A Transformational Characterization of Equivalent Bayesian
Network Structures

David Maxwell Chickering
Computer Science Department
University of California at Los Angeles
dmazx@cs.ucla.edu

Abstract

We present a simple characterization
of equivalent Bayesian network struc-
tures based on local transformations.
The significance of the characteriza-
tion is twofold. First, we are able
to easily prove several new invari-
ant properties of theoretical interest
for equivalent structures. Second,
we use the characterization to de-
rive an efficient algorithm that iden-
tifies all of the compelled edges in a
Compelled edge identifi-
cation is of particular importance for
learning Bayesian network structures
from data because these edges indi-
cate causal relationships when cer-

structure.

tain assumptions hold.

1 INTRODUCTION

A Bayesian network for a set of variables U =
{x1,...,2,} represents a joint probability dis-
tribution over those variables. It consists of
(1) a network structure that encodes assertions
of conditional independence in the distribution
and (2) a set of conditional probability distri-
butions corresponding to that structure. The
network structure is an acyclic directed graph
(dag for short) such that each variable z; in U

has a corresponding node z; in the structure.

For any given network structure, there is a

corresponding set of probability distributions
that can be represented using a Bayesian net-
work with that structure. Two network struc-
tures are equivalent if the set of distributions
that can be represented using one of the dags
is identical to the set of distributions that can
be represented using the other. Because equiv-
alence is reflexive, symmetric, and transitive,
the relation defines a set of equivalence classes
over network structures.

The notion of equivalence is of particular im-
portance for learning Bayesian networks from
data. As we will see in Section 4, compelled
edges — edges with invariant orientation for
all structures in an equivalence class — can
indicate causal relationships when certain as-
sumptions hold.

There are two major contributions of this pa-
per. First, we derive a characterization of
equivalent network structures based on local
transformations. This characterization is pre-
sented here fully for the first time, although
the result is used in earlier works by Hecker-
man et al. (1994) and Chickering et al. (1995).
The characterization leads to a simple method
for proving invariant properties over equiva-
lent structures. We use the method to easily
prove that Bayesian networks with equivalent
structures require the same number of parame-
ters, and that several well-known scoring met-
rics used for learning Bayesian network struc-
tures from data give the same score to equiv-
alent structures. In addition, we easily prove

a graph-theoretic property of equivalent struc-
tures that is used by Chickering et al. (1995)
to derive an important complexity result.

The second contribution of this paper is the
presentation of an efficient algorithm to iden-
tify all of the compelled edges in a given net-
work structure. We use the transformational
characterization to prove the correctness of the
algorithm, and present an implementation of
this algorithm that is asymptotically optimal
on average.

In Section 2 we describe our notation and in-
troduce previous relevant work. In Section 3
we derive the characterization and prove some
invariant properties for equivalent structures.
In Section 4 we present a compelled edge iden-
tification algorithm and analyze the complex-
ity for various implementations.

2 NOTATION

In this section we introduce our notation and
discuss previous relevant work on which our
characterization is based.

A Bayesian network B is a pair (G, 0g) where
G = (U, Eg) is a dag, and 6y is the set of con-
ditional probability distributions that corre-
spond to G. Throughout this paper, we make
many comparisons between dags. It is to be
assumed that whenever we make such a com-
parison, the dags in question are all defined
over the same set of vertices U, and that the
only difference is the set of edges connecting
these vertices.

Although we already defined equivalence in
Section 1, we present a more formal definition
here.

Definition 1 Two dags G and G' are equiv-
alent if for every Bayesian network B =
(G.,0g), there exists a Bayesian network B' =
(G',0g/) such that B and B' define the same

probability distribution, and vice versa.

We use G ~ G’ to denote that G and G’ are

equivalent. As was stated earlier, the rela-
tion & defines a set of equivalence classes over
We often say that
two Bayesian networks are equivalent when we

the network structures.

mean that the structures of those networks are
equivalent.

A directed edge z; — x; € Fg is compelled in
G if for every dag G' ~ G, x; — z; € Egr. For
any edge e € Eg, if e is not compelled in G,
then e is reversible in G, that is, there exists
some dag G’ equivalent to G in which e has op-
posite orientation. We use C'g and Rg to repre-
sent the set of compelled and reversible edges
in G respectively. For any node x; in some dag
G, we use 1Y to denote the set of parents of x;
in G. When the dag G is clear from context,
we use II; instead. For notational simplicity,
we often use symbols without indices for nodes
in a dag. In this case, we subscript II with the
full name of the node. For example, we use II,
to denote the parent set of node y.

The notion of a covered edge is very important
in the sections to follow, so we emphasize the
definition here.

Definition 2 An edge e = ¢ — y € kg is
covered in G if Hg =Y Uz.

In other words, * — y is covered in G if x and y
have identical parents in G, with the exception
that x is not a parent of itself.

The skeleton of any dag is the undirected
graph resulting from ignoring the directional-
ity of every edge. For any pair of dags G and G’
that share the same skeleton, we use A(G,G’)
to denote the set of edges in G that have oppo-
site orientation in G'. A wv-structure in dag G
is an ordered triple of nodes (x,y, z) such that
(1) G contains the arcs @ — y and z — y, and
(2) x and z are not adjacent in G.

The characterization of equivalent structures
that we present in the next section is based on
that derived by Verma and Pearl (1990) which

reads:

Theorem 1 [Verma and Pearl, 1990] Two
dags are equivalent if and only if they have the
same skeletons and the same v-structures.

A consequence of Theorem 1 is that for any
edge e participating in a v-structure in some
dag G, if that edge is reversed in some other
dag G’, then G and G’ are not equivalent.

A topological sort of the nodes in a dag G is
any total ordering of the nodes such that for
any pair of nodes x; and z; in G, if 2; is an
ancestor of x;, then x; must precede z; in the
ordering.

3 THE CHARACTERIZATION AND
SOME CONSEQUENCES

In this section we derive a simple local char-
acterization of equivalent network structures.
Simply stated, we show that a property holds
for all pairs of equivalent networks that differ
by a single covered edge orientation if and only
if that property holds for all networks in the
equivalence class. In Sections 3.1 to 3.3, we
use this new characterization to prove several
invariant properties of equivalent structures.

While preparing the final version of this work,
we became aware of two previous attempts to
prove the correctness of the characterization.
Madigan (1993) uses the characterization to
prove a property of equivalent structures sim-
ilar to that of Theorem 1. Bouckaert (1993a)
uses the characterization to prove a property
of the MDL scoring metric that we explore in
Section 3.2. The proof we provide in this sec-
tion, unlike previous ones, includes the nec-
essary step of demonstrating the existence of
an edge that can be reversed and, moreover,
explicates constructively how such an edge is
found.

As we see in Lemma 1, for any pair of dags that
differ by a single edge reversal, there are sim-
ple, local, necessary and sufficient conditions
for determining if the dags are equivalent.

