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Abstract

Investigators interested in model order estimation have tended to divide themselves into

widely separated camps; this survey of the contributions of Schwarz, Wallace, Rissanen, and

their coworkers attempts to build bridges between the various viewpoints, illuminating con-

nections which may have previously gone unnoticed and clarifying misconceptions which seem

to have propagated in the applied literature. Our tour begins with Schwarz’s approximation

of Bayesian integrals via Laplace’s method. We then introduce the concepts underlying Ris-

sanen’s minimum description length principle via a Bayesian scenario with a known prior;

this provides the groundwork for understanding his more complex non-Bayesian MDL which

employs a “universal” encoding of the integers. Rissanen’s method of parameter truncation is

contrasted with that employed in various versions of Wallace’s minimum message length crite-

ria. Rissanen’s more recent notion of stochastic complexity is outlined in terms of Bernardo’s

information-theoretic derivation of the Jeffreys prior.

Key Words: Bayesian model selection, minimum description length, minimum message length,
stochastic complexity, parameter truncation

1 Introduction

Since its introduction by Fisher, the method of maximum-likelihood has proven an effective method
of vector parameter estimation when the dimension of the parameter space is fixed. When the
dimension of the parameter space itself needs to be estimated, maximum-likelihood techniques
tend to be “greedy,” consistently picking the models of greatest complexity to yield overly tight
fits to the data.

The challenges of model order estimation were addressed by Akaike (1973). Five years later,
alternative approaches were proposed by Schwarz (1978) and Rissanen (1978). Schwarz took a
Bayesian approach of integrating out nuisance parameters via Laplace’s method. Adopting a quite
different tactic rooted in coding theory and theoretical computer science (Li & Vitányi, 1997),
Rissanen proposed the minimum description length principle, which seeks to minimize the number
of bits needed to describe the data over the available models. Although his 1978 paper may be the
most ubiquitously cited reference for the origins of MDL, the seeds of estimation-via-coding were
planted a decade earlier in the computer science literature by Wallace & Boulton (1968). Wallace
later refined his ideas and termed them minimum message length (Wallace & Freeman, 1987a). A
trio of technical reports from Monash University (Oliver & Hand, 1994; Oliver & Baxter, 1994;
Baxter & Oliver, 1994) and the closely related dissertation by Baxter (1996b), although written
with an emphasis on Wallace’s ideas, discuss some of the similarities and differences between the
works of Schwarz, Wallace, and Rissanen.
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Most Bayesian inference procedures are based on minimizing an expected cost function. Wal-
lace’s MML criteria (Wallace & Freeman, 1987; 1992) crafts Bayesian inference procedures without
having to specify an explicit cost function (such as squared error or probabilities of detection and
false alarm). Although prior distributions also arise in Rissanen’s work, they merely function as
technical tools; as we shall see, they are transforms of lengths of messages encoded via codebooks
that are explicitly devised without incorporating prior knowledge about the parameters. Rissanen
goes to great lengths to avoid using classical Bayesian priors in modeling what he considers “sub-
jective” knowledge about parameters and staunchly resists Bayesian interpretations of his criteria.
Preferring to make as few assumptions about the parameters as possible, his minimum description
length approach, developed in the early 80’s, represents parameters using a “universal” coding
scheme for the integers (Rissanen 1983; 1986; 1987a; 1987b). Rissanen’s most recent work takes a
different tactic, exploiting what he calls a normalized maximum-likelihood code which amounts to
employing a Bernardo-Jeffreys prior that is restricted to subsets of the parameter space, with the
subset index encoded using his universal integer code (Rissanen 1995a; 1995b; 1996). Grünwald
(2000) offers a highly readable account of Rissanen’s ideas, aimed at non-specialists. In asymptotic
settings, Hansen & Yu (1998) bring MDL inference to life with a lucid presentation of numerous
applications. In spite of Rissanen’s philosophical objections to using prior distributions to rep-
resent a priori knowledge about parameters, there is nothing to prevent devoted Bayesians from
assimilating Rissanen’s MDL techniques into their own agenda. We investigate this path in Section
4.3.

Traditional maximum-likelihood and Bayesian techniques have a well-developed theory; many
of the traditional debates have been somewhat resolved, and numerous books are available to the
practitioner. Unfortunately, model order estimation remains a subject of tremendous controversy;
there is little agreement on what the “best” approach is, and indeed little agreement on if there is,
in fact, such a thing as a “best” approach. Each of the pioneering investigators in the field seems
to have staked out his own individual niche; attempts to synthesize the different mindsets into a
coherent whole are rare. We are aware of only two books on model order selection. The volume by
Linhart & Zucchini (1986) consists mainly of Akaike-type methods, and Rissanen’s book (1989)
focuses on his own approach, which he has made profound extensions to since its publication; we
recommend supplementing it with a more recent set of lecture notes Rissanen (1999b) prepared
for a course at the Tampere Univ. of Technology. Although not technically a “book,” Grünwald’s
(1998) 300+ page thesis may be the clearest, most coherent reference on coding-theoretic model
selection that we are aware of; in particular, Chapter 7 compares MDL and MML. Special issues
of The Computer Journal1 (Vol. 42, No. 4, 1999), Statistics and Computing (Vol. 10, No. 1,
2000) and The Journal of Mathematical Psychology (2000) are devoted to model selection topics
including MDL, MML, Akaike’s techniques, and cross-validation approaches.

