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Abstract

We provide a classification of graphical models according to their
representation as exponential families. Undirected graphical models
with no hidden variables are linear exponential families (LEFs), di-
rected acyclic graphical (DAG) models and chain graphs with no hid-
den variables, including DAG models with several families of local dis-
tributions, are curved exponential families (CEFs) and graphical mod-
els with hidden variables are stratified exponential families (SEFs). A
SEF is a finite union of CEFs of various dimensions satisfying some
regularity conditions. The main results of this paper are that graphical
models are SEFs and that many graphical models are not CEFs. That
is, roughly speaking, graphical models when viewed as exponential fam-
ilies correspond to a set of smooth manifolds of various dimensions and
usually not to a single smooth manifold. These results are discussed
in the context of model selection.

Keywords : Bayesian networks, graphical models, hidden variables,
curved exponential families, stratified exponential families, semi-algebraic
sets, model selection.

1 Introduction

A graphical model is a family of probability distributions specified via a set of
conditional independence constraints that a graph represents or via a para-
metric definition dictated by a graph. The wide applicability of graphical
models to many problems in Statistics is due to several features. Graphical
models provide a language to facilitate communication between a domain
expert and a statistian, provide flexible and modular definitions of families
of probability distributions, and are amenable to scaleable computational
techniques (e.g., Pearl, 1988; Whittaker, 1990; Lauritzen, 1996). Further-
more, graphical models based on directed acyclic graphs (DAGs), which are
called DAG models or Bayesian networks, are useful for modeling causal
relationships. For this reason, the problem of model selection has been ex-
amined for the purpose of identifying cause and effect from observational
data (e.g., Spirtes et al., 1993). (e.g., Spirtes et al., 1993, Pearl, 1997).

We provide a classification of graphical models according to their rep-
resentation as exponential families. Undirected graphical models with no
hidden variables are known to be linear exponential families (LEFs) (see
Lauritzen, 1996), directed acyclic graphical models and chain graphs with
no hidden variables, including DAG models with several families of local dis-
tributions, are shown to be curved exponential families (CEFs), and graph-



ical models with hidden variables are, what we term stratified exponential
families (SEFs). An SEF is a finite union of CEF's of various dimensions
satisfying some regularity condition. The main results of this paper are that
graphical models are SEFs and that many graphical models are not CEFs.
That is, roughly speaking, graphical models when viewed as exponential
families correspond to a set of smooth manifolds of various dimensions and
usually not to a single smooth manifold.

This classification is motivated by results on model selection within linear
and curved exponential families. A Bayesian approach to model selection
is to compute the probability that the data is generated by a given model
via integration over all possible parameter values with which the model
is compatible and to select a model that maximizes this probability. We
call this probability the marginal likelihood. Although, in principle, this
Bayesian approach is appealing, in practice, it is often impossible to evaluate
the integral (even by sampling techniques) when the number of parameters
is large. When the dataset consists of many cases, asymptotic results for
approximating the marginal likelihood are useful.

Schwarz (1978) considered the problem of evaluating the marginal like-
lihood when a model is an affine subspace of the natural parameter space of
an exponential family. He derived an asymptotic formula for the marginal

likelihood, P(Data|Model) = L()N — d/2log N + O,(1), where L is the
likelihood, 6 is the maximum likelihood estimator, d is the dimension of the
affine subspace, and N is the sample size. This formula has become known
as the Bayesian Information Criteria (BIC). We note that Schwarz’s original
result applies to the undirected graphical models discussed in Section 2, be-
cause these models define a linear subspace of the natural parameter space.

Haughton (1988) established, among other results, that BIC, under
some regularity assumptions, is an O,(1) asymptotic approximation of the
marginal likelihood for curved exponential families. The main regularity as-
sumption of her work, and of Schwarz’s work, is that the prior distribution
expressed in a local coordinate system near the maximum likelihood solution
is bounded and bounded away from zero. Other regularity assumptions are
used to insure that with suflicient data, a unique model is selected with high
probability. When these assumptions are acceptable, Haughton’s results on
model selection apply to all graphical models discussed in Section 3, since
these graphical models are shown to be curved exponential families. In par-
ticular these results on model selection apply to DAG models with several
families of local distributions including decision trees and leaky noisy-or dis-



tributions. Several of these families do not have known closed-form formula
for the marginal likelihood.

We note that although researchers have been using BIC for selecting
models among graphical models with hidden variables, this methodology
has not yet been established as an asymptotic approximation of a Bayesian
procedure as it has for CEFs. In Section 4, we show that graphical models
with hidden variables are SEFs and usually not CEFs. This characterization
implies that the justifications given by Schwartz and Haughton for BIC do
not apply to graphical models with hidden variables and that a generaliza-
tion of their arguments is needed. We offer stratified exponential families as
a natural class for which the validity of BIC might be proven.

2 Linear Exponential Families

In this background section we give a definition of linear exponential fami-
lies (LEFs) and discuss the well-known representation of undirected graph-
ical models as LEFs (e.g., Barndorff-Nielsen, 1978, Lauritzen, 1996, respec-
tively).

2.1 Definition of Linear Exponential Families

A family (or model) is a set of probability density functions. A probability
density in an exponential family is given by

plal) = <2400 0

where z is an element of a sample space X with a dominating measure p
and t(z) is a sufficient statistics defined on X taking values in R* with an
inner product < .,. >. The sample space X is typically either a discrete set,
R™, or a product of these. We use the notion of a variable to describe the
product sample space. A variable has a domain which is either finite or R
and the product sample space is the cartesian product of the domains for
the variables of interest. The quantity 1 (7n) is the normalization constant.

Every probability distribution for a finite sample space X belongs to
an exponential family. For example, a sample space that consists of four
outcomes can be written in the form of Eq. (1) by choosing t(z) and 7 as
follows: t(z) = (t1(z),t2(x),ts(x)) where ¢;(z) = 1 if z is outcome 7, 1 < i <
3, and zero otherwise, and 7, = log(w;/wg) where w; is the probability of
outcome ¢, 1 < ¢ < 3, and wg=1— 2?21 w; is the probability of the forth
outcome.



When the vector i has k coordinates and when p(z|n) cannot be repre-
sented with a parameter vector smaller than %, then the representation is
minimal and the order (or dimension) of this family is k£, and the parameters
are called natural parameters. 1t is known that this order is unique for each
family. The natural parameter space is given by

The set of probability distributions having the form (1) are denoted by
S. If for each 7 in N there exists F;, in S, then § is said to be a full
exponential family; if, in addition, N is an open subset of R*, then S is
said to be a linear exponential family. The name linear exponential family
comes from the fact that the log densities form a vector space over R where
the coordinates of ¢(z), called the canonical statistics, are the basis of the
vector space and its dimension is the order of the family. Linear exponential
families include many common distribution functions, such as multivariate
Normal and multinomial distributions. (A linear exponential family in a
minimal representation is often called a regular exponential family).

A subfamily of linear exponential family is a subset Sg of §. A subfamily
can be described by a mapping f : © — N which defines Sy via Ng =
{f(6)|6 € ©}. When f is a linear mapping of rank p, and © is an open set,
a new linear exponential family is formed of order k£ — p. In other words,
a linear transformation f imposes p independent linear constraints on the
parameters and these constraints can be used to reparameterize the family
with &£ — p natural parameters. In Sections 3 and 4, we discuss exponential
families that are formed by non-linear transformations f.