Lemma 1 Let G be any dag containing the
edge x — y, and let G' be the directed graph
identical to G except that the edge between x
and y in G' is oriented asy — x. Then G' is a
dag that is equivalent to G if and only if r — y
is a covered edge in G.

Proof:

(if) Assume that @ — y is a covered edge in
G. That is, Hg = I19 U 2. First we show that
G’ is a dag. If G’ contained a cycle, then this
cycle must include the edge y — x because G
is a dag. Thus there must be a directed path
from x to y in G which does not include the
edge v — y. Let z be the last node in this
path. By assumption, z is a parent of both
x and y in G, and because there is a directed
path from = to z, this implies that G contains
a cycle, which contradicts the fact that G is a
dag.

Now we show that G’ &~ G. Because G and G’
have the same skeletons, if G’ %6 G then one
of the dags must contain a v-structure that is
not in the other dag. Suppose that G’ contains
a v-structure not in §. This v-structure must
include the edge y — x because this is the
only edge that differs between G' and G. But
this implies that = has a parent that is not
adjacent to y in both graphs, contradicting the
assumption that every parent of x is also a
parent of y in G. If we assume that G contains
a v-structure not in G’, a similar argument also
yields a contradiction.

(only if) We now show that if @ — y is not
a covered edge in G, then either G’ contains a
directed cycle, or G’ is a dag that is not equiv-
alent to G. If x — y is not a covered edge in
G, at least one of the following two conditions
must hold in G: (1) Some node z # x is a par-
ent of y but not a parent of z. (2) Some node
w is a parent of x but not a parent of y.

Let z # x be a parent of y in G which is not a
parent of x in G. If z and x are not adjacent,
then (x,y,z) is a v-structure in G that does
not exist in G'. If x is a parent of z in G, then

by definition of G’, it follows that x is a parent
of z in G’ and therefore G’ contains a directed
cycle.

Let w be a parent of x in G which is not a
parent of y in G. If w and y are not adjacent,
then (w,x,y) is a v-structure in G’ that does
not exist in G. The node y cannot be a parent
of win G, lest G would contain a directed cycle.
O

Smith (1989) proves the (if) part of Lemma 1
using an additional precondition.

Clearly any property that holds over all dags in
an equivalence class must hold over every pair
of dags in that class which differ by the orien-
tation of a single covered edge. We prove the
converse by showing that for any pair of equiv-
alent dags G and G’, we can transform G into
G’ by a series of covered edge reversals, where
each reversed edge is from A(G,G’). As we see
below, identifying a covered edge in A(G,G’)
is simple.

Algorithm Find-Edge(G, ")
Input:
Equivalent dags G and G’ that differ

by at least one edge
Output: Edge from A(G,G)

(Let P, = {ulu — v € A(G,G")}.)

1. Perform a topological sort on the nodes
ing

2. Let y be the minimal node with respect

to the sort for which P, # ()

3. Let = be the maximal node with respect
to the sort for which = € P,

4. Output = — y

Lemma 2 The edge © — y output from Al-
gorithm Find-Edge(G,G’) is a covered edge.

Proof: Suppose that + — y is not a covered
edge. Let z # x be any parent of y that is
not a parent of x. If z is not adjacent to =z
then © — y participates in a v-structure in

G that cannot be in G’, contradicting the fact
that G ~ G'. If v — z is in G, then either
this edge or z — y must be in A(G,G’), lest
G' would contain a directed cycle. If @ — =
is in A(G,G’) then z would have been chosen
instead of y in Step 2. If z — y is in A(G,G’),
then z would have been chosen instead of x
in Step 3. If we assume that there exists a
parent of x that is not a parent of y, a similar
argument yields a contradiction. O

Using Lemmas 1 and 2 we can prove the char-
acterization.

Theorem 2 Let G and G' be any pair of dags
such that G ~ G'. There exists a sequence of
|A(G,G")| distinet edge reversals in G with the

following properties:

1. Fach edge reversed in G is a covered edge
2. After each reversal, G is a dag and G ~ G’

3. After all reversals, G = G’

Proof: We show that all the conditions hold
if we use Procedure Find-Edge with input
G and G’ to identify the next edge x — y to
By Lemma 2, * — y is a covered
edge and Condition 1 holds. By Lemma 1 and
Condition 1, Condition 2 holds. After each
reversal |A(G,G")| decreases by one and thus
Condition 3 holds. O

reverse.

Using Theorem 2, we can prove that a given
property is invariant over all equivalent struc-
tures simply by showing that the property is
invariant to any reversal of a single covered
edge. In the sections to follow, we prove that
several theoretically interesting properties are
invariant over equivalent structures using this
technique.

3.1 NUMBER OF PARAMETERS

In this section, we use Theorem 2 to prove that
Bayesian networks with equivalent structures
require the same number of parameters.

Consider a Bayesian network B = (G,6g)
where G = (U, Eg). For any node x; C U,
we use 1; to be the number of states of x;. For
each node x; with parents 1l;, 85 contains the
conditional probability distribution p(x;|11;).
We use Dim(x;,1l;) to represent the number
of logically independent parameters needed to
represent p(x;|Il;). For every distinct parent
instantiation, there are r; — 1 independent pa-
rameters, and therefore

Dim(x;, 1) = (r; — 1) H T (1)

z;€Il;

We use Dim(G) to represent the number of
parameters needed to completely specify 6.
We can express Dim(G) as follows:

Dim(G) = Z Dim(x;, 11;)

Theorem 3 If § =~
Dim(G").

G' then Dim(G) =

Proof: From Theorem 2, we need only show
that the theorem holds when G and G’ differ
by the orientation of a single covered edge. Let
x; — x; be this edge in G.

For any node xy, let 11, and 11}, be the parents
of node zp in G and G’ respectively. Because

every node except for x; and z; have identical
parents in G and G’, we need only show that

Dim(z;, 1) + Dim(zy,11;) = Dim(zs, H;) + Dim(zj, H;)

Plugging Equation 1 into the above expression
we have

[(Tz’ =1 IT

riell;

|

(Ti—l) H Tk

By definition of a covered edge, II; = II; U 2.
Furthermore, because x; — x; is the only edge
that differs between G and G’, we have II} =
II; Uz; and I} = II;. After plugging these
equalities into Equation 2 and dividing both

sides of the resulting equation by [1,, er, 7%, it
is easy to see that the equality holds. O

It follows from Theorem 1 and Theorem 3
that the space needed to represent an arbi-
trary distribution is identical for all equiva-
lent Bayesian networks. Other consequences
of Theorem 3 will be explored in the following
section.

3.2 SCORE EQUIVALENCE

In this section, we use Theorem 2 to prove that
several scoring metrics for learning Bayesian
networks from data give the same score to
equivalent structures.