Considering the challenging nature of the original works and the preponderance of misinter-
pretations and misunderstandings in the applied literature, we hope this paper will be a welcome
addition to the surveys given in the technical reports and dissertations cited above, perhaps shining
light on some dark corners and paving the way for further understanding and developments.

Although there is a rich body of work relating to Akaike’s methods (Akaike, 1974; Stone,
1977; Taylor, 1987; Sakamoto et al., 1986; Sakamoto, 1992; Hurvich et al., 1998; Bozdogan, 2000;
Cavanaugh & Shumway, 1998), especially in time series analysis (Akaike, 1979; Atkinson, 1978;
Shibata, 1976), we will not consider his work further here, and instead focus on the work of Schwarz,
Wallace, and Rissanen. All three researchers obtain similar asymptotic results. Akaike’s results,
which are based on bias-correction terms for estimating cross-entropies, are quite different.

1Articles may be downloaded from the web at www3.oup.co.uk/computer journal/hdb/Volume 42/Issue 04.
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2 Organization and Contributions

Over the course of this review, we occasionally attempt to point out some connections between
results in the literature that have either not been well understood or which seem to have gone
unnoticed. The literature contains myriad potential pitfalls which must be illuminated in order to
fully appreciate the work of the cited authors, and more importantly, to avoid potential misunder-
standings.

Taylor series expansions of logposteriors in the spirit of Clarke & Barron (1990; 1994) and Bala-
subramanian (1997) will appear throughout; they form the glue that unifies the various approaches.
Section 3 presents Schwarz’s approach to model order estimation (Schwarz, 1978), which involves
computing Bayesian integrals via Laplace’s method, an application of Taylor series approximation.
We point out that different formulas result depending on whether or not the full logposterior or
just the loglikelihood are expanded to second-order terms. We present Schwarz’s classic asymp-
totic approximation and compare it to a less commonly known approximation suggested by Draper
(1995). We also tackle the frequent misinterpretation of the omnipresent −(d/2) logN term as a
logprior on model order.

The basic ideas underlying minimum description length inference (Rissanen 1978; 1987a) are
illustrated in Section 4. Section 4.3 applies Rissanen’s method of parameter truncation to a
Bayesian situation where a prior is available. The resulting formula differs from the Schwarz result
by a term which is linear in the number of parameters. This presentation is helpful as a prelude
to understanding Rissanen’s more complex non-Bayesian MDL principle, which we consider in
Section 7.

Section 5 reviews the work of Wallace and coworkers in minimum message length inference
(Wallace & Freeman 1987a; 1992), a variant of MDL inference which emphasizes Bayesian formu-
lations and employs a different approach to parameter truncation than that taken by Rissanen.
We catalogue and clarify the different versions of MML that have appeared in the literature, and
relate these versions of MML inference to the different versions of Schwarz’s method presented in
Section 3. We point out that Takeuchi’s (1997) flavor of MDL is actually closer to Wallace’s MML
than Rissanen’s MDL, although it employs Rissanen-style rectangular quantization regions.

Section 6 reviews the results of the preceding sections and interprets them as penalized loglike-
lihoods.

In many applications, no obvious prior distribution is available. Hence, Section 7 explores the
non-Bayesian version of Rissanen’s MDL (1983), which exploits a so-called “universal” prior on
the integers, and Section 8 presents his more recent concept of stochastic complexity (Rissanen,
1996).

3 Schwarz’s Application of Laplace’s Method

We will begin with Schwarz’s approach to model order estimation, as his approximate Bayesian
approach may be easier to understand than the substantially more complicated coding-theoretic
arguments used by Rissanen and Wallace. Consider the multihypothesis testing problem of de-
termining which model m ∈ M generated a given data set x, where M indexes the models and
the models have a priori probability pm(m). For each model, we need the likelihood and prior
densities denoted by pl(x|θ, m) and pp(θ|m). The parameter space of θ may differ for each m,
θ ∈ Θm, where Θm is the parameter space associated with model m.

The Bayesian procedure proceeds by integrating out the nuisance variable θ to find the proba-
bility of x under the model m

p(x, m) = pm(m)

∫

Θm

pl(x|θ, m)pp(θ|m)dθ. (1)
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and picking the class m which maximizes p(m|x) ∝ p(x, m).
In a few specialized cases, such as auditory-nerve discharge rate estimation (Mark & Miller,

1992) and multinomial graphical models (Heckerman, 1995), the Bayesian integral (1) can be
performed analytically. In many cases, however, the integral is formidable, and the approximation
technique employed in Schwarz (1978) becomes attractive. Direct computation of (1), if feasible,
will yield better results than the approximations presented below; hence, we should only turn to
the approximations if (1) is too complex.

Let L(x|θ, m) = ln pl(x|θ, m), P (θ|m) = ln pp(θ|m), H(x, θ|m) = L(x|θ, m) + P (θ|m). We

assume that the MAP estimate θ̂(x) = argmaxθH(x, θ|m) is unique. Suppose the model m has
dimension (number of free parameters) d = d(m).