2.2 Undirected graphical models

In this section, we discuss the representation of undirected graphical models
as linear exponential families.

Let G be an undirected graph such that each vertex 7 in the vertex
set corresponds to a variable z;. We consider three cases: (1) all z; are
discrete; (2) all are continuous and their joint density is a multivariate non-
singular Gaussian; (3) some are continuous and some are discrete with a
joint Conditional Gaussian (CG) distribution. An undirected graphical model
w.r.t. G is the set of probability distribution functions such that all of the
saturated independence facts implied by the graph hold; that is z; and z;
are conditionally independent given the remaining variables whenever nodes



1 and 7 are not adjacent in G. Since multinomial, multivariate Gaussian, and
CG distributions over a fixed set of variables belong to a linear exponential
family and since saturated independence constraints are linear restrictions
when expressed in terms of the natural parameters, undirected graphical
models define linear exponential families. We now discuss the three cases.

A Multinomial undirected graphical model is a family of probability distri-
butions over a finite set U of variables each having a finite domain such that
for some set of pairs of indices {(¢,7)}, z; and z; are conditionally indepen-
dent given U\ {z;, z;}. Consider, for example, the graph given by a cycle of
size 4 with variables z, ..., z4 arranged clockwise. Then the independence
constraints imposed by this graphical model are that z; and z3 are condi-
tionally independent given {z5, 4}, and that z, and z4 are conditionally
independent given {zy,z3}. Suppose, for simplicity, that the four random
variables are binary (having exactly two states) and denote by w; the prob-
ability of the joint ith state of the four binary variables (1 < < 15) where
wg = 1 — Y w;. EBach independence constraint translates to 4 equations of
the form w;w; = wiw;. Dividing each equation by (w0)2 and taking the log,
yields 8 linear equations in terms of the natural parameters 7; = log w;/wg.
In general, multinomial graphical models are log-affine models which are
LEFs (Lauritzen, 1996, pp 76).

A Gaussian undirected graphical model is a family of multivariate non-
singular Gaussian distributions in which some of the off-diagonal elements ¢;;
of the precision matrix (the inverse of the covariance matrix) are set to zero.
Note that setting ¢;; to zero is equivalent to requiring that variable z; and
x; are conditionally independent given the remaining variables. Recalling
that a multivariate non-singular Gaussian distribution belongs to a linear
exponential family and the fact that setting the off-diagonal elements of
the precision matrix to zero is equivalent to placing linear restrictions on
the natural parameter space yields the conclusion that Gaussian undirected
graphical models are linear exponential families. For details see (Lauritzen,
1996, pp. 124-132).

A Conditional Gaussian undirected graphical model is a family of Con-
ditional Gaussian (CG) distributions over a set of discrete and continuous
variables defined by a set of saturated independence constraints stating that
variables ¢ and j are conditionally independent given the remaining vari-
ables. That CG undirected graphical models can be represented as linear
exponential families is shown in Lauritzen and Wermuth (1989). See also,
Lauritzen (1996, pp. 171-175).



3 Curved Exponential Families

A curved exponential family of dimension n is defined to be a subfamily of
an exponential family of order k such that Ny is a n-dimensional smooth
manifold in R*. A subfamily of an exponential family Sy C S is often
described by a mapping f : © — N which defines Sy via Ng = {f(0)|0 € O}
and where O is an open set. Alternatively, a subfamily can be described
by a set of constraints on Sy given by Ng = {n € R"|h(n) = 0} where
h : R® — R*=". The relationship of these alternatives and a method, called
implicitization, for finding constraints from a mapping f is discussed in
(Geiger and Meek, 1998) .

In this section we recall the definitions of smooth manifolds and show
that DAG models correspond to smooth manifolds and are therefore curved
exponential families (and not linear exponential families). Conditional-
Gaussian DAG models and Conditional-Gaussian chain graphs are also
curved exponential models.

Curved exponential families were studied by Efron who explored geomet-
rical interpretation of various statistical measures using these families (e.g.,
Efron, 1978). A treatment of this topic is given by Kass and Vos (1997). We
study curved exponential models because the standard asymptotic theory
is valid for these models. In particular Haughton’s (1988) results on model
selection applies to all graphical models discussed in this and the previous
section.

3.1 Manifolds

A diffeomorphism f : U C R™ — R™ is a smooth (C'*°) 1-1 function having a
smooth inverse. A subset M of R" is called a k-dimensional smooth manifold
in R™ if for every point € M there exists an open set U in R™ containing «
and a diffeomorphism f : UNM — R*. When f is only assumed to be conti-
nous and to have a continous inverse (namely, a homeomorphism), then the
set M is called a topological manifold. Since composition of diffeomorphisms
is a diffeomorphism, we get the following proposition.

Proposition 1 Ifg: A C R* — B C R" is a diffeomorphism, then M C A
is a smooth manifold if and only if g(M) is a smooth manifold and N C B
is a smooth manifold if and only if g~1(N) is a smooth manifold.

Another way to verify whether a subset of R™ is a smooth manifold is
given by the following Theorem (e.g., Spivak, 1965).



Theorem 1 Let A C R™ be open and let h : A — R™™" be a smooth
function such that h'(x) has rank m — n whenever h(z) = 0. Then h™'(0)
ts a n-dimenstonal smooth manifold in R™.

Note that the rank of the Jacobian matrix A’ in Theorem 1 is m — n if
h has the form h;(z1,...,2m) = Tnyi — fi(z1,...,2,) fori=1,... . m—n
where f; are smooth functions because in this case the (m —n) X m matrix A’
factors as [Q(;m—n)xn|lm—n] Where I,,_, is the identity matrix of size m —n.

3.2 Discrete DAG models

A Discrete DAG model B(©,n,m) is a mapping B, ,, : © C R* — R™
where ©, n, m and B,, ,, are given as follows (Pearl, 1988). Let (z1,...,zx)
be an ordered sequence of discrete variables each having a finite set of
values. Let p; be a subset of {zq,...,2,_1}, called the parents set of z;,
and let w; = {@1,...,zi—1} \ p;- Let 27, p! and « be the jth value of
z;, p; and u; with 5 > 0. Let |z, |p;| and |u;| be the domain sizes
respectively. The components of B,,, : © C R" — R™ are defined
by 0z7|p§?,uf = 0$?|p§>, for all @ > 0, & > 0, and ¢ > 0. Note that
there are n = > ;(|z;| — 1)|p;| source coordinates denoted by 0pappp and
m = Y ;(Jzi| = Vpil|lwil = (I1;]zi]) — 1 target coordinates denoted by
omflpf’,uf' The set © is the cartesian product of ©;; over 7 and j where

0,; = {(gﬂfﬂpf’ .. .70I|‘xi|—l|p]‘)|0 < Hzflpj < 1,> k>0 Ozflpf < 1}. The target

coordinates of B, ,,, are called the conditional-space parameters.

Theorem 2 For every Discrete DAG model B(©, n, m) the set By, ,,,(0) is
an n-dimensional smooth manifold in R™.

