2 n
log logn

�
.

Note that for k = 2, we have a (� + 2; log2 n) non-
uniform protocol, and for k = logn and constant �, the
worst case guarantees for both these algorithms are approx-
imately (logn; log2 n). The results of the next section show
how to get a much better result in the non-uniform case.

3.1 Improved Non-Uniform Protocols

Interestingly enough, we can improve the non-uniform
routing algorithm of the previous section, keeping the stack
depth at O(logn), and get label size log logn.
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Figure 2. Proof of Lemma 3.3.

Let k = dlog2 ne. We will prove the following lemma
by induction on n (where c is the constant in Theorem 2.2):

Lemma 3.3 We can route a packet from the root r to any
node in T by using at most 2 log k + � labels, and stack
depth at most 6ck.

As before, � of the labels are used to decide which
branch to take when changing paths.

Proof: The base case follows trivially from Theorem 2.2.
To prove the inductive step, we use another useful fact about
caterpillar decompositions. One can find a decomposition
of size O(logn) with the following property: let P1; : : : ; Pt
be all the paths originating at the root r. Then for a vertex
v 2 Pi, any connected component of T � fvg which does
not contain a node of Pi has at most bn=2c nodes. We will
assume this property of our caterpillar decomposition.

Let us fix a path Pi in the caterpillar containing r. We
show how to route a packet from r to any descendant of a
node in Pi�frg. Once we have shown the above guarantee,
the desired result will follow from the fact that the paths
P1; : : : ; Pt are disjoint except at r.

Consider a vertex v 2 Pi � frg, and let V 0 be the chil-
dren of v which are not in Pi (see Figure 2). Define T (v)
rooted at v to be the subtree containing v, V 0, and all the
descendents of V 0. Observe that if v 6= w 2 Pi, then T (v)
and T (w) are disjoint. We define t(v), the index of a node
v, as dlog2 jT (v)je. Let I(j) be the set of nodes in Pi�frg
with index j. Note that if t(v) = j, then jT (v)j � 2t(v)�1,
and since all these trees T (v) are disjoint, it follows that
there are at most 2k�j+1 nodes in I(j).

Now we group nodes in several I(j)0s into one su-
pergroup. All the nodes in the groups I(k � 2p+1 +
2); : : : ; I(k � 2p + 1) are grouped into one supergroup,
called I(p); this is done for all p = 0; : : : ; log k. The
number of nodes in I(p) is maximized when all these n-
odes come from I(k � 2p+1 + 2), and so I(p) contains at
most 22

p+1+1 nodes. Also, note that there are at most log k
supergroups.

We divide the labels L into log k sets, L1; : : : ; Llog k,
with each Li containing 2 labels. The labels in Lp are used
to route from r to nodes only in I(p). If any node in Pi not
in I(p) sees a label on top of the stack that belongs to Lp, it
forwards it to the next node in Pi. Theorem 2.2 now implies
that we can use the labels in Lp to route from r to all nodes
in I(p) using a stack depth of at most c(2p+1 + 1). Note
that this requires only 2 log k labels.

Now suppose r needs to send a packet a vertex u in T (v).
Let v 2 I(j) and I(j) 2 I(p). The first part of the s-
tack routes from r to v, requiring a stack depth of at most
c(2p+1 + 1). Let v0 2 V 0 be such that u is a descendant of
v0; then the next symbol on the stack is one of the � labels
causing v to send the packet to v0. The remaining part of
the stack specifies how to route from v0 to u.

Let T 0 be the subtree rooted at v0, and j0 be the smallest
integer such that j0 = dlog jT 0je. Clearly, j0 � k � 2p + 1;
also, the above-mentioned property of the caterpillar de-
composition implies that j0 � k � 1. By induction, the
stack depth needed is at most 6cj0. Hence the total stack
depth needed is at most 2c2p + c+ 1 + 6cj0 � 2c2p + c+
2c(k�2p+1)+1+4c(k�1) = 6ck+c+2c+1�4c� 6ck.
This proves the desired result.

Note that so far we have only shown how to do routing
starting at the root. If v 2 Pi, and we want to route from
v to a descendant of v, the above induction will give us the
desired result. But to route from v to an arbitrary vertex u,
we can send the packet from v to the least common ancestor
of u and v by simply using the scheme in Theorem 2.2,
since the packet is traveling in a single direction. (This will
require 2 extra labels, and a stack depth of O(logn).) From
that point, it reduces to the previous case. Hence we have
shown the following theorem:

Theorem 3.4 There exists a (� + log logn; logn) non-
uniform routing protocol for trees.