Bayesian-Laplace approximation, direct: If the posterior density is highly peaked, we can
approximate the integrand via Laplace’s method (Polya & Szego, 1972, p. 96). Laplace’s approach

employs a Taylor series expansion of H around the MAP estimate θ̂, taken to second order

H(x, θ|m) ≈ H(x, θ̂|m) − 1

2
(θ − θ̂)T IH(x : θ̂|m)(θ − θ̂) (2)

where

IH (x : θ̂|m) =

[

− ∂2

∂θi∂θj
H(x, θ|m)

]∣
∣
∣
∣
θ=θ̂

. (3)

Throughout this paper, we will assume that the necessary partial derivatives exist and that IH ,
as well as other related matrices of second partial derivatives, are positive definite. Note that the
first derivative term in (2) vanishes since we are evaluating at a maximizer.

Substituting this approximation for H(x, θ|m) in the Bayesian integral (1) yields

p(x, m) = pm(m)

∫

θ

exp[H(x, θ|m)]dθ (4)

≈ pm(m) exp[H(x, θ̂|m)] ×
∫

exp[−1

2
(θ − θ̂)T IH (x : θ̂|m)(θ − θ̂)]dx

(a)
= pm(m) exp[H(x, θ̂|m)]

(2π)d/2

√

det IH(x : θ̂|m)
.

Equality (a) follows readily from recognizing the integrand as the quadratic form of a Gaussian
density.

In terms of logarithms, we have

ln p(x, m) ≈ ln pm(m) + H(x, θ̂|m)

+
d

2
ln 2π − 1

2
ln det IH(x : θ̂|m). (5)

Choosing the m which maximizes (5) can easily been seen as equivalent to choosing the m which
maximizes the a posteriori probability. The accuracy of approximations like (5) is considered by
Clarke & Barron (1994); Balasubramanian (1997) undertakes an even sharper analysis. Some
rather technical regularity conditions (see, for instance, Conditions 1-3 of Clarke & Barron (1994))
are needed for the approximation to be useful. These conditions hold for many problems of interest,
and in the sequel we will assume that they hold without further comment. However, as one of
the referees pointed out, users of model selection criteria often have a tendency to jump ahead
and apply the sorts of “plug-in” formulas given throughout this paper without checking any of
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the regularity conditions, so it behooves a potential user to give them some thought. See the tree
classifier of Section 7.2 of Rissanen (1989) for an example where (5) is not helpful.

This equation is analogous to O’Hagan’s message length formula (37), which will be presented
in Section 5.1. Lanterman (1998a; 1998b; 2000) used this formula (5) for estimating the dimension
of a model used to represent the thermodynamic state of vehicles for infrared target recognition.

Bayesian-Laplace Approximation, Oliver & Baxter version: Suppose that the prior
pp(θ|m) is sufficiently flat around the MAP estimator θ̂ that, for purposes of computing the integral,

pp(θ|m) ≈ pp(θ̂|m) may be extracted from the integrand as a constant (Oliver & Baxter, 1994).
Applying Laplace’s method to the remaining likelihood yields

p(x|m) ≈ pp(θ̂)

∫

θ

exp[L(x|θ, m)]dθ

≈ pp(θ̂|m) exp[L(x, θ̂|m)]
(2π)d/2

√

det IL(x : θ̂|m)

= exp[H(x, θ̂)]
(2π)d/2

√

det IL(x : θ̂|m)
, (6)

where

IL(x : θ̂|m) =

[

− ∂2

∂θi∂θj
L(x|θ, m)

]∣
∣
∣
∣
θ=θ̂

(7)

is the empirical or observed Fisher information matrix. In terms of logarithms, we have

ln p(x, m) = ln pm(m) + H(x, θ̂|m)

+
d

2
ln 2π − 1

2
ln det IL(x : θ̂|m). (8)

This equation is analogous to Wallace & Freeman’s message length formula (31), which we will
present in Section 5.1.

Large sample-size asymptotics: Consider the Oliver & Baxter approximation presented
above. Suppose we have N i.i.d. samples x = x1, x2, . . . , xN , so that the loglikelihood is

L(x|θ, m) =

N∑

n=1

L(xn|θ, m) (9)

and the empirical Fisher likelihood information is

IL(x : θ̂|m) =

N∑

n=1

IL(xn : θ̂(x)|m). (10)

Let θ̂lim = limN→∞ θ̂(x) be the limiting maximum-likelihood estimate under the class m, which

is well-defined by the assumed regularity conditions. Let p(x|θ̂lim, m) be the data-generating model
assuming class m and the limiting ML estimate; recall x denotes the full, observed sample. If model
m is the correct data-generating model, then θ̂lim can be considered the “true” parameter value
by the asymptotic consistency of ML estimation.

Using the law of large numbers and uniform convergence, one can show that

Ep(x|θ̂lim,m)[IL(x1 : θ̂(x)|m)]

(1/N)IL(x : θ̂(x)|m)
→ 1 (11)
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with probably one.
Hence, the rightmost term in (8) may be asymptotically approximated by

−1

2
ln det IL(x : θ̂|m)

≈ −1

2
ln det{NEp(x|θ̂lim,m)[IL(x1 : θ̂(x)|m)]}

= −1

2
ln det NId − 1

2
ln det Ep(x|θ̂lim,m)[IL(x1 : θ̂(x)|m)]

= −d

2
ln N − 1

2
ln det Ep(x|θ̂lim,m)[IL(x1 : θ̂(x)|m)], (12)

where Id is the d×d identity matrix and the equalities are due to basic properties of determinants.
The log-probability of the model and the data can then be asymptotically approximated by

ln p(x, m) ≈ ln pm(m) +

N∑

n=1

L(xn|θ̂(x), m) + P (θ̂|m)

+
d

2
ln 2π − d

2
ln N (13)

−1

2
ln det Ep(x|θ̂lim,m)[IL(x1 : θ̂(x)|m)].