Proof: Define the components of a function A by h;qp.(0) = 0$?|P?7Uf —
0 appp o Where @ > 0,6 > 0 and ¢ > 0. Thus, i has Yozl =Dpl (Jus| 1) =
m—n components. In other words, h imposes m—n constraints on the target
coordinates 0z7|p§?,u§' Note that in light of the definition of # and B, ,,, we

have h='(0) = B, m(0). Also note that A’ has the form [Q(n—n)xnllm—n]
where I,,_,, is the identity matrix and so A’ has full rank. Thus, according
to Theorem 1, B,, ,,,(©) is a n-dimensional smooth manifold in R™. O

A second definition of a discrete DAG model B is obtained by defin-
ing Bmm with the equations: Wi iy = Hle Hz?lpf where z7 is the j-th
value of z; and pf is the c-th V;,qué of p; obtained by the projection of
(xzf, ..., z,¥) to the coordinates that correspond to the variables in p;. The



mapping B, (0) = B, (0) is a diffecomorphism for positive 8 values and
so the conclusion of Theorem 2 remains valid under this definition. The
components of the image of © under anm are called the joint-space param-
eters.

The practical significance of DAG models stems, among other reasons,
from the small number of network parameters compared to the number of
joint-space parameters. When the number of network parameters is still
too large because |p;| is too large for some i’s, additional factorizations are
usually introduced. These include decision tree and decision graph models
(Friedman and Goldszmidt 1996; Chickering, Meek, and Heckerman, 1997),
noisy-or gates, leaky noisy-or gates, max-gates and causal independence
models (Pearl, 1988; Henrion, 1987; Heckerman and Breese, 1996; Meek
and Heckerman, 1997). These models share the following characteristic.

For each variable z; in the DAG model, a subset of k; states of p; are
designated as reference states. The components of B, ,, : © C R* — R™
are defined by 0$?|p?7u? = fi(gzﬂp?v .. "093@|p’.”_1) forall a > 0, b > k;, and
¢ > 0 where f; are smooth functions. We call DAG models defined in this
way DAG models with ezplicit local constraints. The number of network
parameters is given by n = >_;(|z;| — 1)k; where k; is often much smaller
than p;.

When the number of reference states is zero, namely each f; is the con-
stant function, we get a discrete DAG model. In the case of a noisy-or
model, the reference states are the states where exactly one parent is on
and the other parents are off (see Pear]l 1988). For leaky noisy-or model
the reference states also include the state when all the parents of z; are off.
For decision tree models, the reference states are those that correspond to
a path from the root to a leaf in the decision tree; all parents on the path
are at a specified state and all those not on the path are at state zero. Note
that for decision trees, noisy-or and leaky noisy-or models the functions f;
are all polynomial functions.

Theorem 3 For every discrele DAG model B(©, n, m) having explicit local
constraints the set B, ,,(0©) is an n-dimensional smooth manifold in R™.

Proof: Suppose the local constraints are given by f;. Define the compo-
nents of a function h by

hai7bi70i(0) =
Ougiptus = FilOszippugs s Oy i)



where (¢ > 0,6 > 0, ¢ > 0) or (¢ > 0, b > k;, ¢ = 0). Note that h has
Yoillzil = 1) [|pil (Jws| — 1) + (|pi| = k:)] = m —n components. The conclusion
now follows from Theorem 1 and the comment that follows. O

Recall that for a multinomial distribution with u states each associated
with a positive parameter w; such that ), w; = 1, the map n; = log w;/w,
t = 1,...,u — 1 defines a diffeomorphism between the natural parameter
space 1 and the multinomial parameters {wi}g_l. Consequently, due to
Theorem 2, we have established the following claim.

Theorem 4 FEvery discrete DAG model B(©, n, m) with explicit local con-
straints is a curved exponential family of dimension n.

3.3 Gaussian graphical models

The parameters of a multivariate non-singular Gaussian distribution can
be described in various ways. The most common representation is by the
elements of a covariance matrix 3 and a vector of means p. A second rep-
resentation is by a precision matrix ¥~ and u. These two representations
are related by the diffeomorphism f : ¥ — 37!, A third representation
is constructed as follows. Assign a total order to the k variables. Specify
the regression coefficients b; ; of z; given x,...,2;_1, and the conditional
variance and conditional means of z; given x4, ..., z;_;. The third represen-
tation is called the regression parameterization and is related to the second
representation by a well-known diffeomorphism (e.g., Shachter and Kenley,
1989).

A Gaussian DAG modelis a family of multivariate non-singular Gaussian
distributions in which some b;; are set to zero (Shachter and Kenley, 1989).
A Gaussian undirected graphical model was defined in Section 2.2 to be a
family of multivariate non-singular Gaussian distributions in which some
of the off-diagonal elements of the precision matrix are set to zero. Both
models define a map B, ,, : © C R* — R™. It follows from Theorem 1 that
By, 1 (0©) is a n-dimensional smooth manifold in R™ since the components
of h can be defined as projections and so A’ has the form [Q (_pn)xn|lm—n]
where I,,_, is the identity matrix and @) is a matrix of zeros.

The difference between the two models is that the restrictions formed
by setting elements of the precision matrix to zero define linear constraints
in the natural parameter space and therefore Gaussian undirected graphical
models are also LEFs while the restrictions set by a Gaussian DAG model
are not linear in the natural parameter space. To demonstrate the latter



fact we note that the restriction b3; = 0 imposed by the Gaussian DAG
model z; — z9 ¢ x3 can, in terms of the precision parameters, be written
as 11 2t33 = t1,3lz 3 and thus is not linear in the natural parameter space.
See Geiger and Heckerman (1994) for the relationships between ¢; ; and b; ;
for this three-node model.

We note that Spirtes, Richardson, and Meek (1997) show that Gaussian
MAGs define smooth manifolds. Since Gaussian MAGs are a generalization
of Gaussian DAG model, their results also imply that Gaussian DAG models
define smooth manifolds.

4 Stratified Exponential Families

This section is divided into four parts. First, we provide some mathematical
background, then we define stratified exponential families (SEFs), and show
that graphical models representing discrete, Gaussian, and Conditional-
Gaussian with or without hidden variables are SEFs. In Section 4.3, we
show that graphical models with hidden variables are usually not CEFs and
in the final section we discuss a method to compute the dimension of a
parametrically-defined SEF.

4.1 Mathematical Prerequisites

The set of all polynomials in zy,...,z, with real coefficients is denoted
by R[z1,...,%,]. Let ¢1,...,¢ be polynomials in R[zy,...,z,]. A variety
Vg, ...,q) is the set {(2y,...,2,) € BR"|¢;(21,...,2,) =0forall 1 <i<
t}. A variety is also called an algebraic set.

A subset V of R" is called a semi-algebraic set if V. = Uj_, NiL, {z €
R™ P, ;(x) <i; 0} were P;; are polynomials in R[zq,...,z,] and <; is one
of the three comparison operators {<,=,>}. Loosely speaking, a semi-
algebraic set is simply a set that can be described with a finite number of
polynomial equalities and inequalities. A variety is clearly a semi-algebraic
set.

Amap f: X =Y where X C R" and Y C R™ are semi-algebraic sets,
is called semi-algebraic if the graph of f is a semi-algebraic set of R™T™.
Note that if f is a polynomial map then f is a semi-algebraic map because
its graph can be described by m polynomial equalities: y; — f;(z) = 0,
where 1 < 7 < m. A key result about semi-algebraic sets is given by the
Tarski-Seidenberg theorem (see, e.g., Benedetti and Risler, 1990).