As noted in the introduction, this substantially improves
the result obtained by simply applying the idea of balanced
vertex separators.

4 Covering graphs by trees
There are several problems to extending the above

scheme to route in arbitrary graphs: the shortest paths be-
tween vertices are not unique, they intersect in non-trivial
ways, and hence it is difficult to come up with a useful no-
tion of a path decomposition. However, if we could find a
set of k subtrees, such that for each pair of vertices, there
was a tree in this set that maintained the shortest path dis-
tance between them, we could use this for routing. This
would just involve specifying which of these trees we were
routing on, which would cause the number of labels to in-
crease by a factor of k. Of course, we could relax the dis-
tance condition to allow distances to be stretched by a small
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factor even in the best tree. Motivated by this, we define a
tree cover of a graph:

Definition 4.1 Given a graph G = (V;E), a tree cov-
er (with stretch D) of G is a family F of subtrees
fT1; T2; : : : ; Tkg of G such that for every u; v 2 V , there
is a tree Ti 2 F such that dTi(u; v) � DdG(u; v).

The following theorem follows immediately from the dis-
cussion above.

Theorem 4.2 Let there be an (L; s) protocol for routing on
trees. Let F be a tree cover of G with stretch D. Then, there
is an (LjFj; s) protocol for G. This protocol has stretch D,
i.e., given any pair of vertices u; v 2 V , this protocol routes
from u to v on a path having length at most D times the
shortest path between u and v.

Note that, since each tree is a subtree of G, dG(u; v) �
dTi(u; v). When D = 1, we often say that there is no
stretch; furthermore, in this case, we will often omit men-
tioning the stretch.

Note that this definition of tree covers is slightly different
from that in [22], since it does not place a restriction on
the number of trees in which a vertex appears, but instead
places a uniform restriction on the number of trees in the
family.

Of course, it is easy to see that the size of a tree cover
may be large: if we require a stretch 1 tree cover for the
complete graph Kn, the union of the Ti must cover every
edge, and hence 
(n) trees are required. By the trick of
replacing the edges incident to a vertex by a (weighted) bi-
nary tree, it can be seen that a lower bound of 
(n) holds
even for degree-3 graphs.

As for lower bounds for covers with stretch: there are
explicit constructions of graphs with 
(n1+4=(3g�6)) edges
which have girth g [14]. For these graphs, if we want a
stretch less than g, the union of our Ti must also contain
every edge of such a graphs. Hence we can get a lower
bound of 
(n4=(3D�6)) for covers of stretch D� 1. A case
of particular interest is when D = 4, for complete bipartite
graphs show that stretch-3 covers may require 
(n) trees.
(A trick similar to that alluded to above shows a similar
result for bounded-degree graphs.)

In view of these general negative results, the question of
interest is to find families of graphs for which we can find
small tree covers. In this section, we study the problem of
finding small tree covers for families of graphs with small
sized vertex separators. For example, for planar graphs, we
know that separators of size O(

p
n) exist, while bounded

tree-width graphs have constant-sized separators.

4.1 Graphs with Small Separators
In this section, we give a tree cover of size O(r(n) log n)

for families of graphs which admit r(n)-sized hierarchical

separators. (I.e., these are graphs which can be separated
into pieces of size at most 2n=3 by removing at most r(n)
vertices, and any connected component Gi thus obtained
has a separator of size r(jGi j), and so on.) It is well-known
that for planar graphs, r(n) = O(

p
n), and for treewidth-k

graphs, r(n) = k. (We shall make the reasonable assump-
tion that r(n) is monotonically increasing.)

The idea is very simple: we first find a separator S of G
having size at most r(n). For each of the vertices s 2 S, we
take the shortest-path tree Ts rooted at S.

Lemma 4.3 For any pair of vertices u; v 2 T for which the
shortest path P connecting them intersects S, there is a tree
Ts which contains the shortest path between u and v.

Proof: For any such pair of vertices u and v, let P \S con-
tain the vertex s. Then P must be the concatenation of the
shortest path from s to u, and that from s to v. But then both
these paths lie in Ts, and hence the claim is proved. (We are
implicitly assuming in this proof that there are unique short-
est paths; this assumption is purely for convenience and can
be discharged in the usual ways.)