A scoring metric is a function that takes as in-
put a Bayesian network structure, a database
of observed cases, and possibly some prior
knowledge, and returns a value reflecting how
well the structure fits the data. We use € =
{C4,...,Cn} to represent the database of N
observed cases and ¢ to represent our prior
knowledge. We assume that for each case (},
every variable in U is observed.!

A metric M is score equivalent if and only if
GrG = MG.C6)=MG.C¢

for all choices of €' and €. When a metric
does not use prior information, we omit the
argument £.

For a structure G, we define the likelihood L of
the observed data as a function of G, C' and

the parameters g as follows:
L(gv 0g, 6) = p(6|ghv ‘99)

where G” is the hypothesis that the data was
generated by a distribution that can be fac-
tored according to G.? It follows by the defini-
tion of G that the hypotheses corresponding

'Researchers typically make this assumption for com-
putational efficiency. Methods exist for scoring structures
when there is missing data.

2This is an acausal interpretation of a network struc-
ture. Heckerman et al. (1994, 1995) investigate a causal
interpretation of a network structure as well.

to equivalent structures are identical. We call
this property hypothesis equivalence.

The mazimum likelihood metric of a structure

G is defined as

Marr(G.C) = max L(G. 05, C)
g

It follows almost immediately from the defi-
nition of equivalent structures that the max-
imum likelihood metric is score equivalent.
Maximum likelihood is not very useful as a
scoring metric by itself because any complete
network structure will always get the highest
possible score. Many of the metrics we are
about to discuss, however, are defined as the
sum of My, and a penalty term.

The first scoring metric we consider, intro-
duced by Akaike (1974), is called the A in-
formation criterion (AIC). In the context of
scoring Bayesian networks, Ms7c can be ex-
pressed as follows:

Marc(G,C) = log Ma1(G, C) = Dim(G) (3)
Theorem 4 M ;¢ is score equivalent.
Proof: Follows immediately from Theorem 3

and the fact that My;y, is score equivalent. O

Another scoring metric introduced by Schwarz
(1978) is the Bayesian information criterion

(BIC). This metric is defined as
. 1
Mpi1c(G,C) =log My1(G, C)—§Dzm(g) log N

where N is the number of cases in C'.
Theorem 5 Mp;c is score equivalent.

The proof of Theorem 5 is identical to the
proof of Theorem 4.

Rissanen (1986) presents two scoring metrics
using the principle of minimum description
length (MDL). One of these metrics, originally
presented in Rissanen (1978), has recently re-
ceived some attention in the literature. A

version of this metric explored by Bouckaert

(1993b) is

Mupra(G,C) = logp(¢") — N - H(G,C)

—%Dim(g)logl\f (4)

where p(G") is the prior probability of hypoth-
esis G", and H(G, 6) is the entropy of the dis-
tribution resulting from parameterizing G with
the appropriate fractions in the data. It can be
shown that —N- H (G, 6’) is identical to the log
of the maximum likelihood metric. Therefore
equation 4 reduces to

Myipri(G,C) = log p(G") + Mg (G, C)

Theorem 6 My;pr is score equivalent.

Proof: Follows immediately from hypothesis
equivalence and Theorem 5. O

Theorem 6 was also proven by Bouckaert
(1993a). Another version of the MDL met-

ric presented by Lam and Bacchus (1993) can
be written as

Mupi2(G,C) = =N - H(G,C) — |Eg|log N — ¢ - Dim(G)

where ¢ is a constant that represents the num-
ber of bits needed to store a numerical value to
some specified precision. We can again elimi-
nate the entropy term to obtain

Mup12(G, C) =log Marr(G,C) — |Egllog N — ¢ - Dim(G)

Theorem 7 My;pro is score equivalent.

Proof: The first term is score equivalent by
definition of equivalent structures. The second
term is score equivalent by Theorem 1. The
third term is score equivalent by Theorem 3.
O

The last metric we consider is a Bayesian met-
ric discussed by Heckerman et al. (1994, 1995)
known as the BDe metric. A Bayesian met-
ric is any metric that expresses the relative
posterior probability of the structure hypoth-
esis, given the observed cases and prior knowl-
edge. Specifically, for any Bayesian metric M
we have

M(G,C,€) = log p(G"[€) + log p(C|G", €) +(c)
5

The first term in Equation 5 is the prior proba-
bility of the structure hypothesis. The second
term, which we call the likelihood of the data,
is the posterior probability of the data given
the structure hypothesis. The third term is an
arbitrary constant.

Heckerman et al. (1994, 1995) derive a closed
form expression for the likelihood term of
Equation 5 using some assumptions about
prior densities over fg. Before we present the
expression, we need the following notation. ¢;
is the number of distinct instantiations of the
parents of node x;. N;j; is the number of cases
in C' for which x; = k and II; in its jth config-
uration.

; noa (N
e = Ml o
I'(N/ . + Nijk

where z/]k = p(l‘i = k1L, =]|§)7 Nij =
>k Nijr and Ni. =357, N[T is the Gamma
functlon Wthh satisfies ['(x 4+ 1) = 2['(x). In
practice, researchers can use a prior network
to determine both p(x; = k,II; = j|¢) and a

reasonable prior distribution p(G"|€).

The BDe metric is defined to be the Bayesian
metric of Equation 5 for which the likelihood
term is computed using Equation 6. We say
that a Bayesian metric is likelihood equivalent
if p(6|gh, £) is score equivalent. Heckerman et
al. (1994, 1995) use Theorem 2 to prove the
following result.

Theorem 8 Mpgp. is likelihood equivalent.

It follows by hypothesis equivalence that
Mgp. is score equivalent as well.?

3.3 NUMBER OF PARENTS

In this section we present yet another conse-
quence of Theorem 2. This result was used

*Theorem 8 was proven without the assumption of hy-
pothesis equivalence. It follows that the result also applies
to causal interpretations of structures for which hypothesis
equivalence does not hold.

by Chickering et al. (1995) to prove that the
Bayesian approach to learning Bayesian net-
works from data is NP-hard.

Theorem 9 Let G and G' be any pair of dags
such that G ~ G'. If G has a node with exactly
k parents, then G' has a node with evactly k
parents.

Proof: From Theorem 2, we need only show
that the theorem holds when G and G’ differ
by the orientation of a single covered edge. Let
x — y be this edge in G.

Because every node except for & and y have
identical parents in G and §’, the theorem
holds trivially unless the only node in G that
has k parents is either x or y. From the defi-
nition of a covered edge it follows that in G', =
has the same number of parents that y has in
G and y has the same number of parents that
z has in G. O

4 IDENTIFYING COMPELLED
EDGES

In this section we first discuss the significance
of compelled edge identification for learning
networks from data and explore previous rele-
vant work. Next we present an algorithm that
identifies the set of all compelled edges in an
equivalence class. Finally, we discuss an im-
plementation of the algorithm that is asymp-
totically optimal on average.