10



Figure 1: A plot of part of the variety V(2?2 — y22% + 23).

Theorem 5 (Tarski-Seidenberg) Let f : X — Y be a semi-algebraic
map. Then the image f(X) CY is a semi-algebraic set.

We note that some smooth manifolds are semi-algebraic sets and some
are not. Similarly, some semi-algebraic sets are smooth manifolds and some
are not. Consider, for example, the variety V(2% — y?z% 4+ 23) which can
be described parametrically as a (two dimensional) surface in R3 by = =
t(u? —t*), y = u, and z = u* — * (see plot in Figure 1). This variety is not
a smooth manifold because, locally, at each point of the y-axis other than
the origin the surface looks like the intersection of two smooth manifolds,
as evident from the figure. To prove that the variety V(22 — y2z? + 23) is
not a smooth manifold it suffices to observe that as we approach any point
on the y-axis other than the origin we have two (two dimensional) tangent
planes where each plane contains a tangent vector that is not spanned by
the other tangent plane.

Another important result about semi-algebraic sets is that they admit a
stratification. We will first illustrate this concept with the variety V(z? —
y%2%+2z3). This variety can be described as a union of several 2-dimensional
smooth manifolds along with a 1-dimensional smooth manifold— the y-axis.
These smooth manifolds define a stratification of the variety.

Formally, a stratification of a subset F of R™ is a finite partition {A4;} of
E such that (1) each A; (called a stratum of F') is a d;-dimensional smooth
manifold in R™ and (2) if A; N A; # 0, then A; C A; and d; < d; (frontier
condition) where A; is the closure of A; in R™. See Akbulut and King (1992)
for a more general definition.

11



A stratification is called semi-algebraicif every stratum is semi-algebraic.
A stratified set is a set that has a stratification. The dimension of a stratified
set is dy— the largest dimension of a stratum. A key theorem about semi-
algebraic sets is the Stratification theorem (see Benedetti and Risler, 1990).

Theorem 6 (Stratification) FEvery semi-algebraic set has a semi-
algebraic stratification.

We note that if F is a stratified set and f is a diffeomorphism, then
f(F) is also a stratified set. This proposition, that stratification is preserved
under a diffeomorphism f, is proven as follows. Let {A;} be a stratification
of A. We show that {f(A;)} is a stratification of f(A). Clearly, {f(A;)}is a
partition of f(A). Due to Proposition 1, the image of a smooth manifold A;
under a diffeomorphism f is a smooth manifold f(A;) and so condition (1) of
the definition of stratified sets is satisfied. The frontier condition is satisfied
because A; C A; implies f(A;) C f(A;) which, due to continuity of f,
implies f(A;) C f(A;) as needed for satisfying the frontier condition.

4.2 SEFs and Graphical models

We define a stratified exponential family (SEF ) of dimension n as a subfamily
of an exponential family having a natural parameter space N of order k if
its parameter space Ny C N is a n-dimensional stratified set in R*. In
this section we show that Ny defined by some graphical models with or
without hidden variables is a stratified set because it is a semi-algebraic set
or diffeomorphic to one. Consequently, these models are SEFs.

All graphical models considered in the previous sections are SEFs be-
cause LEFs and CEFs are subsets of SEFs. Every one of these models is a
set of distributions that satisfy all the independence constraints represented
by a graph g. For multinomial and Gaussian graphical models an indepen-
dence fact is expressible as a finite set of polynomial equalities. Combined
with the inequalities which state that multinomial parameters are positive,
and that variances are positive, respectively, the resulting graphical model
corresponds to a semi-algebraic set.

There are several classes of graphical models defined by a set of con-
ditional independence constraints that can accommodate a combination of
discrete and continuous variables using Conditional-Gaussian distributions.
Among these models, in addition to the models discussed in the previous
sections, are AMP chain graphs (Andersson, Madigan, and Perlman, 1996),
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and reciprocal graphs (Koster, 1997). These graphical models all correspond
to semi-algebraic sets because independence facts in CG-distributions are
expressible as polynomial equalities.

We now discuss graphical models with hidden variables. In particular
we show that multinomial DAG models with hidden variables correspond
to semi-algebraic sets. We note that a similar claim holds for any graphical
model representing CG-distributions of which we are aware as long as the
distribution over the observable variables is in the exponential family.

A discrete DAG model B(©,n, m) with hidden variables is a DAG model
where ©, n, m and B, ,, are given as follows. Let (z1,...,zx) be an ordered
sequence of discrete variables each having a finite set of values. Partition
this set of variables into two disjoint non-empty sets H and X. The variables
in H are hidden. Those in X are observable. For each z; define two disjoint
subsets of {zy,...,2;_1}, the observable parents p; C X and the hidden
parents h; C H.

The components of B,,, : © C R* — R™ are defined by w, =
> Hf-“zl 0$q|pq’h¢ where @ are (vector) values of the observed variables X
not all zero and b are (vector) values of the hidden variables H. The values
z{ and p! are obtained by obtained by the projection of a to the coordi-
nates that correspond to z;, p;. Similarly, the value h;’ is obtained from b.
As before, the domain © of B, ,, is the cartesian product of sets of the form
{0ty gy =1)]0 < te < 1,37, 8, < 1}. Note that n = SE (i = 1) pg Rl
and m =[5, |z;| — 1.

The Tarski-Seidenberg theorem guarantees that for a discrete DAG
model with hidden variables, B, ,,(©) is a semi-algebraic set because it
is the image of a semi-algebraic set under a polynomial mapping. Similarly,
we note that Gaussian DAG model with hidden variables also correspond to
semi-algebraic sets due to their parametric definition via a polynomial map-
ping called the trek-rule (see, e.g., Spirtes et al. 1993). Consequently, the
image of these graphical models can be described with a set of polynomial
equalities and polynomial inequalities.

We have thus shown that Ng defined by each of the models considered in
this paper is a stratified set because it is a semi-algebraic set or diffeomorphic
to one.

4.3 Graphical models with hidden variables are not CEFs

It is clear that SEFs is a class of models that is strictly larger than CEFs,
however, it remains to show that the new class contains models that are
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used in practice which are not contained in the smaller class. In this section
we show that many graphical models with a hidden variable are not CEFs.

We first study in detail a class of graphical models which are often called
naive Bayes models (NBM). We show that naive Bayes models are stratified
exponential families but are usually not curved exponential families. Then
we extend the proof to wider classes of graphical models.

Let H, Fy, ..., F, be aset of variables each having a finite set of possible
values denoted by dom(H), dom(F;), respectively. Let |dom(H)| = k and
|dom(F;)| = k; and let p(h) stand for p(H = h) where h € dom(H ). A naive
Bayes model is a set of distributions for the sample space dom(Fy) X ... X
dom(F},) such that

n

plhs - f) = Yo p) [ p(filh), (2)

hedom(H) i=1

where f; € dom(F;). The variable H is called the class variable and each F; is
called a feature. When k = 2 we get a Binary naive Bayes model and when
k; = 2 the feature F} is binary and its domain is {f;, f;}. In applications, H
denotes a mutually exclusive and exhaustive set of classes and each Fj is a
measurement that has a finite set of possible outcomes denoted by dom(F;).
By observing outcomes of F;, a common task is to infer how many classes
should H have, or when the number of classes is known, to find the most
likely class given the measurements. We focus on inferring the number of
classes, and more generally on model selection.