As N → ∞, the terms which are functions of N begin to dominate the others, yielding the classic
approximation

ln p(x, m) ≈ L(x|θ̂, m) − d

2
ln N. (14)

We choose the model m which maximizes (14). Often called the BIC (Bayesian Information Cri-
terion) or occasionally SIC (Schwarz Information Criterion), Schwarz’s method is most frequently
stated in this asymptotic manner. Both the BIC and the AIC (Akaike Information Criterion) have
been compared in the estimation of finite mixtures (Liang et al., 1992) (with application to medical
image processing) and direction finding via narrowband sensor arrays (Wax & Kailath, 1985). BIC
has also found use in estimating appropriate neighborhood sizes in texture modeling via Markov
random fields (Smith & Miller, 1990). Note that certain conditions, in particular, the consistency
of maximum-likelihood estimators with increasing N , need to hold for (14) to be meaningful. As
one of the referees noted, investigators sometimes mistakenly employ criteria like (14) in situations
where the steps leading up to it are not valid.

In the literature, the − d
2 ln N term is sometimes interpreted as a logprior on d. This interpre-

tation is somewhat misleading; although the resulting “prior” is summable

∞∑

d=0

exp

(

−d

2
ln N

)

=

∞∑

d=0

N−d/2 =
1

1 − (1/
√

N)
, (15)

the result came from assuming some other prior pm(m) on the model class. Note that the result
(14) depends only on d, not pm(m).

A less frequently used approximation, proposed by Draper (1995), retains the 2π term:

ln p(x, m) ≈ L(x|θ̂, m) − d

2
ln

N

2π
. (16)

As Draper suggests, the best way to know when N is sufficiently large to justify the use of these
asymptotic approximations is to compute the nonasymptotic and asymptotic versions and compare
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them (see Draper, 1995, p. 57). Contrary to intuition, (16) may not be superior to (14) in general.
In the discussion section of Draper (1995), Raftery (pp. 78-79) and Kass and Wasserman (pp. 84-
85) give examples in which Schwarz’s original approximation (14) is better; in Draper’s response
(p. 91), he gives examples where retaining the 2π term (16) is better. This question is probably
best answered for each individual problem. Such an investigation for problems in epidemiology
was conducted by Hook et al. (1995).

Related work: Clarifications and extensions of Schwarz’s technique are investigated by Poskitt
(1987). O’Hagan (1995) considers the use of such Schwarz-Laplace expansions for approximating
Bayes factors for hypothesis testing. Stone (1979) and Zhang (1993) compare the work of Akaike
and Schwarz; Rahman & King (1999) propose a Joint Information Criterion (JIC) which represents
a compromise between the AIC and the BIC. Laplace’s method has also found application in the
study of the information-theoretic asymptotics of Bayes methods (Clarke & Barron, 1990) and in
computing probabilities of detection in low-noise automatic target recognition scenarios (Grenander
et al., 1998). There are variations of Laplace’s method which are more accurate for large numbers
of parameters (Shun & McCullagh, 1995) or small sample sizes (McQuarrie, 1999).

A remark on random sampling: In some applications, the regularity conditions needed
for Laplace’s method to make sense do not hold, and thus we must turn to other techniques.
Many authors, including Green and Richardson (1995; 1997), Raftery (1996), and Carlin & Chib
(1995), have proposed using Markov chain Monte Carlo (MCMC) methods to compute the Bayesian
integral (1). Well-crafted MCMC algorithms can efficiently traverse the space with wide enough
breadth to find good approximations to (1).

4 Minimum Description Length and Related Principles

To introduce the minimum description length principle, suppose the data y and parameters x live
in discrete spaces. We will later extend the discussion to continuous spaces. The overall idea is to
choose a representation of the data which permits us to express them with the shortest possible
message via a postulated set of models. Traditionally, the “message” or “description” length is
measured in bits, which arise from using base-2 logarithms. Other units based on other bases can
be used; however, to maintain consistency with the natural logarithms used above, we will measure
information using “nats.” (One can easily convert from “nats” to “bits” by dividing by ln 2.) See
Sections 2.2 and 2.3 of Rissanen (1989) or Sections 2.1 and 2.2 of Hansen & Yu (1998) for a review
of the underlying coding-theoretic concepts.

In theory, the shortest computer program which generates the data y provides the most efficient
description of the data. A profound theorem, proved independently by Kolmogorov, Chaitin, and
Solomonoff (Li & Vitányi, 1997), asserts that there is no algorithm which can find the shortest
computer program to reproduce a particular set of data, or even find the length of such a shortest
program. (Cover & Thomas (1991 Chapter 7) offer a refreshing introduction to this important
notion and related ideas; Vitányi & Li (1996; 2000) and Wallace & Dowe (1999) offer deep dis-
cussions on the relation between MDL/MML and Kolmogorov complexity.) Hence, any attempt
to find the length of the absolutely shortest possible program would be futile. To avoid such a
morass, we consider minimizing the description length over a set of candidate models M. We do
not even need to suppose that the data are the result of a realization of one of the models; as we
develop more models, we are free to add them to M.