We are now left with G � S, which has components
of size at most 2n=3, and we just have to construct trees
to maintain distances between vertices that lie within these
components. Recursively, each of these can be done by a
family of size r(2n=3) log3=2(2n=3) � r(n)(log3=2 n�1),
and by pairing them up and adding the set of r(n) trees cre-
ated at this level, we get the claimed cover of r(n) log3=2 n
subtrees.

Note that for planar graphs, plugging in r(n) = O(
p
n)

and being slightly more careful in the above analysis gives
us a tree cover of size O(

p
n).

4.2 Lower bounds

In this section, we show that the result of the previous
section for planar graphs is existentially tight.

Theorem 4.4 There exist length assignments to the edges
of the grid so that any tree cover (with stretch 1) is of size

(
p
n).

Proof: Let G = (V;E) be an n = t � t square grid,
where the vertices are (i; j), 1 � i; j � t in the obvious
manner. Let � be a small enough positive number (� = 1

n
will suffice). Let e be an edge joining vertices (i; j) and
(i0; j0). Then let us define ce, the length of edge e to be
1 + 1

n (min(i; i0) + (1 + �)min(j; j0)).
The basic intuition behind assigning these edge-lengths

ce is the following: the unit-weighted grid has tree cover-
s of size O(logn), but this fact uses the symmetry of the
grid. The above weighting scheme manages to break this
symmetry, a fact which the following lemma formalizes:
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Lemma 4.5 Given any two vertices in G, there is a unique
shortest path between them. Furthermore, this shortest path
has at most one bend.

Let T be a spanning tree of G, and let ST be the set of pairs
of vertices (u; v) in V such that T contains a shortest path
between u and v (with respect to the edge costs ce). We now
prove the following key lemma:

Lemma 4.6 For any spanning tree of G, jST j = O(t3).

Proof: We say that a connected path P in T is straight if
it does not have any bends and is of maximal length (i.e.,
adding any other edge of T to P will result in a bend). Let
P1; : : : ; Pk be the set of all straight paths in T . We denote
the vertex set of Pi also by Pi. It is easy to see that for all i,
jPij � t. Furthermore, for any i 6= j, jPi \ Pj j � 1.

Construct a new graph T 0 = (V 0; E0) as follows, where
V 0 contains one vertex pi for each path Pi. E0 contains
an edge joining pi and pj if and only if Pi \ Pj 6= ;. It
is not too difficult to show that T 0 is a tree. Furthermore,
the following claim follows directly from the property of
weights on edges.

Claim 4.7 Let u; v 2 T , u 2 Pi, v 2 Pj . T preserves the
shortest path between u and v only if i = j or (pi; pj) is an
edge in T 0.

Let ti = jPij, and define the cost of the tree T 0 to be

f(T 0) =
X
pi2V 0

t2i +
X

(pi;pj)2E0

(ti � 1)(tj � 1) (4.1)

It follows from Claim 4.7 that jST j � f(T 0), and so it suf-
fices to obtain an upper bound on f(T 0).

For the rest of the proof, we do not look at the seman-
tics of the sets again, but instead argue about arbitrary set
systems on t2 vertices, where each set Pi is of size ti � t,
any two sets intersect in at most one element, and their in-
tersection graph is a tree. For any such intersection tree T 0,
we assign weight t2i to each node and (ti � 1)(tj � 1) to
each edge (pi; pj) in T 0. Now f(T 0) be the total weight of
vertices and edges in T 0. .

Claim 4.8 For any such intersection tree T 0, f(T 0) is
O(t3).

Proof of Claim 4.8: Let us first record the following lem-
ma.

Lemma 4.9 Let pi be a leaf in T 0 and pj be the parent of
pi in T 0. Then, either ti � t=2 or tj � t=2. If pj is a
degree two node and pi is its unique child, then ti � t=2 or
tj � t=2.

Proof of Lemma 4.9: Suppose ti; tj < t=2. Delete Pi
and replace Pj by Pi [Pj ; it is easy to see that the tree cor-
responding to this set system is the tree T 0 with pi deleted
(because Pi was disjoint from all other sets except Pj). The
increase in weight of the tree is greater than

(ti + tj � 1)2 � t2i � t2j � (ti � 1)(tj � 1)

= (ti � 1)(tj � 1)� 1 � 0:

The argument about degree 2 nodes is similar, and is omit-
ted.