We note that Eq. 2 defines a mapping g™**k . A C R* - R™
where i = k — 14+ 3-"_;(k; — 1)k is the number of coordinates on the right
hand side and m = ([[/—; ki) — 1 is the number of coordinates on the left
hand side minus one (since these coordinates sum to 1). The set A is an
open set of R defined by the following inequalities. For each h € dom(H)
and f; € dom(F;), 1 < i < n, we have 0 < p(h) < 1, 0 < p(filh) < 1,
and Zfiedom(Fi)p(f”h) < 1. These are the usual restrictions regarding
strict probabilities. Note that the set A depends on n,k, and k; but this
dependence is suppressed in our notation.

In order not to clutter our notation, we first present the results for naive
Bayes models with binary features and then extend to naive Bayes models
with features for which k; > 2, and to other graphical models. When all k;
equal 2, the mapping defined by Eq. 2 is denoted by ¢"* : A C R* — R™
where 7 = nk+k—1 and m = 2" — 1. For Binary naive Bayes models with n
binary features, the mapping defined by Eq. 2 is denoted by ¢ : A C R* —
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R™ where fi = 2n + 1 and m = 2" — 1. The set g™5*1+*n(A) is called the
tmage of a naive Bayes model.
We now show that the image of a naive Bayes model with k classes and n

binary features is not a smooth manifold when n > 2k. Assume {hy,..., ht}
are the k values of dom(H) and {f;, f;} are the two values of dom(F}). Let
the source coordinates of g”’k be t1,...,tp_1, aie, 1 <1< n, 1 < c <k,

where t. = p(h.) and a;. = p(filh.). Note that ¢, = 1 — Zf;ll t. is not a
source coordinate. The target coordinates of g™* can be indexed as follows:

k
Wiy iy = 2_: te JT(1 = aic) [ ] @ic (3)

e=1 i€l iel

where each index ¢ has 2 possible values, I is the set of r indices {iy,..., .}
which are assigned with their second (or last) value and T is the set of the
remaining n — r indices. The first coordinate, when I = (), is denoted by wy.

Theorem 7 The image of a naive Bayes model with k classes and n > 2k
binary features is not a smooth manifold.

Proof: The crucial fact we use is that if the image of ¢"** were a smooth
manifold, then the image would have a tangent hyperplane at each point and
the dimension of that tangent hyperplane could not exceed the dimension
of A which is kn + k — 1. Furthermore, if the image of ¢™* were a smooth
manifold, then (?g”*k/(?aic evaluated at a point z in the domain of g™* would
be a tangent vector to M at the point ¢"*(z) in the image. This is because
these partial derivatives are columns of the Jacobian matrix for ¢™* and
the Jacobian matrix gives the mapping between the tangent space of A and
the tangent space of M. The proof provides a point in the image at which
there are more than kn+k —1 linearly independent tangent vectors. Hence,
the dimension of the tangent hyperplane is too large for the image to be a
smooth manifold.

Suppose now that the image of ¢™* is a smooth manifold M in R*"~!.
Pick some j < n and some point z; € A with {, = 1/k and a;c = 1/2 for
all ¢ and ¢ # j. Furthermore, for z;, let a;1 # a;2, ajo = 1/2 for ¢ > 2, and
1/2=F_,t.a;. (ie., aj; +aj, = 1). Note that y = g™*(z;) is independent
of which j we choose because w;;, i, = (1/2)".

Consider the partial derivatives 0¢™*/0a;., ¢ = 1,2, evaluated at
Z1,...,T,. BEach partial derivative, as well as any linear combination of
partial derivatives, is a tangent vector at y. We show that there are
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n + n(n — 1)/2 linearly independent tangent vectors at y. Consequently,
since kn+k — 1 <n+n(n —1)/2 for n > 2k we reach a contradiction: the
number of independent tangent vectors is greater than the dimension of A.
Consequently, M is not a smooth manifold at y.

We select the following n + n(n — 1)/2 tangent vectors: 89”*’“/8(12-1 +
dg™"* /Ba;y evaluated at z;, 1 < i < n, and 8g”’k/8aj1—ﬁg”’k/8aj2 evaluated
at z;, 1 <1< j <n. We consider these vectors as columns of a matrix and
examine the submatrix formed by the first 1 +n + n(n — 1)/2 coordinates,
denoted wg, w;, w;;, ¢ < 7. By subtracting line wy from each of the other lines
w; and w;;, removing wy from the matrix, and pulling the common constant
from each column, we get a convenient square matrix of size n+n(n —1)/2.
This matrix, which consists only of zeros and ones, has the form:

I B

B C
where [ is the identity matrix of size n x n, B’ is the transpose of B and
every line w;; when restricted to B has two ones, in column ¢ and j, and
zeros otherwise (in B), and the square matrix C' has zeros on the two main
diagonals and ones otherwise. By subtracting lines w; and w; from line w;;,

1 <1< g < n, we get a diagonal matrix as needed. These calculations are
facilitated by the equation

_(1_alc) ]EI,ZE{,]#Z
—ac ]6171617]#1
: : n— 1_alc 36771617] l
OWiyis...i, [Daje(wr) = (1/k)(1/2)"72 - ase jel leT jil
_1/2 ]71617]21
1/2 j71677j217

and by the fact that a;y +a;p =1for 1 <[ <n. O

Suppose now that the features are not all binary. Let f;;; be the jth
element in dom(F;). Let a;;, stand for p(fij,|hc), and let t. = p(h.). Then
the target coordinates of g™*Fk1-#*n can be indexed as follows:

k ki—1
Wiyig. iy = Ztc H(l — Z Qicj;) H Qicj; (4)
=1 i€l ji=1 el

where each index 7 has k; possible values, [ is the set of r indices {iy,..., .}
which are assigned with their last value and [ is the set of the remaining
n — r indices.
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Theorem 8 The image of a naive Bayes model with k classes and n features
is nol a smooth manifold, whenever n > 2(k' — 1)k, where k' = max; k;,

k; = |dom(F)|.

Proof: We use the same idea as in the proof of Theorem 7 and so we
only describe the relevant changes. The image of a naive Bayes model is
discussed in the notation of Eq 4. The point y for which we count the
number of linearly independent tangent vectors is given as follows. Let
te = 1/k and a;oj, = 1/k;, for all ¢ # j, 1 < j; < k;, and 1 < ¢ < k. Let
aj11 # ajo1, and aj.;, = 1/k; otherwise. Finally, let 1/k; = fo:l Lo,
(i.e., aji1 + ajo1 = 2/k;). Note that y = g™®F-kn(z,) is independent of
which j we choose because w;, . ;. = I];(1/k;). We now compute the same
derivatives as in Theorem 7, namely, with respect to a;;; and a;31 (which
are denoted in the previous proof by a;; and a;2). The 1 + n+ n(n —1)/2
lines are also selected as before; In line wy every index is assigned its first
value. In line w;, 1 <1 < n, index ¢ is assigned its last value and all other
indices are assigned their first value. In the next n(n — 1)/2 lines, w;j,
7 > 1, the indices ¢ and j are assigned their last value and all other n — 2
indices are assigned their first value. The resulting matrix, after pulling
constants from each column, is identical to the one given in the proof of
Theorem 7 and so its rank is n 4+ n(n — 1)/2. Now, since the dimension of
the image is at most k — 1+ Y ;- (ki — 1)k < k — 1+ n(k’ — 1)k and since
k—1+n(k'—1)k <n+n(n—1)/2 when n > 2(k' — 1)k, the image is not
a smooth manifold at y. O

The proof technique of Theorems 7 and 8 can, with minor modifications,
be used to prove that many DAG models with a hidden variable do not
correspond to a smooth manifold. We outline the needed extensions.