One can construct practical MDL schemes (Chapter 3, Rissanen 1989) by coding models explic-
itly (two-part coding), by developing codes based on model averaging (stochastic complexity), or
by so-called “predictive coding.” Here we will focus on the simplest, the two-part code scheme. In
Section 8, we will explore Rissanen’s more advanced stochastic complexity framework. Although
this paper will not explore the predictive version of MDL in depth, some discussion is provided in
Section 9.
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4.1 Minimizing Worst-Case vs. Expected Description Lengths

In devising coding schemes, there is no code which gives a short message length to all sequences
of data. Given a model m and an instance of data x, the shortest codelength for x among all the
available distributions in m is given by

− log p(x|θ̂(x))
df
= − L(x|θ̂(x)), (17)

where θ̂(x) is the ML estimator for the class m. Unfortunately, no code exists which attains the
codelength given by (17) for every instance of x. Therefore, some additional choices have to be
made, and these choices unleash one of the main sources of contention between Rissanen’s and
Wallace’s approach to MDL/MML style interference.

Wallace finds no trouble with minimizing expected code lengths, where expectations are taken
over some assumed “true” distribution or a “subjective” Bayesian distribution. By contrast, Rissa-
nen avoids assuming that the data is actually generated by any of the models under consideration,
and seeks a code with lengths which are close to (17) regardless of what the data or data generat-
ing mechanisms are. Hence, he takes a worst-case approach which seeks the code with lengths len
which minimize the maximum excess length

max
x

{len(x) − [− log p(x|θ̂(x))]} (18)

or the worst-case expected code length,

max
g∈G

Eg{len(x)− [− log p(x|θ̂(x))]} (19)

where the maximum is taken over the set of all possible distributions, not just those in the classes
under consideration. Solving these problems leads to Rissanen’s stochastic complexity. Section 8
we will discuss these problems in depth. One way of approximating such minimax codes is to use a
multi-part encoding scheme as described in the next section. In these schemes, parameter estimates
are explicitly encoded. Readers interested in exploring the original works should be warned that
the worst-case minimax interpretation of such multi-part codes, well-described by Rissanen in his
more recent work (1996), was not clear in his early papers (1978; 1983).

Wallace’s MML, which focuses on parameter estimation in addition to model selection, also
explicitly encodes parameter estimates. In Rissanen’s view, the encoding of parameter estimates
is just a means to the end of model selection; in Wallace’s view, the coded parameter estimates
are important in their own right.

4.2 MDL with Multi-Part Codes

The goal here is to encode the data x with a three-part message. The first part indicates the model
m, the second encodes parameters θ for that model, and the third encodes the data x given the
model m and parameters θ. The total message length is

len(x, θ, m) = len(x|θ, m) + len(θ|m) + len(m). (20)

If the number of models |M| is finite, then from the discussion in the previous section, assuming
that len(m) is constant minimizes the worst-case number of bits needed to specify the model. In
the literature, then, the explicit dependence on m is sometimes dropped and (20) is written as

len(x, θ) = len(x|θ) + len(θ). (21)

Hence, this procedure is most often referred to as a two-part coding scheme. (One exception to
this is the intriguing study of ancient stone circle geometries by Patrick and Wallace (1982), who
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in fact characterize models by the lengths of programs written in an ALGOL-like language. This is
kindred to Chaitin’s (1987; 1997) vivid approach to algorithmic information theory, which defines
the complexity of expressions via the lengths of LISP programs.)

The “minimum description length” or “minimum message length” principle of model selection
and parameter estimation chooses the θ and m which minimizes (20) for the collected data x. As
Rissanen (1983) observes, “quite a bit is needed to convert this commonsensical principle to an
explicit formula, directly applicable to a variety of estimation problems.” In applying the princi-
ple, at certain points assumptions and approximations need to be made to obtain implementable
procedures; different sets of choices will yield different expressions.

Shannon’s theory tells us that for a given model m and parameter θ, we can construct a code
for x with codewords of length len(x|θ, m) = d−L(x|θ, m)e. (For convenience, we will drop the
notation for “next largest integer” in the remaining discussion.) Fortunately, it is not actually
necessary to construct such codes; we only need to know that it is possible and to have expressions
for codeword lengths. (A referee pointed out that many researchers feel the MDL principle cannot
be used in their context because they mistakenly think they would need to actually construct
the codes, which is often computationally infeasible.) If θ could somehow be transmitted cost-
free, then we would choose the maximum-likelihood estimate, the θ which minimizes len(x|θ, m).
However, we must also encode and transmit the parameter θ. In this data transmission viewpoint,
the code for θ must be a prefix (also called “self-punctuating”) code. This means that the stream
representing x given θ may follow the stream representing θ without an additional “comma” symbol.
This implies the code for θ must satisfy the Kraft inequality (Cover & Thomas, 1991, Section 5.2,
p. 82)

∑

θ

e−len(θ) ≤ 1. (22)

Hence, pp(θ) ∝ e−len(θ) gives us a proper prior distribution on x. Similarly, if we have pp(θ)
in hand, we can use it to find the code lengths len(θ). In this sense, MDL and Bayesian MAP
estimation are equivalent.