We say that a leaf pi in T 0 is bad if ti < t=2. Delete all
bad leaves from T 0 to get a tree T 00. Then, the lemma above
implies that all leaves pi in T 00 have the property ti � t=2.
We now claim that the tree T 00 without the bad nodes has
O(t) nodes.

Indeed, let I be the index set of those pi such that
ti � t=2. We claim that jI j = O(t). To see this, note
that no three of the sets Pi intersect and at most jI j of the
pairs of Pi have any pairwise intersection, since their inter-
section graph is a forest. Hence the principle of inclusion
and exclusion implies that

t2 � j [i2I Pij �
X
i2I

t=2� jI j = (t=2� 1)jI j:

Hence there are at O(t) leaves in T 00, which implies in turn
that there are O(t) nodes of degree 3 or more. Any degree
node 2 which has less than t=2 elements can be charged
uniquely to its child, which has more than t=2 elements by
Lemma 4.9.

Also, the contribution of cost of edges in T 00 to f(T 0) is
at most O(t3), since each edge can contribute at most t2.
The contribution of edges joining a bad leaf to its parent in
T 0 is at most t3, since

P
i ti (where the sum is over bad

leaves) is at most t2, the bad leaves being all disjoint.
Finally, we have to add up vertex contributions. T 00 has

O(t) nodes, each having at most t elements. So the vertex
weight contribution of these vertices is at most O(t3). Fi-
nally, the bad leaves are all disjoint, so their weights can be
bounded by the following fact:

Fact 4.10 Suppose xi are positive integers such thatP
i xi � t2 and xi � t. Then

P
i x

2
i � t3.

Summing all these terms up shows that f(T 0) = O(t3),
proving the theorem.

This proof of Claim 4.8 now completes the proof of Lem-
ma 4.6.

Since there are 
(t4) pairs of vertices, this shows that
we require 
(t) = 
(

p
n) trees in the cover, completing

the proof.
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5 Tree Covers for Planar Graphs

In this section, we will show that all planar graphs have
stretch-3 tree covers of size O(logn). This is in sharp con-
trast to the results of the previous sections that planar graphs
do not have o(

p
n) sized covers in general if no stretch is al-

lowed, and that general bounded degree graphs do not have
o(n2=3D) sized stretch-D tree covers.

5.1 Isometric Separators

We can refine the ideas in Section 4.1 to get a O(logn)
sized family for all planar graphs. Let us first make a
few definitions: given a graph G = (V;E), a k-part i-
sometric separator is a family S of k subtrees S1 =
(V1; E1); : : : ; Sk = (Vk ; Ek) of G such that

1. S = [iVi is a 1/3-2/3 separator of G.

2. For each i and each pair of vertices u; v 2 Si,
dSi

(u; v) = dG(u; v). I.e., the each of the subtrees
Si contain the shortest paths between their constituent
vertices, and hence are isometric to the restriction of G
on Vi.

Note that we do not care about the total number of vertices
in S; just the number of isometric subtrees.

For instance, any graph having a 1/3-2/3 separator of size
r(n) has a trivial r(n)-part isometric separator, where each
Si contains just a single vertex. However, if we look at the
proof of the planar separator theorem [13], it can be inferred
that any planar graph has a 2-part isometric separator. Now
an extension of the ideas in the previous sections shows the
following theorem:

Theorem 5.1 For any graph G = (V;E) with r(n)-part
isometric separators, there exists a tree cover with stretch 3
having O(r(n) log n) trees.

Proof: The following algorithm is very similar in spirit to
that in Section 4.1. For each of the trees Si, we contract the
vertices of Si and construct a shortest-path tree in the result-
ing graph, and then expand back the tree Si. The resulting
tree is call Ti. Note that Ti contains Si, and the union of
the shortest paths from every other vertex in V � Vi to the
subtree Si. This gives us r(n) trees, and we now recurse on
the two parts in a by now familiar fashion. It is clear that
this process gives us at most r(n) log3=2 n trees.