First, we note that it suffices to examine the Markov blanket X of H (see
Pearl, 1988) . The reason being that we can make a target coordinate change
from p(z,y) to p(z) and p(y|z) where y is a value of Y and Y are all nodes
not in the Markov blanket of H. This is a diffeomorphism. Furthermore,
the network coordinates that correspond to the Markov blanket determine
p(z) and the rest of the network coordinates determine p(y|z). Hence we
can analyze separately how the Markov network coordinates are mapped to
p(z). Thus we will restrict our discussion to the case where Y = ().

Suppose we have a DAG model with one hidden node having k classes
and suppose it has n binary children and no parents. The target coordinates
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of this model can be indexed as follows:

k
Wiiig.. 0 = Ztc H(l - aicm‘) H Gien;

c=1 el ieT

where each index ¢ has 2 possible values, I is the set of r indices {iy,..., .}
which are assigned with their second (or last) value and T is the set of the
remaining n — r indices. The symbol 7; denotes the parents of 7 other than
H and their values must be consistent with those in [.

The point we select is the one in which all edges are missing except one
edge which goes from H to some node j. This is the same point as in the
proof of Theorem 7. Also we take the same derivatives and obtain the same
matrix with a dimension of n+ n(n — 1)/2. To get a contradiction we must
have n(n 4+ 1)/2 be greater than the number of network parameters when
n is large enough. This happens whenever the state space created by the
parents of each node is sufficiently small compared to n. So, a contradiction
is reached when

2"kn+k—-1<n(n+1)/2

where 7 is the maximal number of parents of a node (aside of H). This
inequality is satisfied, for n large enough, whenever 7 is a constant (not
depending on 7). Obvious modifications are needed when variables in X
are not binary. When H has parents and its children have parents (i.e., a
general Markov blanket), we pick a point that makes H independent of its
parents, and equally likely on each state. This is the same point as before—
just more equalities need to be set. To summarize, we have justified the
following claim:

Theorem 9 The tmage of a discrete DAG model with a hidden variable
H with n children is not a CEF whenever n(n + 1)/2 is larger than the
cardinality of the state space over the observable variables.

We note that the proof of Theorem 9, as well as all other proofs in this
section, exhibits one singular point y at which the image of a graphical
model is not a smooth manifold. It does not describe the set of all singular
points at which the image is not a smooth manifold. It also does not deter-
mine whether the point y is singular because the image is not a topological
manifold at y or because it is not smooth at y. In the Appendix we give
full answers to these questions for binary naive Bayes model with n binary
features. In particular, we show that the image is not even a topological
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manifold at singular points, and that the singular points are precisely those
for which p(f;|h) = p(f;|k) for all values of 7, except at most two values
{i1,12} where inequality is possible. Additional results are provided in the
appendix that shed light on the geometry of the image of binary naive Bayes
models with binary features.

4.4 Computation of the Dimension

The dimension of a SEF is the dimension of the highest stratum. In this
section we present an algorithm that computes the dimension of a SEF when
specified as an image of a polynomial mapping composed with a diffeomor-
phism. For this discussion, it is sufficient to consider only the polynomial
portion of the mapping because diffeomorphisms do not change the dimen-
sion.

The next lemma suggests a random algorithm for calculating the maxi-
mal rank of the Jacobiam matrix of a polynomial mapping. The algorithm
and Lemma 10 were also studied more generally for analytical mappings in
Bamber and van Santen (1985). A proof for polynomial mappings, which is
all we need, is much simpler and thus included herein.

Lemma 10 Let g : R™ — R"™ be a polynomial mapping. Let J(z) = 0g/0z
be the Jacobian matriz at x. Then the rank of J(x) equals the mazimal rank
almost everywhere.

Proof: Let d be the maximal rank of J(z). Because the mapping ¢ is
polynomial, each entry in the matrix J(z) is a polynomial in z. When diag-
onalizing J(z), the leading elements of the first d lines remain polynomials
in z, whereas all other lines, which are linearly dependent given every value
of z, become identically zero. The rank of J(z) falls below d only for values
of z that are roots of some of the polynomials in the diagonalized matrix.
The set of all such roots has measure zero. O

A random algorithm for computing the maximal rank of J(z) is now
evident. At the first step, the algorithm computes the Jacobian matrix J(z)
symbolically from g¢(z). This computation is possible since g is a vector of
polynomials in z. Then, it assigns a random value to = and diagonalizes the
numeric matrix J(z). Lemma 10 guarantees that, with probability 1, the
resulting rank is the maximal rank of J(z).

The next lemma shows that this algorithm computes the dimension of
the image of a polynomial mapping. Recall that the dimension of the image
is defined to be the dimension of the highest stratum of the image.
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Theorem 11 Let g : A C R™ — R"™ be a polynomial mapping where A is
a semialgebraic open set. Let J(x) = dg/0x be the Jacobian matriz at x.
Then the mazimal rank of J(z) is equal to the dimension of g(A).

This theorem is a special case (with V' = R™) of the following theorem
(still in a draft form):

Theorem 12 Let g : R™ — R" be a polynomial mapping. Let A be an open
semialgebraic subsel of R™ and let V' be an algebraic subset of R™. Suppose
that ANV is contained in the nonsingular points of V. For x € ANV,
let J(z) = 0g/0x be the Jacobian matriz of g at x, and let Py (x) be the
matriz of orthogonal projection to the tangent space of V at x. Let d be
the maximum over x € ANV of the rank of the matriz J(z)Py(x). Then
g(ANV) is a semialgebraic set whose dimension is d.

Proof: We recall a few facts about semialgebraic sets. Let A and B
be semialgebraic sets. If A C B then dim(A4) < dim(B). Also dim(A U
B) = max(dim(A),dim(B)). The closure A is semialgebraic and dim(A) =
dim(A). Finally, any semialgebraic set has only a finite number of connected
components.

We prove this theorem by induction on d. By Proposition 2.4.3 of Ak-
bulut and King (1992), we know the entries of Py (z) are rational functions,
whose denominators do not vanish on the nonsingular points of V. Conse-
quently, there is an algebraic subset W C V so that W N A is the set of
points € ANV at which J(z)Py(z) has rank less than d. (The subset W
is given by the vanishing of all d x d minors of J(z) Py (z), or alternatively,
see the proof of Lemma 10.) By induction, we know that g(W N A) has
dimension less than d. In particular, let Wy = W and let W; be the singular
points of W;_q if ¢ > 1. We apply this theorem with A replaced by A—W,; 4
and V replaced by W;. Note that if z € W, then the tangent space of W; at
z is contained in the tangent space of V' at z and so the rank of J(z) P, (z)
is less than or equal to the rank of J(z)Py (z) which is less than d. So by
induction the dimension of g(AN (W; — W;41)) is less than d. So if B is the
closure of (AN W), then B is semialgebraic and dim(B) < d.