When we extend the MDL principle to continuous parameter spaces, several complications
arise, and this relationship no longer holds exactly; the often-stated equivalence between MAP
and MDL is then a potentially misleading oversimplification (see the first section of Grünwald
(1998) for discussion of this “folklore”). The issues are subtle and often not clearly explained (or
not addressed at all) in the literature; hence, we will spend some time exposing them here.

The main complication is that to apply coding theory, continuous parameters and data must
be truncated to finite precision. As we will see, truncation of the data presents no serious hurdles.
Truncation of the parameters, however, is a rather sticky issue. Sometimes a useful truncation
level seems evident in the nature of the problem; for instance, in describing the location of image
points for classifying edges and junctions, Lindeberg and Li (1997) feel “it is natural to set this
parameter to a value on the same order as the distance between adjacent pixels.” However, the
optimum precision for parameters is in fact determined by the data themselves, which makes the
interpretation of len(θ|m) as a prior break down; the len(θ|m) is now implicitly a function of the
data x, and the notion of a prior which depends on the data is an uncomfortable one at best.
Sometimes this quandary is handled via averaging over the data; sometimes it seems to go entirely
unaddressed.

Inference via the minimization of (20) has been studied most in depth by Rissanen, who
uses term “minimum description length,” and Wallace, who prefers the name “minimum mes-
sage length.” There are several important differences in their viewpoints, some philosophical and
some practical. Rissanen’s work tends to focus on the selection of models; the estimation of param-
eters within those models is only emphasized in as much as such estimates are needed to solve the
model selection problem. With this in mind, Rissanen most often employs maximum-likelihood
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estimates for parameters within models, even though technically, the MDL parameter estimate
might differ from the ML estimate.

Rissanen writes (beginning of Section 4, 1983): “In many cases of interest the first [likelihood]
term in [the description length] is dominant, and for each number of parameters the minimizing
parameter values are close to the ML estimates.” [Italics ours.] Thus his observation (in the
introduction to the same paper) that the “Minimum Description Length (MDL) principle...turns
out to degenerate to the more familiar Maximum Likelihood (ML) principle in case the number of
parameters in the models is fixed, so that the description length of the parameters themselves can
be ignored” only holds in this approximate sense. Although not obvious upon first reading of his
papers, this becomes clear under deeper study. However, the belief that MDL estimation reduces
exactly to ML estimation in fixed-order cases appears to persist in the applied literature.

Rissanen truncates ML estimates based on a worst-case analysis and tries to minimize the error
associated with falling on the furthest edge of a truncation region. Wallace uses a different method
of truncation in which his MML estimates may differ from ML and even MAP estimates; such
MML estimates have certain invariance properties that make them attractive, even in the fixed-
model case when no model selection needs to be made. See Wallace & Freeman (1987a, Sections
4.2 and 5.1) for further elucidation of this issue. Fixed-model MML estimators have been explored
for binomial (Baxter, 1996a), Von Mises (Dowe et al., 1996b), and spherical Fisher (Dowe et al.,
1996a) distributions. Takeuchi (1997) explores the relationships of Bayesian and Wallace-type
estimators in the fixed-family case.

Remark: The “parameter truncation” is only needed in order to place our procedures in a
coding context, so in practice it is not necessary to restrict ourselves to reporting strictly truncated
estimates. However, Wallace & Freeman (1987a, Section 4) do discuss “strict” minimum message
length estimators which yield truncated estimates. They note that such parameter estimators are
discontinuous functions of the data and in general computationally intractable, so they spend the
remainder of their paper exploring the less-strict MML estimators reviewed here.

4.3 A Bayesian Variant of Rissanen’s MDL

This section considers employing Rissanen’s method of parameter truncation in a Bayesian sce-
nario. The overall approach is to describe the observed data x with a two-stage code in which we
encode the MAP estimate θ̂ and then encode x under the model determined by θ̂. As introduced
in the preceding section, Shannon’s theory informs us that we can construct a code with length
d−L(x|θ, m)e. For real data x with likelihood density pl(x|θ, m), we can truncate the data to a de-
sired precision δx and replace the density with the probability pl(x|θ, m)δd

x, yielding a code length
−L(x|θ, m) − d ln δx. Notice the d ln δx term depends on neither the data x nor the parameter
θ. Hence, the precision δx plays no role in the minimization and can safely be dropped. In the
literature, −L(x|θ, m) is often referred to as a “code length” even when x is real-valued, with the
understanding that any desired precision can be achieved. We adopt these conventions here.

Once we have encoded x given θ, we also need to encode the parameter θ. For discrete parame-
ters, the code length for encoding the parameter θ is just −P (θ|m) = − ln pp(θ|m). But if θ is real,
it must be truncated as well. Unlike the truncation of the data, the truncation of the parameters
is a significant issue as we will see below.