As was mentioned in Section 1, identifying
compelled edges is of particular importance for
learning Bayesian networks from data because
these edges can indicate causal influences. The
assumptions needed to infer causation from
the compelled edges are (1) if two variables
are statistically dependent in every observable
context, then one of the variables is a direct
cause of the other, and (2) if two variables
are statistically independent in some (possi-
bly empty) observable context, then neither
Note
that the first assumption excludes the possi-

variable is a direct cause of the other.

bility that there is a hidden common cause of
two variables. Spirtes et al. (1993) call As-
sumption 1 causal sufficiency and Assumption
2 faithfulness. Assumption 2 is called stability
by Pearl and Verma (1991) . If an equivalence
class is learned with certainty and the assump-
tions hold, then all the compelled edges denote
causal influences.

There are two distinct approaches that re-
searchers use to learn Bayesian networks from
data. The first approach, which we call the
metric approach, uses a scoring metric to mea-
sure how well a particular structure fits an
observed set of cases. A search algorithm is
typically used to identify one or more struc-
tures that attain a high metric score. As
we saw in Section 3.2, many of the metrics
that researchers use have the property of score
equivalence. It follows that when using a
score equivalent metric, the metric approach
to learning is in fact a method for identifying
entire equivalence classes. We assume in this
section that a score equivalent metric is being
used in the metric approach.

In the second approach to learning, which we
call the independence approach, an indepen-
dence oracle is queried to identify the equiva-
lence class that captures the independencies in
the distribution from which the observed data
was generated.

One distinction between the two learning ap-
proaches is the way equivalence classes are
represented. Using the metric approach, an
equivalence class is represented by any ele-
ment in the class. We call this the canonical
element representation scheme. In the inde-
pendence approach, researchers typically use
an acyclic partially directed graph (pdag for
short) to represent the equivalence class.

From Theorem 1, the only edges that need be
directed in a pdag representation to uniquely
identify an equivalence class are those that
participate in v-structures. If, in fact, these
are the only directed edges in the pdag, we

say that the graph is a minimal pdag repre-
sentation of the equivalence class. If a pdag
has the property that every directed edge cor-
responds to a compelled edge, and every undi-
rected edge corresponds to a reversible edge
for every dag in the equivalence class, then we
say 1t is a completed pdag representation.

When using the independence approach to
learning, researchers use a statistical test (such
as chi-square) to approximate the indepen-
dence oracle, and the learning algorithm builds
a unique minimal pdag representation of the
equivalence class. We refer the reader to
Verma and Pearl (1992) or Spirtes et al.
(1993) for the details of this procedure.

Previous work on compelled edge identifica-
tion can be understood in the context of the
independence approach to learning. After
identifying a minimal pdag representation of
an equivalence class, the learning algorithm
searches for the remaining compelled edges
that do not participate in v-structures by
matching patterns of directed and undirected
edges. When a match is found, one or more
undirected edges in the pdag are directed and
the process continues. Verma and Pearl (1992)
present an algorithm of this type that is known
to be sound, but not complete. That is, ev-
ery directed edge in the final pdag is provably
compelled, but not every undirected edge is
provably reversible. More recently, both Meek
(1995) and Anderson et al. (1995) have de-
rived sound and complete algorithms for con-
structing a completed pdag representation.

The algorithm we present in this section takes
a dag as input, and labels every edge in the
dag as either compelled or reversible. We
show that the algorithm is correct and discuss
an implementation that is asymptotically op-
timal in the average case. Our algorithm is
also applicable to identifying compelled edges
when the equivalence class is represented with
a pdag. Dor and Tarsi (1992) present a
polynomial-time algorithm that takes as input
a (possibly minimal) pdag representation of an

equivalence class, and returns a canonical ele-
ment representation. Unfortunately, the algo-
rithm has a worst-case time complexity that is
worse than that of of our identification algo-
rithm. Nonetheless, if the equivalence class is
represented as a minimal pdag, we get a sig-
nificant improvement in asymptotic behavior
over the previous algorithms by changing rep-
resentations and using our algorithm.

When the independence approach to learn-
ing is used, an equivalence class is determined
with certainty. Because the data is finite, how-
ever, we have uncertainty about the learned
equivalence class as a result of the approxima-
tion of the independence oracle. One advan-
tage to using a Bayesian scoring metric instead
of other metrics or the independence approach
is that the uncertainty about any equivalence
class is explicitly represented in the score of
that class. Consequently, we can express our
belief in the statement s = “x is a direct cause
of y” by summing over all (non-equivalent)
structures:

p(s|C.&) = Sp(s|gh, C.€) - p(G"C,€)
g
~ §p<s|gh,§>-p<gh|6x§> (7)

In practice, it is impossible to sum over all
possible equivalence classes. Therefore we at-
tempt to find a small subset of structure hy-
potheses that account for a large fraction of
the posterior probability of the hypotheses.
Chickering (1995) suggests a set of search op-
erators that can be used to efficiently search
for such a subset.

For those hypotheses in which = — y
is compelled, the corresponding probability
p(s|G", €) term will be unity. If y — z is com-
pelled or if # and y are not adjacent, then the
term will be zero. If the edge between = and y
is reversible, then p(s|G", £) can take any value
from zero to one and must be assessed directly.

Heckerman et al. (1994, 1995) discuss a causal
interpretation for the hypothesis G*. The hy-

pothesis not only asserts that the distribution
that generated C can be factored according
to G, but that each node in the graph is a
direct cause of its children. Using this inter-
pretation, the term p(s|G",¢) is either one or
zero, depending on whether + — y is in G or
not. When structures are interpreted causally,
we no longer have the property of hypothesis
equivalence. Nonetheless, we can sometimes
still use entire equivalence classes to calculate
Equation 7. For example, if the prior prob-
ability distribution over structure hypotheses
is uniform, then a likelihood equivalent learn-
ing metric is score equivalent. In this case, we
can still take the sum in Equation 7 over non-
equivalent structures and weight each term by
the number of dags in the equivalence class
that contain the edge v — y. We are cur-
rently investigating techniques for efficiently
determining such a weighting term.

In Section 4.1 we present the algorithm and
prove that it correctly classifies all of the edges
in a dag. In Section 4.2 we discuss asymptotic
running time behavior of various implementa-
tions.

4.1 THE ALGORITHM

The first step of the algorithm is to define a
total ordering over the edges in the given dag.
For simplicity, we present this step as a sepa-
rate procedure listed below. To avoid confu-
sion between ordered nodes and ordered edges,
we have capitalized “node” and “edge” below.

Algorithm Order-Edges(G)

Input: dag G

Output: dag G with labelled total order on
edges

1. Perform a topological sort on the

NODES in G

2. Set1=0

3. While there are unordered EDGES in G

4. Let y be the lowest ordered NODE
that has an unordered EDGE incident
into it

5. Let = be the highest ordered NODE
for which * — y is not ordered

6. Label x — y with order 2

7. 1=1+41

The algorithm to find the compelled edges is
as follows.