What remains to be shown is that, for each pair of ver-
tices, there is a tree which maintains distances between
them to within a factor of 3. The proof mimics that of Theo-
rem 4.3. Consider a pair of vertices u; v for which the short-
est path P between u and v intersects some Si (at point b,
say). The path P 0 between u and v in Ti can be divided into
three sections P 0

1; P
0

2; P
0

3, where P 0

1 is the shortest path from
u to Si, P 0

3 is the shortest path from v to Si, and P 0

2 is the

iS

u

vc

a

b

1

2

3

P’

P’

P’

P

Figure 3. Proof of small stretch in theorem 5.1

unique path in Si connecting the points a and c at which P 0

1

and P 0

3 meet Si. (See Figure 3 for an illustration.)
For nodes x; y, let [x; y] denote the shortest-path be-

tween x and y in G. Now since [u; a] and [v; b] are the
shortest paths to Si, dG(u; a) � dG(u; b), and dG(v; c) �
dG(v; b). Furthermore, by the fact that [a; c] is the shortest
path, dG(a; c) � dG(a; u) + dG(u; v) + dG(v; c). But the
length of the path

dTi(u; v) = dG(u; a) + dG(a; c) + dG(c; v)

� dG(u; a) + (dG(a; u) + dG(u; v) +

dG(v; c)) + dG(c; v) � 3dG(u; v);

which proves the claim.

Now using the fact that planar graphs have 2-part iso-
metric separators gives us the following theorem:

Theorem 5.2 There exists a stretch-3 tree cover of size
O(logn) for all planar graphs

Corollary 5.3 Given an (L; s) routing scheme for trees,
there is an (L logn; s) routing scheme for planar graphs.
This routing protocol has stretch at most 3.

Proving such a result for broader classes of graphs stil-
l remains open. One of the problems with extending the
above approach is that isometric separators are not known
for many classes of graphs, even for graphs with small sized
separators.

5.2 An Application To Small Distance Labelings

In this section, we give another application of isomet-
ric separators. A stretch-D distance labeling scheme is
a way of assigning a label l(v) to each vertex v, and
specifying a scheme f such that given a graph G, 1 �
f(l(u); l(v))=dG(u; v) � D for all pairs of vertices u; v 2
G. This has been studied in [23, 17, 10].

Theorem 5.4 For any planar graph G = (V;E) with di-
ameter diam(G), a stretch-3 distance labeling scheme with
labels of size O(log2 n) bits exists.
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Proof: For each vertex, we generate O(log n) coordinates
thus: we look at 2-part isometric separator S0 of G, which
consists of 2 shortest paths P0 and P 0

0, and let a0 and a00 be
an endpoint of each of these paths. We will define 2 coordi-
nates for each path. For P0, the first coordinate records the
distance of v from P0, and the second records the distance
of v0, the closest vertex on P0 from v. Two coordinates are
similarly defined for P 0

0. After this, we look at the graph
obtained by removing S0, and record the connected com-
ponent in which v lies in a fifth coordinate (where we have
number the components by some consistent canonical or-
der). We now recurse on this component containing v. Note
that if v was in the separator, the rest of the label would have
0’s.

For the decoding function f(u; v), we look at the first
level in which the two vertices lie in different components.
For each of the recursive levels till that point, and for each
pair of coordinates corresponding to either shortest-path at
that level, we do the following: we add the distance of u and
v from the the path, and to this we add the absolute value of
the difference of their distances from the chosen endpoint.
Finally, we take the minimum among all these values. Us-
ing an argument similar to the one used in Theorem 5.2, it
is not difficult to show that this minimum is within 3 of the
distance between u and v.

This should be contrasted with the result of Gavoille et
al. [10] that 
(n1=3) bits are required when no stretch is al-
lowed. We should note that it is possible to get a quick-and-
dirty O(log3 n) bit result, by taking the O(logn) tree cover
of Theorem 5.2, and using the distance labeling scheme of
Peleg [17] to embed each tree with O(log2 n) bits.

Acknowledgments: Many thanks to Jon Kleinberg, Bruce Shep-
herd, Éva Tardos, Peter Winkler, and Francis Zane for discussions
and helpful comments. Thanks to Peter also for suggesting the
title of the paper.
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A Uniform protocols for trees
Let us formally define a uniform protocol on a tree.

Clearly, we cannot expect each vertex to behave identically
on each label (as on the line), because different vertices may
have different degrees.