Assuming the model classes are sufficiently regular, expanding the loglikelihood as a function
of the truncated value θtr in a Taylor series around the MAP estimator θ̂ (to second order) yields

−H(x, θtr|m) ≈ −H(x, θ̂|m)

−1

2
(θ̂ − θtr)

T

[
∂2

∂θiθj
H(x, θ|m)

]∣
∣
∣
∣
θ=θ̂

(θ̂ − θtr). (23)

In his earliest work, Rissanen (1978) took the approach of Wallace & Boulton (1968), who treated

the quantization error θ̂ − θtr as a uniformly distributed random vector and chose the precision to
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minimize the expected value of (23). (This is the approach taken by Michal (1993) for multiple
target detection with radar antenna arrays.) In subsequent papers, Rissanen (1983) adopts an
alternative worst-case minimax approach which picks the precision to minimize the maximum of
(23) over the quantization region: “Instead of the maximum value we could calculate the mean
increase by assuming some distribution [uniform in Wallace & Boulton (1968)] for the deviation
of [the parameter] from the center of its enclosing rectangle. Using the maximum value has the
advantage, however, that it is independent of such distributions.” [Italics added.]

Rissanen considers the problem of truncation in multiple dimensions as partitioning the pa-
rameter space into parallelepipeds, noting that the quadratic term reaches its maximum when θ
falls at a corner of the parallelpiped. Consider a fixed maximum deviation

r = (θ̂ − θtr)
T IH(x : θ̂|m)(θ̂ − θtr). (24)

Rissanen (1983) chooses the quantizing parallelpiped as the maximum-volume rectangle contained
within the ellipsoid (24). This rectangle has edges parallel to the principal axes of the ellipsoid,
with a maximum volume of

V (r) =

(
4r

d

)(1/2)d
1

√

det IH(x : θ̂|m)
. (25)

For a worst-case analysis, we seek the r which minimizes

− lnV (r)pp(θtr |m) − L(x|θtr, m)

= − lnV (r) − H(x, θtr|m)

≈ − lnV (r) − H(x, θ̂|m) +
r

2

= −d

2
ln 4r +

d

2
ln d +

1

2
ln det IH (x : θ̂|m)

−H(x, θ̂|m) +
r

2
. (26)

Setting the first derivative w.r.t. r equal to zero easily reveals the minimizing r to be r = d.
Substituting r = d into (26) yields the description length

−H(x, θ̂|m) +
1

2
ln det IH(x : θ̂|m) +

d

2
(1 − ln 4). (27)

We then seek the m which minimizes (27).

5 Wallace’s Minimum Message Length

Since the multivariate application of Wallace’s MML inference is somewhat complicated, we will
illustrate the ideas by first working through the single variable case. In Section 5.2 we extend this to
multiple dimensions. In their work, Wallace & Freeman (1987a) “take the orthodox Bayesian view
of the existence of known, proper prior distributions for unknown quantities. It has been known
since Jeffreys (1939) that using improper priors for model discrimination leads to indeterminate
or nonsensical answers, so there can be no substitute for careful specification of whatever prior
knowledge is available.” This contrasts sharply with Rissanen’s overriding non-Bayesian stance, as
they note (1987a, p. 251): “Rissanen finds it meaningful to consider complete, or nearly complete,
prior ignorance about a parameter and proceeds to construct a ‘universal’ prior distribution to be
used in all such cases... We prefer the philosophical view that prior information always exists and
there can be no easy substitute for thinking what it is and formulating it as well as possible. This
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can, of course, only be undermined by any return to the notions of ignorance current in the 1960’s
and 70’s.”

Throughout this section, we assume that the model classes are sufficiently regular so that Taylor
series approximations will be valid, as discussed in Section 3.

5.1 MML Inference: Univariate case

Wallace & Freeman, data-driven quantization: The prior probability that θ ∈ [θtr− s
2 , θtr+

s
2 ]

is approximately spp(θtr). Expanding the loglikelihood as a function of the truncated value in a
Taylor series around θ (to second order) yields

−L(x|θtr, m) ≈ −L(x|θ, m) − (θ − θtr)
∂

∂θ
L(x|θ, m)

−1

2
(θ − θtr)

2 ∂2

∂θ2
L(x|θ, m). (28)

Wallace & Freeman suppose that the quantization error is uniformly distributed (so E[θ− θtr] = 0
and E[(θ − θtr)

2] = s2/12) and approximate spp(θtr) ≈ spp(θ), yielding

E[− ln spp(θtr|m) − L(x|θtr, m)]

≈ − ln s − P (θ|m) − L(x|θ, m) + s2

24 IL(x : θ|m). (29)

Recall that in (23), the first-order Taylor series term vanished since we used the MAP estimate.
Here, the first order term vanishes from assumptions on the distribution of the quantization error.

Taking the derivative of (29) w.r.t. s and setting the result equal to zero yields the minimizing
s:

ŝ =

√

12

IL(x : θ|m)
. (30)

Substituting (30) into (29) yields

−P (θ|m) − L(x|θ, m) − 1

2
ln 12 +

1

2
ln IL(x : θ|m) +

1

2

= −H(x, θ|m) − 1

2
ln 12 +

1

2
ln IL(x : θ|m) +

1

2
. (31)

The MML estimate, under this data-dependent quantization scheme, is the θ which minimizes
(31). (Observe that if the MAP estimate was used instead of the MML estimate, then (31) would
only differ from Oliver & Baxter’s version of the Schwarz criterion (8) by a constant.)