Algorithm Find-Compelled(G)

Input: dag G

Output: dag G with each edge labelled either
“compelled” or “reversible”

1. Order the edges in G using
Algorithm Order-Edges

2. Label every edge in G as “unknown”

3. While there are edges labelled “un-

known” in G

4. Let x — y be the lowest ordered edge
that is labelled “unknown”

5. For every edge w — x labelled “com-
pelled”

6. If w is not a parent of y, then label
r — y and every edge incident into
y with “compelled” and goto 3

7. Else label w — y with “compelled”

8. If there exists an edge z — y such that
z # x and z is not a parent of z, then
label x — y and all “unknown” edges
incident into y with “compelled”

9. Else label + — y and all “unknown”
edges incident into y with “reversible”

Before proving the correctness of the algo-
rithm, we need a few intermediate results. The
proofs of the first two results, which are given
in the Appendix, make extensive use of Theo-
rem 2.

Lemma 3 Let G be any dag and let x, y and =
be any three nodes that are all adjacent in G. If
any two of the connecting edges are reversible,
then the third one is also.

Lemma 4 Let G be any dag, and let x — y be
any edge in G such that 11, C II,Uxz. The edge
x — y is reversible if and only if for every edge
w — x such that w and y are not adjacent,
w — x is reversible.

In addition to the above two lemmas, we find
the following three simple results useful for
proving the correctness of our algorithm.

Lemma 5 When * — y ts chosen in Step /
of the algorithm, every edge incident into node
y 1s labelled “unknown”.

Proof: Follows by noting that after any it-
eration of the while loop, every edge incident
into y gets labelled with either “reversible” or
“compelled”. O

Lemma 6 Let ©+ — y be the edge chosen in
Step 4 of the algorithm. Any parent of y that
is adjacent to x is a parent of x.

Proof: Let z be any parent of y that is ad-
jacent to z. By Lemma 5 we know z — y is
labelled “unknown”. If + — z, then z — y
has a lower order than @ — y (see Algorithm
Order-Edges) and would have been chosen
in Step 4. O

Lemma 7 Let ©+ — y be the edge chosen in
Step 4 of the algorithm. If x — y is compelled,
then every edge incident into y is compelled.

Proof: Let z — y be any edge incident into
y. If z and = are not adjacent, then z — y
must be compelled because it participates in
a v-structure. If z and x are adjacent, then
from Lemma 6 we know the edge is oriented
as z — x. If z — x i1s compelled, then there
is a directed path from z to y in every graph
equivalent to G and hence reversing z — y will
always create a cycle. If z — z is in Rg, then
by Lemma 3 z — y is compelled. O

Now we prove the correctness of our algorithm.

Theorem 10 The edge labels resulting from
the algorithm are correct.

Proof: We prove that the labellings are cor-
rect by induction on the number of iterations
through the while loop.

When the first iteration of the while loop be-
gins, all edges are labelled “unknown”. Thus
for the edge * — y chosen in Step 4, there can
be no edge w — z tested for in Step 5, lest
this would be the first edge instead of 2 — y.
Therefore 11, = () and the algorithm drops im-
mediately to Step 8. There can be no edge
z — y such that z and z are adjacent because
by Lemma 6, we know that any edge between
z and x is oriented as z — x which implies that
x — y would not have been the first edge cho-
sen. Therefore if any edge z — y is incident
into y, that edge is part of a v-structure with
x — y and therefore both z —+ y and z — y
are compelled. Furthermore, by Lemma 7, all
edges incident into y are compelled, so all la-
belling done in Step 8 is correct. If Step 9 is
reached, no edge z — y exists and it follows
that I, = z. Because II, = (), z — y is re-
versible by Lemma 4, and the labelling done
at Step 9 is correct.

Assume all labelling is correct for the first k—1
iterations through the while loop of Step 3.
Consider the edge * — y chosen in Step 4 on
the kth iteration of the while loop.

From Step 6, if there is a compelled edge
w — x such that w is not a parent of y then
w and y are not adjacent, lest G contains a
directed cycle. It follows that *+ — y must
be compelled, lest there would exist a dag in
the same equivalence class as G with the extra
v-structure (w,z,y). By Lemma 7, it follows
that all edges incident into y are compelled
and therefore all labelling done in Step 6 is
correct. If there is a compelled edge w — «
such that w and y are adjacent, then the edge
between w and y must be oriented as w — y

lest G would contain a directed cycle. Further-
more, we deduce that this edge is compelled by
the following argument: if + — y is compelled,
then there is a directed path from w to y in
every dag equivalent to G and hence reversing
w — y will always create a cycle; if + — y is
reversible, then w — y is compelled by Lemma
3. Thus all labelling done in Step 7 is correct.

From Step 8, if there exists a parent z of y
that is not a parent of =, then by Lemma 6, =z
is not adjacent to x which implies * — y par-
ticipates in a v-structure and is therefore com-
pelled. Furthermore, by Lemma 7, all edges
incident into y are compelled and hence all la-
belling done in Step 8 is correct.

If Step 9 is reached, every parent of y (with
the exception of x) is a parent of x. That is,
I, C I, U . Furthermore, because Step 9 is
reached only if Step 6 always fails, every edge
w — x for which w and y are not adjacent
must be reversible. Consequently, we conclude
from Lemma 4 that © — y is reversible.

Now consider any edge z — y incident into y
that is labelled with “unknown”. It must be
the case that z — x is reversible, lest z — y
would have been labelled “compelled” in Step
7. Thus we conclude from Lemma 3 that z —
y is reversible and hence all labelling done in
Step 9 is correct. O

4.2 COMPLEXITY ANALYSIS

In this section we investigate the asymptotic
time behavior of various implementations of
Algorithm Find-Compelled presented in
Section 4.1. Because the algorithm labels ev-
ery edge in the dag G, the best that any im-
plementation can do is O(|Eg|).

We first investigate an implementation of Al-
gorithm Order-Edges that runs in time
O(|Eg|). We assume that G is represented
using the adjacency-list representation. It is
well known that a topological sort can be per-
formed in time O(|Fg|) using a depth-first

search. Once the nodes in the dag have been
ordered, we would like to sort the parents of
each node in descending order. Once we have
accomplished this, sorting the edges becomes
trivial: step through each node in ascending
sort order, and for each node, list all the in-
cident edges by stepping through the sorted
parent list.

One simple way to sort the parent pointers is
as follows. Extend the representation to in-
clude child-pointers for each node. This will
take time O(|Eg|). Now step through each
node in ascending order, and for each child
of the current node, insert the current node at
the front of the parent list. When the algo-
rithm completes (in time O(|Eg|)) the parent
pointers will be sorted in descending order.