Let C' = A — ¢g7!'(B). Note that C' is an open semialgebraic set and
J(z)Py (z) has rank d at all points z € C'NV. We have reduced to showing
that dim(g(C' NV)) = d. Take any point y € ¢g(C NV) and any z €
CnNVng(y). Theorem 5.4 of Brocker and Jinich (1982) gives a local
description of g near z in V. In particular, there is a neighborhood U of z
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in V so that g(U) is a d dimensional submanifold of R" and ¢7!(y)NU is a
submanifold of V. So if 2’ € g71(y)NV is close enough to z, a neighborhood
of ' in V will be mapped to the exact same d dimensional submanifold as
a neighborhood of . Consequently, if z’ is any point in the same connected
component of CNV Ng~1(y) as z, a neighborhood of 2’ in V will be mapped
to the exact same d dimensional submanifold as a neighborhood of z. Since
C NV Ng t(y) is semialgebraic, it has only a finite number of connected
components. Hence a neighborhood of y in g(C'NV) is a finite union of d
dimensional submanifolds. So dim(g(C'NV))=d. O

In the context of graphical models g is the mapping from the network pa-
rameters © to the joint-space parameters W. For example, for naive Bayes
models ¢ is replaced with g"%#1:kn  We have implemented the algorithm
in Mathematica and used it to find the dimension of several graphical models
with hidden variables. Here we summarize the results for g™®Ffn_ (Im-
plementation details can be found in Geiger, Heckerman, and Meek, 1996).

For k = 2, the maximal rank of ¢"* computed by the algorithm was
full, namely, all results were consistent with the formula min(2n+1,2" —1).
In the appendix, among other results, we prove that the maximal rank is
indeed full for every n. For k > 2, the maximal rank of ¢"* found by the
algorithm was min(nk+%k—1,2"—1), except when (n = 4,k = 3), where the
maximal rank is 13 rather than 14. This drop in dimension has also been
observed by Goodman (1974, pp. 221). When n = 2, the maximal rank
of g™**ik2 can be far from full. Settimi and Smith (1998) show that for
k < min(ky, k2) the dimension drops by k(k — 1). The algorithm confirms
this dimension drop. Other examples are discussed in Geiger et al. (1996).

5 Discussion

An obvious challenge remains open: Is BIC a valid asymptotic expansion
for the marginal likelihood P(Data|model) when the model is a stratified
exponential family 7

One solution to this problem may be as follows. Exclude from the strat-
ified model all points aside of the highest stratum. As a result, only a
measure zero set (with respect to the volume element of the highest stra-
tum) of points is excluded. The remaining set is a smooth manifold and
so BIC is a correct asymptotic expansion, under the appropriate regularity
conditions, as long as the MAP point converges to a point that has not been
excluded.
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This requirement about convergence is not always satisfied. To be con-
crete, suppose points in R? are generated from a standard two dimensional
normal distribution N ((mg, my), ). We have two equally likely models. The
first model consists of all standard two dimensional normal distributions for
which {(mg, m,)|m2 = mJ} and the second model consists of all those dis-
tributions for which {(0, m,)|m, < —1}. The point (0,0) is not smooth in
the first model. However, if the second model contains the true distribution
then the MAP value for the first model will converge to a bad point. Ac-
cording to our prior probability, we expect this to happen with probability
1/2. Thus, given the relationship between the alternative plausible models,
this point cannot be excluded in an asymptotic analysis. A more careful
asymptotic analysis of the behavior at bad points is needed.

There are other obstacles in applying Haughton’s results to graphical
models with hidden variables. These consist of Haughton’s (1988) techni-
cal assumptions, as well as the assumptions that the prior is bounded and
bounded away from zero in a local coordinate system on the natural param-
eter space. Priors are usually defined on the network parameters and when
the prior is transformed to the natural parameter space, it is not necessarily
bounded. In particular, for a DAG model with a hidden variable, the prior
on the natural parameter space is usually not bounded whenever the prior
on the network parameters is bounded and bounded away from zero.
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Appendix

In this appendix we study the image M of a binary naive Bayes model with
n binary features. In particular, we characterize the set of points S for
which the image is not a topological manifold, show that M \ S is a smooth
manifold, show that every point in M\ S has exactly two sources and provide
an explicit formula that computes these source points. In addition we resolve
a conjecture made in Geiger et al. (1996) by showing that the dimension of
these models is full, namely, 2n+1 when n > 3. For n = 1, 2, the dimension
is 2" — 1.

These results are facilitated by a sequence of diffeomorphisms some of
which are applied to the source coordinates and some to the target coordi-
nates. Such transformations are valid because they preserve the properties
we study herein. Our starting point is Eq. 3 with k = 2, a;1 = a5, a;2 = by,
tlzt, andt2:1—t.

Using a non-singular linear transformation on the target coordinates we
obtain the following mapping:

Zij.r = taja; - ap + (L = 1)bib; -+ - b,

where z; stands for the probability of the i-th feature being true, z;; stands
for the probability that the i-th and j-th features are both true, etc.

We now apply a diffeomorphism on the source coordinates where s, zy,
Zg, ... Tp, and uy, ..., u, are the new coordinates as given by,

t=(s+1)/2, a;=z;+ (1 —s)us, b;=z; — (1+ s)u;.
The mapping in the new source coordinates becomes:
i = x

Zij = ziz;+ (1 — SZ)UZ'U]‘
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Zijgk = xwjrr+ (1 — 52)(Jciu]~uk + ujzjup + wiujry) — 2s(1 — 52)uiu]'uk

Z19.r = XT1Tg--T,+ ZZH(S) . (Z(products of i u’s and r-i x’s))
i=2

where p;(s) = 1/2(1 —s?)((1 —s)'~' — (=1)*"}(14s)*"1), and, in particular,
p2(s) =1 — s% and p3(s) = —2s(1 — s?).

Now we subtract products of the first n coordinates to get rid of the
leading terms. So, we do z;; ¢ z; — z;2z;. Then we subtract products of the
first n coordinates with one of the next n choose 2 coordinates to get rid of
the second terms, namely, z;;,  2ijr — 2ij2r — 2ir2j — 2jr2; — 2;2j2,. And
so forth. We end up with the mapping:

zi = iy 25 = p2(S)uiug, ..., Zijew = pr(S)ugu; - u,

Let us denote this mapping with F” : U C R*"*1 — R?"~1 where U is
the set of (z,u,s) € R* X R" x R such that:

O<z; <1, —1<s<1

—z; < (1=s)u; <1-—ua;
z— 1< (14 s)u; < ;.

We denote the coordinates of F™ with F"(z,u,s) = z;, F(z,u,s) =
p2(s)uiwg, F (2,u,s) = p.(s)uiu; - -u,, ete.

We are now ready to analize the image of U under F™. Let M = F™(U)
be the image of U. Let S be the set of points in M for which at most one
of the coordinates z;; is nonzero. Let S’ be the set of points in M for which

all coordinates z;; are 0. Note that S' C S.

Theorem 13 The dimension of the image of a naive Bayes model with
n > 3 binary features is 2n + 1.