We assume that there are � special labels, called L�,
which are used only for going a distance of one hop from a
vertex, essentially by specifying which of the edges going
out of it should be taken. LetL be the set of other labels. For
each edge e = fu; vg, the vertex v specifies another edge
e0 = fv; wg, such that any packet arriving at v on edge
e having a label from L on top of the stack is forwarded
along e0 only. Hence each vertex associates an exit edge
with each edge e. The action of a vertex when it sees a label
l 2 L on top of the stack is identical: it places an identical
set of labels on top of the stack and sends the packet along
the appropriate exit edge. This is the sense in which the
protocol is uniform.

A.1 Uniform lower bounds for trees

Proof of Theorem 3.2: We show that any uniform protocol
running on a tree T = (V;E) using only O(� + logn)

labels must use 

�

log2 n
log log n

�
stack depth. Our lower bound

example will be a binary tree. Let T = (V;E) be any binary
tree. It is not difficult to show that in a binary tree,L� needs
to have size 1 only. So, let L� = fl�g.

Given two nodes u; v 2 T , let S[u; v] denote the stack
depth needed to route a packet from u to v. Given a label
l, define Sl[u; v] as the stack depth needed to route a packet
from u to v such that when the packet reaches v, the top of
the stack contains l. If we want to specify a protocol P for
routing, then we use the terms Sl[u; v](P) and S[u; v](P).
The following lemma follows from the definition of a uni-
form protocol.

Lemma A.1 Let v 2 T be a node of degree 3 and let
C1; C2; C3 be the components of T � fvg. Let vi be the
neighbor of v in Ci. Then there exists a j 2 f2; 3g
such that given any x1 2 C1 and xj 2 Cj , S[x1; xj ] �
Sl� [x1; v] + S[v; xj ]� 1.

Proof: Let the neighbors of v be v1; v2; v3, where vi 2 Ci.
Consider the edge e = fv1; vg. Suppose v specifies the exit
edge for e containing a label in L to be the edge fv; v2g.
Now if we want to send a packet from x1 to x3, it must
contain l� on top of stack when it reaches v. Hence the part
of this stack which takes the packet from x1 to v contributes
to Sl� [x1; v]. The part of the stack below l� can actually
route from v1 to x3. Adding l� on top of it gives a routing
scheme from v to x3. This proves the lemma.

Given two vertices u; v in T , we say that they are con-
nected by a straight path if all the internal vertices in the

unique path connecting u and v have degree 2. Note that
the total number of labels is fixed to be O(logn). Fix a uni-
form routing protocol P on T such that there does not exist
another protocol P 0 with the following property: for every
pair of vertices u; v and label l, Sl[u; v](P 0) � Sl[u; v](P),
S[u; v](P 0) � S[u; v](P) and there is a pair u; v and label
l such that Sl[u; v](P 0) < Sl[u; v](P).

Lemma A.2 Let T contain a straight path of length n 0

joining vertices u and v. There exists an x, n0=2 �
x � n0, such that if u0; v0 are any two vertices in T con-
nected by a straight path of length x, then S l� [u

0; v0] is

 (logn0= log logn0).

Proof: Let P be the path joining u and v. Let V 0 be the
vertices in P whose distance from u is between n0=2 and n0.
We claim that there is a vertex w 2 V 0 such that Sl� [u;w]
is s0 = 
(logn0= log logn). Indeed, a simple information
theoretic argument, and the fact that we have only O(logn)
labels implies this fact. Let x be the distance of u from w.

Suppose u0 and v0 are two vertices such that there is a s-
traight path joining them of length x. Suppose Sl� [u

0; v0] <
s0. Then the uniformity of P implies that keeping other
things the same, we can make Sl� [u;w] < s0. But this
contradicts the definition of the protocol P , and proves the
lemma.

Our lower bound instance T will contain a disjoint fam-
ily of trees. Since we will route within these trees and not
between them, it suffices to prove a lower bound in this case.
Given a number x, let Tx denote the complete binary tree of
depth 1=6 logn and having x subdivisions on each edge. T
is the union of Tx, for x = n1=3; : : : ; 2n1=3. A branching
node in Tx will be a node of degree 3. It is easy to check
that T contains at most n nodes.

Note that T contains a straight path of length 2n1=3 be-
tween two vertices. So, by Lemma A.2, there is n1=3 � x �
2n1=3 such that if u; v are two branching nodes in Tx joined
by a straight path, then Sl� [u; v] is 
 (logn0= log logn).
Now, iteratively using Lemma A.1, we can demonstrate a
path from the root to a leaf y of Tx such that routing from

the root of Tx to y requires stack depth 

�

log2 n
log logn

�
.
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