From the above discussion, we see that Step 1
of Algorithm Find-Compelled can be com-
pleted in time O(| Fg|). Assume that with each
node, we store separate lists of “compelled”,
“reversible”, and “unknown” incident edges
(i.e. parents), so that these can be efficiently
accessed in the algorithm. We now consider
the inside of the while loop. For each edge
that we consider in Step 5, we necessarily la-
bel at least one “unknown” edge in either Step
6 or Step 7. Thus neither Step 5, Step 6 nor
Step 7 can ever be executed more than |Eg]|
times. Furthermore, for every edge considered
in Step 8, that edge is “unknown” (See Lemma
7) and will get labelled in the current iteration
of the while loop. Thus every operation within
the while loop is executed no more than |Fg|
times.

We note that it is possible to get an amortized
constant time adjacency test in Step 6, but do
not want to worry the reader with the details.
Unfortunately, this is not the case for the ad-
jacency test in Step 8. Because all labellings
can be done in constant time, it follows that
the time complexity of the entire algorithm is
dominated by the O(|Eg|) executions of Step
8. If we use a hash table to store the parents
of each node, we can complete the adjacency

test in constant time on average. The result-
ing implementation of the algorithm will take
time O(|Fg|) on average, which is asymptoti-
cally optimal.

A problem with the hash table implementa-
tion is that in the worst case, each adjacency
test can take O(|U]), resulting in a worst case
O(|U| - |Egl) algorithm. If instead we test for
adjacency by performing a binary search over
the parents of a node, each test can be com-
pleted in time O(log |U]), and the resulting al-
gorithm takes time O(| Fg|log |U]) in the worst

case.

If G is represented with an adjacency matrix,
then testing for adjacency will always be a
constant time operation, and therefore Algo-
rithm Find-Compelled takes time O(|Eg|)
in the worst case. Building the adjacency
matrix, however, takes time O(|U]?) and will
therefore dominate the time to complete the
algorithm. For dense graphs, the use of an
adjacency matrix is a good solution.

If an equivalence class is represented using a
minimal pdag, we can construct a completed
pdag using a combination of our algorithm
and the algorithm presented by Dor and Tarsi
(1992) which returns a canonical element given
a minimal pdag. First we obtain the canon-
ical element, which has been shown to take
time O(|U] - |Fg|). Next we run Algorithm
Find-Compelled to determine all the com-
pelled edges. Finally we direct every undi-
rected edge in the original pdag that corre-
sponds to a compelled edge. The running time
of the combined algorithm is dominated by the
time to retrieve the canonical element and is

therefore O(|U| - | Eg|).

Acknowledgments

I would like to thank David Galles, Dan
Geiger, Rich Korf, David Madigan, Chris
Meek, Judea Pearl, and anonymous reviewers
for useful suggestions. I owe special thanks to
David Heckerman, whose help and encourage-

ment made this work possible. This work was
supported by NSF Grant No. IRI-9119825,

and a grant from Rockwell International.

References

[Akaike, 1974] Akaike, H. (1974).
look at the statistical model identification.
IEEFE Transactions on Automatic Control,
19(6):716-723.

A new

[Anderson et al., 1995] Anderson,
S. A., Madigan, D., and Perlman, M. D.
(1995). A characterization of markov equiv-
alence classes for acyclic digraphs. Technical
Report 287, University of Washington, De-
partment of Statistics.

[Bouckaert, 1993a] Bouckaert, R. (1993a). Be-
lief network construction using the mini-
mum description length principle. Techni-
cal Report UU-C5-1994-27, Department of

Computer Science, Utrecht University, The
Netherlands.

[Bouckaert, 1993b] Bouckaert, R. (1993b).
Probabilistic network construction using the
minimum description length principle. In

ECSQARU, pages 41-48.

[Chickering et al., 1995] Chickering,
D., Geiger, D., and Heckerman, D. (1995).
Learning Bayesian networks: Search meth-
ods and experimental results. In Proceedings
of the Fifth International Workshop on Ar-
tificial Intelligence and Statistics.

[Chickering, 1995] Chickering, D. M. (1995).
Search operators for learning equivalence
classes of Bayesian network structures.
Technical Report R-231, Cognitive Systems
Laboratory, UCLA Computer Science De-
partment.

[Dor and Tarsi, 1992] Dor, D. and Tarsi, M.
(1992). A simple algorithm to construct a
consistent extension of a partially oriented
graph. Technical Report R-185, Cognitive

Systems Laboratory, UCLA Computer Sci-
ence Department.

[Heckerman et al., 1994] Heckerman,
D., Geiger, D., and Chickering, D. (1994).
Learning Bayesian networks: The combina-
tion of knowledge and statistical data. Tech-
nical Report MSR-TR-94-09, Microsoft.

[Heckerman et al., 1995] Heckerman,
D., Geiger, D., and Chickering, D. (1995).
Learning discrete Bayesian networks. Ma-
chine Learning. to appear.

[Lam and Bacchus, 1993] Lam, W. and Bac-
chus, F. (1993). Using causal informa-
tion and local measures to learn Bayesian

In Proceedings of Ninth Con-

ference on Uncertainty in Artificial Intel-

ligence, Washington, DC, pages 243-250.

Morgan Kaufmann.

networks.

[Madigan, 1993] Madigan, D. (1993). A note

on equivalence classes of directed acyclic
Probability in the
Engineering and Informational Sciences,

7(3):409-412.

independence graphs.

[Meek, 1995] Meek, C. (1995). Causal in-
ference and causal explanation with back-
ground knowledge. In Proceedings of

Eleventh Conference on Uncertainty in Ar-

tificial Intelligence,

Kaufman.

To Appear. Morgan

[Pearl and Verma, 1991] Pearl, J. and Verma,
T. (1991). A theory of inferred causation.
In Allen, J., Fikes, R., and Sandewall, E.,
editors, Knowledge Representation and Rea-
soning: Proceedings of the Second Interna-
tional Conference, pages 441-452. Morgan
Kaufmann, New York.

[Rissanen, 1978] Rissanen, J. (1978). Model-
ing by shortest data description. Automat-
ica, 14(1):465-471.

[Rissanen, 1986] Rissanen, J. (1986). Stochas-
tic complexity and modeling. The Annals of
Statistics, 14(3):1080-1100.

[Schwarz, 1978] Schwarz, G. (1978). Estimat-
ing the dimension of a model. Annals of
Statistics, 6:461-464.

[Smith, 1989] Smith, J. Q. (1989). Influence
diagrams for statistical modelling. Annals

of Statistics, 17(2):654-672.

[Spirtes et al., 1993] Spirtes, P., Glymour, C.,
and Scheines, R. (1993). Causation, Pre-

diction, and Search. Springer-Verlag, New
York.

[Verma and Pearl, 1990] Verma, T. and Pearl,
J. (1990). Equivalence and synthesis of
causal models. In Proceedings of Sizth Con-
ference on Uncertainty in Artificial Intelli-
gence, pages 220-227.