Proof. The dimension of the image of a naive Bayes model is equal to
the maximal rank of F™ because F” is obtained from ¢ by composition
with diffeomorphisms. Thus one just needs to compute the maximal rank of
the Jacobian matrix of F™. Let J, denote this Jacobian matrix. We show
that the maximal rank of J, is 2n + 1 for n > 3.

The matrix J, has two blocks along the main diagonal where the first
block of size n is an identity matrix. It remains to argue that the second
block has a maximal rank of n + 1. We establish this claim by selecting
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n+1 rows and showing that this submatrix has full rank. The rows selected,
among many other valid possibilities, are those that correspond to the target
coordinates z;;, 2 < ¢ < n, 293 and 2123. Assuming the columns of the
second block are organized according to the order, usg,..., u,,u1, s, then
this submatrix of J, is

p(s)us 0 0 0 p(s)usz —2suius

0 p(s)m 0 p(s)U3 —2sujus

0 0 p(s)u; 0 p(s)ug —2suiuUy

0 0 0 0 p(s)u p(s)un —2sui Uy

p(s)us p(s)uz 0 0 0 —2susus
—2sp(s)urus  —2sp(s)uruy 0 0 0 —2sp(s)uzus  —[2sp(s)] uruzus

where p(s) = 1 — s%. Using two row operations, we get a diagonal matrix
with a maximal rank of n + 1 as claimed. O

Theorem 14 Let S be the setl of points in M for which at most one of the
coordinates z;; is nonzero. The set M — S is a smooth manifold and this sel
s double covered by F™.

Proof. Take any point 2 € M — S. Then we have z; # 0 and 2z # 0
with ij # k(. So if F"(z,u,s) = z, we must have u, # 0 for a =1, j, k, £. So
u must have at least three nonzero coordinates. Without loss of generality,
we may suppose that u; # 0 for ¢ = 1,2, 3. Consequently, 212, 213, 223, and
z123 are all nonzero.

Then we can solve for (z,u,s) = F"71(2) as follows:

T; = z;

uy = /212213223 + (2123)%/4/ 223
s = —2z123/(2u1293)
u; = 213/ (p2(s)uy) for i > 1

In particular, there are exactly two points in the inverse image, and if
we choose one of these points (by choosing the + sign) we have a smooth
local inverse for F™. Consequently, M — S is a smooth manifold and it is
double covered by F™. O

Theorem 15 Let S be the setl of points in M for which at most one of the
coordinates z;; is nonzero. The set M is not a topological manifold at points

of S.
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Proof. A topological manifold is locally compact. (A space is locally
compact if each point has a compact neighborhood. Since each point in a
topological manifold has a neighborhood homeomorphic to closed disc, any
topological manifold is locally compact.) We will show that M is not locally
compact at points of S\ S’. Recall that S’ is the set of points in M for
which all coordinates z;; are 0. Loosely stated, the reason M is not locally
compact at points of S\ S’ is that points arbitrarily close to the edge of U
are mapped arbitrarily close to any point of S — S’. Finally, we argue that
M is also not locally compact at points of S’.

To be precise, pick any 2z’ € S — 5’ and suppose it has a compact neigh-
borhood N in M. Pick € > 0 small enough that N contains the intersection
of M with the ball of radius € around z. Pick a large constant b. We may
as well suppose that z{, # 0, but all other z;; are 0. Consequently the only
nonzero coordinates of 2’ are z! and z{,. Pick any (2/,u',s') € U so that
Fr (2! u',¢") = 2/, after applaying o, we may as well assume that uj > 0.
For small enough & > 0, consider the point (z,u®,s%) in U where:

$b = 221 -1
ul=1/2-6
w8 = 2o/ (1/2 = 6)pa(s"))
ul = e/b

u?:Ofori>3

We show here that (2,45, s°) € U if § is small enough. Since 2! € (0,1)
and s € (=1,1), by the above description of U, we must only show that:

—z; < (1=s)u; <1—ua;

z— 1< (14 s)u; <y

These are trivially true if ¢+ > 3, and true for large enough b if ¢ = 3. We
also have:

—21 <0< (1-sNul =(1-20)(1—2y) <1—2

21 —1<0< (145 =(01-28)z <2y
')

If 21, > 0 then since (z/,u',s") € U we have
2> (1+ sy = 215/((1 = &")uz) > 21/ (1 = 29)

28



so zj,/z) < 1—af. Likewise 2{,/(1 — z}) < z%. So if § is small enough, we
have the remaining inequalities

g <0< (1—8ud =21,/((1-28)2}) <1 -z
29 —1 <0< (1+5)ul=21,/((1-28)(1-2h) < )
Similarly, if 21, < 0 then u) < 0 and we have
21> (L+s)uy = 215/ ((1 = 8")ug) > —215/25
L—a) > (1= s)uy = 215/ ((1+ s )uy) > 215/ (23 — 1)
and so for small enough 4,
—xy < 2,/ (1=28)2!) = (1 - )ud <0< 1—ay

2y — 1< 2y /(1=28)(1—2})) = (1+s°)ud <0< 2y

Now we have

Fr (2! u®,s%) = 2
mo 0,8 6\ 1
Fy(a',u’,s%) = 21y
(', 5, %) = pa(s%)e(1/2 = 6) /b
Fs(a, o, 55) = ez1,/(b(1/2 - 9))
Fys (2, u’, 55) = —25"215¢/b

and all other coordinates of F™(z',u®, s%) are 0. So if b is large enough (for
example b > 2 > 1/2 4 6]2},]) we see that F"(2/, 4%, s%) is within € of 2/,
so it is in the compact N. Letting & approach 0, compactness of N gives
us a limit point 2" € N. We see that 2! = 2}, 21, = 21,, 23 = 2ez{,/b,

2 = po(2))e/(20), 2y = —25%21,€/b, and all other coordinates are 0.
Note that z” is in M — S so we have an explicit formula above for its
inverse image. In particular, if F™(z" v, s") = 2" then 2" = !, s = s,

ul =1/2, ull = 21, /pa(s®), u4 = ¢/b, and all other u” are 0. But this point
is not in U which can be seen by converting back to the original coordinates:
al =2+ (1 - ")l =21+ (2—22])(1/2) = 1 which is outside the allowed
range.

So we have a contradiction. Consequently, M is not locally compact at
S — S’ and hence is not a manifold there. Note also that M cannot be locally
compact at S’ since any point of S’ has arbitrarily close points in S — S’ so
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any compact neighborhood of a point in S’ is also a compact neighborhood
of a point in S — S’, which we have just shown cannot exist. O

At this point one might argue that perhaps M is not a topological mani-
fold for a mere technical reason. Suppose we considered M’ = F™(U) where
U is the closure of U. Since U is closed and bounded, it is compact, so its
image M’ is also compact, and hence locally compact. Hence, there is still
the possibility that M’ could be a topological manifold. Moreover, taking
U is not unreasonable, we are just allowing our probabilities to be 0 or 1.
Nevertheless M’ is not a topological manifold. In fact, we can show that at
points of S —S’, M is locally homeomorphic to R"*! x ¢(D? x S"~3) where
¢(D? x §™?) is the cone on a 2-disc D? cross the n — 3 sphere (A cone on
a set A is the set of points lying on some straight line between a point in
A and the origin). We can also show that at points of S\ S’, M is locally
homeomorphic to R"*1 x ¢(R? x S™73).
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