[Verma and Pearl, 1992] Verma, T. and Pearl,
J. (1992). An algorithm for deciding if a
set of observed independencies has a causal
explanation. In Proceedings of Fighth Con-
ference on Uncertainty in Artificial Intelli-
gence, Stanford, CA. Morgan Kaufmann.

APPENDIX: PROOF OF LEMMAS 3
AND 4

In this appendix, we prove Lemma 3 and
Lemma 4, using numerous intermediate re-
sults.

For any pair of dags G and G’ that share
the same skeleton, we use §;(G,G’) to be the
set of edges incident into node x; in G that
have opposite orientation in G’. Note that

A(G,G") = U;6,(6,G)

For many of the lemmas to follow, we consider
the ordered sequence of intermediate dags —
and the ordered sequence of edge reversals that
created the intermediate dags — in a transfor-
mation from some dag G to another dag G’ ~ G
using the procedure as described in the proof

of Theorem 2. To make our discussion clear,
we provide the following detailed description
of the algorithm from the proof of Theorem 2
that has been modified to build the desired se-
quences, as opposed to actually modifying the

dag G.
Build-Sequences(G, G’)

1. Set Go =G and Set 1 =0
2. While G, # G’
3. Let ¢, = Find-Edge(G;,G")

4. Set Giy1 to be the result of reversing
e; in G;

5. Increment ¢ by one

We use D(G,G") = {Go,...,Ga@,¢)} for the
ordered sequence of dags constructed from the
above algorithm. Similarly, we use £(G,G’) =
{€0,- ... €ja(,gn-1} for the ordered sequence
of edges reversed in the above algorithm. Note
that given G, € D(G,G’) we can construct
Giv1 € D(G,G") by reversing e; € £(G,G’) in
g;.

The sequences D(G,G") and £(G,G") depend
not only on G and G’, but on the specific topo-
logical sort performed in Step 1 of each call to
Algorithm Find-Edge. Because the topo-
logical sort may not be unique, it seems that
our definition of these two sets is ambiguous.
As we shall see, however, the topology of G
constrains the sequences enough for our cur-
rent definition to be useful.

Lemma 8 Let G; and G,y be any pair of dags
in the sequence D(G,G'). Let e; = x; — xp, be
the edge by which G; and G;11 differ. Then the
following conditions hold:

1. 60(Git1,G") = 0n(Gi, G') \ &
2. 5](gi+17g/) = 5](gi7g/) f07“ CLH] 7£ h

Proof: Condition 1 follows trivially because
the only difference between G; and G, is the
orientation of e¢;. The only parent sets that
have changed as a result of the reversal are
II; and II,, and hence Condition 2 holds when
7 1is neither ¢t nor h. Because x; — xj is in
0n(G:,G"), the reversed edge xp — x; cannot
be in 6:(Gi+1,G’) and hence Condition 2 holds
as stated. O

Corollary 1 For any node x;, 6;(Gr,G") C
(G5, 9") if j < k.

Proof: Follows immediately from Lemma 8.
O

Corollary 1 shows formally that as we progress
along the sequence D(G, G’), the edges incident
into a particular node that have different ori-
entations in G’ is a strictly decreasing set.

Lemma 9 Let x; — x; be the edge returned
by a call to Algorithm Find-Edge(G, G').
Then 6,(G,G") is empty for every xy that is
an ancestor of x;.

Proof: Suppose there exists a node x; that
is an ancestor of x; for which §;(G,G’) is not
empty. In any topological sort consistent with
G, xp must precede x; and hence x; would
have been chosen instead of x; in Step 2 of

Algorithm Find-Edge(G, ¢’). O

Lemma 10 Let G be any dag, and let x; and
x; be any pair of nodes such that there is a
directed path from x; to x; in G. Let G' be
any dag equivalent to G. For any pair of edges
e € 6;(G,G") and f € 6;(G,G'), e comes before
fin &(G,G").

Proof: (See Figure 1) Without loss of gener-
ality, let z; be the first descendant of x; that
has an incident edge f reversed. Let G be the
graph in which f is reversed, or equivalently,
let k& be the index such that ¢, = f.

Assume the lemma does not hold, and hence
[1s reversed before e. Because z; is the first
descendant to have an incident edge reversed,

it follows that any directed path from z; to x;
in G must still exist in G, and therefore x; is
an ancestor of x; in G;. Because f is the next
edge to be reversed, it follows from Lemma 9
that 6;(Gr,G’) is empty. But by assumption
e has not yet been reversed in Gy, and hence
e C 6;(Gr,G"), yielding a contradiction. O

Figure 1: Relevant dags for the proof of

Lemma 10

Lemma 11 Let G be any dag, and lel R, be
any set of edges incident into node y such that
R, € Rg. Then there exists a dag G' ~ G
for which all edges in R, are simultaneously
reversed.

Proof: (See Figure 2) Proof by induction on
|R,|. For |R,| = 1, the lemma holds trivially
by definition of Rg.

Assume the lemma holds for |R,| = k — 1.We
now show the lemma holds for |R,| = k. By
the induction hypothesis, there must exist a

dag ‘H =~ G in which k — 1 of the edges from
R, are reversed. Let Ry be the corresponding
set of reversed edges in H, and let e be the edge
in R, that is not reversed in ‘H. By definition
of Rg, we know there exists some dag H' ~ G
for which the edge e is reversed.

Relevant dags for the proof of

In dag H, every edge from R,
except e has been reversed. In dag H', e has
been reversed.

Figure 2:
Lemma 11.

Because all of the edges in Ry are incident into
descendants of y in H, it follows from Lemma
10 that e comes before any edge from Ry in
the sequence E(H,H'). This implies that the
graph from D(H,H') that results from revers-
ing e satisfies the stated requirements for G'.
O

For any dag G, we use Cx(G) to denote the
subgraph of G induced by the nodes in set X.
A clique in a directed graph G is a subgraph
Cx (@) such that for every pair of nodes z; and
x; in X, either the edge x; — x; or the edge
x; — x;1s1in G. A covered clique in a directed
graph G is a clique Cx(G) such that for any
node z ¢ X that is a parent of some node in
X, z is a parent of every node in X. Note
that a covered edge is a covered clique with
two nodes.

Lemma 12 Let G be any dag containing a
covered clique Cx(G). No edge connecting a
pair of nodes in X can participate in a v-
structure in G.

Proof: Suppose x; — x; connects two nodes
in X and participates in a v-structure. This
implies there is a parent of z; that is not ad-
jacent to x; — and hence not a parent of z;

— contradicting the fact that the nodes in X
form a covered clique. O

The following lemma is a generalization of
Lemma 1.

Lemma 13 Let G be any dag containing a
covered clique Cx(G), and let Tx be any to-
tal ordering over the nodes in X. Let G’ be
the graph identical to G, except the edges in
Cx(G') are oriented to be consistent with Tx.
Then G' is a dag that is equivalent to G.

Proof: Clearly G’ and G have the same skele-
ton. Suppose there exists a v-structure in ¢
that is not in G'.
clude an edge from Cx(G) because these are
the only edges by which G can differ from G'.
But by Lemma 12, no such v-structure can ex-
ist.

This v-structure must in-

Suppose there exists a v-structure in G’ that is
not in G. Because only edges contained within
Cx(G) have been reversed in G, it follows that
Cx(@') must be a covered clique in G’, and
again by Lemma 12 we conclude that no such
v-structure can exist.

Suppose G’ contains a cycle (see Figure 3). Be-
cause G is acyclic, any cycle in G’ must pass
through an edge in Cx(G").
edges are consistent with the total ordering 7x,
no cycle can be completely contained within
Cx(@’). This implies there exists a pair of
nodes z; and z; in X such that there is a di-

Because these

rected path from x; to x; along the cycle in G’
consisting of no edges from Cx(G). Let z be
the last node in such a path. By definition of
a covered clique, z must be a parent of z; in
G, and therefore G contains a cycle. O

Lemma 14 Let G be any dag, and let R, =
{z1 = y,..., 2 = y} be any subset of edges
incident into node y such that R, C Rg, and
let X ={xq,...,21} be the set of tails of these
edges. There exists a dag G' =~ G for which
Cxugn(G') is a covered clique in G'.

Proof: By Lemma 11, we know there exists a

Figure 3: Relevant dags for the proof of
Lemma 13. The dashed line surrounds the
covered clique in both graphs.

dag H ~ G such that R, C 6,(G,H). Consider
the sequence D(G,H), and let G’ be the dag
resulting immediately after the last edge from
R, is reversed. We show that Cxy,(G') is a
covered clique in G'.

First we show that Cxyg,1(G') is a clique. By
definition of X, y is adjacent to every node in
X. Thus if the subgraph Cxy,(G’) is not a
clique, then there must exist some pair {x;, z;}
from X that are not adjacent. But this implies
that (z;,y, ;) is a v-structure in G, contradict-
ing the fact that both z; -+ y and z; — y are
members of Rg.

To complete the proof, we must show that for
any node z that is not in X U {y}, if z is a
parent of any node in X U {y}, then z is a
parent of every node in X U {y}. We break
this task into two parts: we show that in G,
(1) if z is a parent of y then z is a parent of
every node in X and (2) if z is a parent of any
node in X, then z is a parent of y.

1) If z is a parent of y in G’ then z is a parent
(p y p
of every node in X in G'.

Assume z is a parent of y.

We first show that z is also a parent of y in the
original dag G. Suppose this is not the case,
and G contains the edge y — z. By Lemma 10
all edges from R, will be reversed before this
edge. It follows by definition of G’, however,
that the last edge reversed was incident into y
and hence y — z must exist in G’, contradict-
ing the assumption that z is a parent of y in

g'.

Now we prove Part (1) by showing that z is
a parent of every node z; € X. For any node
x; € X, z must be adjacent to x; else the v-
structure (x;,y, z) exists in G and not G’. The
edge must be oriented as z — z; in G’, else
there would be the directed cycle z; — 2z —
y— x;in G'.

(2) If z is a parent of any node in X in G,
then z is a parent of y in G'.

Assume z is a parent of some node z; € X in
g'.

The node z must be adjacent to y, lest the
v-structure (z, z;,y) exists in G’ and not in G.

We now consider the two possible orientations
for the edge between z and y in the original
graph G. If the edge y — z is in G, then G
must also contain x; — z, lest there would be
a directed cycle in G. Because z is a descen-
dent of y in G, we know from Lemma 10 that
all the edges from R, will be reversed before
x; — z. It follows by definition of G', however,
that the last edge reversed was incident into y
and hence x; — z must also exist in G’, con-
tradicting the assumption that z is a parent of
z; in G'.

It follows from the above argument that z — y
must exist in the original dag G. Now, if y — =
is in G’, then = — y € R,, contradicting the
fact that z ¢ X. Consequently, z must be a
parent of y in G'. O

Corollary 2 Let G be any dag, and let R, =
{z1 = y,...,2p = y} be any set of edges in-
cident into node y such that R, C Rg. Lel
X = {ay,... 2} be the sel of tails of these
edges. FEvery edge in Cxyug,1(G) is in Rg

Proof: By Lemma 14, there exists a dag G’ ~
G for which Cxyun(G) is a covered clique. Let
G" be identical to G’ except that the edges in
Cxugy}(G) are oriented to be in the opposite
direction of the corresponding edges in G. By
Lemma 13 it follows that G”" ~ G. O

We can now prove Lemma 3 and Lemma 4. We
restate both lemmas below, using the notation
developed in this section.

Lemma 3 Let G be any dag and let Cy,y 4(G)
be any clique of size three. If any two of the
edges in Clgy1(G) are in Rg, then the third

one is also.

Proof: Assume that exactly two of the edges
are in Rg. Without loss of generality, assume
that the edge z — « is not in Rg . Let G’ be
any dag that includes the edge + — y. Because
G’ is acyclic, z — y is in G'. Because ¥ — y
and z — y are both both in Rg/, it follows from
Corollary 2 that every edge in C, 1 (G’) is in
Rg:, contradicting the assumption that z — x
is not in Rg. O

Lemma 4 Let G be any dag, and let © — y
be any edge in G such that 11, C 11, U x. The
edge v — y is in Rg if and only if for every
edge z — x such that z and y are not adjacent,
2z — x s in Rg.

Proof: (if) Assume that for every edge z — «
such that z and y are not adjacent, z — x is
in Rg. We now show it follows that + — y is
reversible.

Let {z1 = 2,..., 2z = 2} C Rg be the set of
all reversible edges incident into x in G, and
let Z = {z,..., 2} be the set of tails of these
edges. Let Z, C Z be the subset of nodes in
7 that are parents of y (see Figure 4a).

By Lemma 14, there exists a dag G’ ~ G
for which Czu4(G") is a covered clique (see
Figure 4b).
z — x such that z and y are not adjacent,
z € Z\ 7Z,. As a result, Lemma 13 guarantees
that by choosing an appropriate total order-
ing on the nodes in Z U{x}, we can construct
a dag G"” ~ G’ such that the only edges inci-
dent into x are those that have tails in 7, (see
Figure 4c).

Consider the sequence S(G,G"). By Lemma
10, every edge in §,(G,G"”) will come before
any edge from 4,(G,G"). Let G; € D(G,G")

By assumption, for every edge

Figure 4: Relevant dags for the proof of

Lemma 4

be the dag that results after reversing the last
edge in §,(G,G"). It follows that 119 = Zy.
Furthermore, no edge incident into y has been
reversed which implies 19 = Z, U z. Conse-
quently, — y is a covered edge in G;.

(Only if) Let 2 — 2 be any compelled edge
such that z is not adjacent to y. It follows
immediately that — y is compelled because
any dag with x — y reversed will contain the
v-structure (z, z,y) that is not in G. O