Wallace & Freeman, data-independent quantization: From a strict data transmission
standpoint, (31) is not enough, as the precision s must also be coded and transmitted. s itself
must be then be quantized to some optimal precision s1, which must in turn be quantized and
transmitted with some optimal precision s2, and so on. To avoid becoming ensnared in this
quicksand, Wallace & Freeman (1987a, p. 245) give several arguments to try to illustrate that
the effect is not significant. More generally, they resolve the issue by approximating the observed
Fisher information with the expected Fisher information,

IL(θ|m) =

∫

pl(x|θ)IL(x : θ|m)dx, (32)

yielding the approximation

−H(x, θ|m) − 1

2
ln 12 +

1

2
ln IL(θ|m) +

1

2
. (33)
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The θ which minimizes (33) is the MML estimate.
O’Hagan’s variation, data-driven quantization: O’Hagan (1987, p. 22) observed that

Wallace and Freeman’s approximation spp(θtr|m) ≈ spp(θ|m) amounts to using a zero-order Taylor
approximation for the prior, while a second-order Taylor approximation is used for the posterior.
As an alternative to approximating the prior as a constant and expanding the loglikelihood, he
suggests expanding the full logposterior:

−H(x, θtr|m) = −H(x, θ|m) − (θ − θtr)
∂

∂θ
H(x, θ|m)

−1

2
(θ − θtr)

2 ∂2

∂θ2
H(x, θ|m). (34)

Again supposing the quantization error is uniformly distributed so that E[θ − θtr] = 0 and E[(θ −
θtr)

2] = s2/12,

E[− log s − P (θtr|m) − L(x|θtr, m)]

= − ln s − H(x, θ|m) + s2

24IH (x : θ|m). (35)

The minimizing s is given by

ŝ =

√

12

IH(x : θ|m)
. (36)

Substitution of (36) into (35) yields

−H(x, θ|m) − 1

2
ln 12 +

1

2
ln IH(x : θ|m) +

1

2
. (37)

O’Hagan’s MML estimate is the θ which minimizes (37). (As in the preceding section, observe
that if the MAP estimate is employed instead of the MML estimate, then (37) would only differ
from our original formulation of the Schwarz criterion (5) by a constant.)

O’Hagan’s variation, data-independent quantization: As in the original Wallace & Free-
man formulation, approximating the observed Fisher information in the O’Hagan variation with
the expected Fisher information yields

−H(x, θ|m) − 1

2
ln 12 +

1

2
ln IH(θ|m) +

1

2
. (38)

In their reply to O’Hagan’s suggestion, Wallace & Freeman (1987b) give several reasons for
their preference of their original formulation (33) over O’Hagan’s proposal (37). They suggest that
if the prior pp(θ) has substantial second derivative, that the distribution of the quantization error
can no longer be well approximated by a uniform density. They also note that (33) is invariant to
nonlinear transformations of the parameters, while (37) is not. It is interesting to note, though,
that Wallace and Freeman do adopt the expected Fisher information version of O’Hagan’s variation
(38), without making any reference to their previous objections, in their study of factor models of
multivariate Gaussian distributions (Wallace & Freeman, 1992) where the variation of the logprior
is not negligible compared with the variation of the loglikelihood.

Example: Consider the elementary problem of estimating the mean λ of independent, identi-
cally Poisson distributed data x1, x2, . . . xN . Let X =

∑

i xi. The loglikelihood is −Nλ + X ln λ
and the observed Fisher information is X/λ2. Since E[X ] = E[

∑

i xi] =
∑

i E[xi] =
∑

i λ = Nλ,
the expected Fisher information is N/λ. Suppose the prior is sufficiently flat in a region around
the ML estimate that it can be neglected. Then, the traditional ML estimator and the data-driven
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and data-independent variations of the MML estimator are:

λ̂ML = arg min
λ

[Nλ − X ln λ] =
X

N
,

λ̂DD
MML = arg min

λ
[Nλ − X ln λ +

1

2
ln X − ln λ]

=
X + 1

N
,

λ̂DI
MML = arg min

λ
[Nλ − X ln λ +

1

2
ln N − 1

2
ln λ]

=
X + 1

2

N
. (39)

Note that although all three estimators are asymptotically equivalent as N → ∞, they are slightly
different for low sample values. Here, the MML approach may yield different answers than the ML
estimate, even in this basic estimation problem where no model order selection needs to be made.

5.2 MML in Multiple Dimensions

Now consider extending (33) to the multivariate case. The original derivation by Wallace &
Freeman (1987a, Section 5.2) is rather terse, so this section follows Oliver and Baxter’s (1994,
Section 5, Appendix 1) expanded derivation.

It will be convenient to make a change in coordinates ξ̃ = B−1θ̃, where B is chosen so that
θ̃T IL(θ)θ̃ = ξ̃T ξ̃. To make this so, take B = RS, where R is a rotation matrix consisting of the
eigenvectors of IL(θ) arranged in columns, and S is a diagonal matrix consisting of the reciprocal
of the square-root of the eigenvalues of IL(θ). Let Λ denote the diagonal matrix consisting of the
eigenvalues of IL(θ). Then

θ̃IL(θ)θ̃ = ξ̃T BT IL(θ)Bξ̃ = ξ̃T ST RT ILRSξ̃

(a)
= ξ̃T ST RT RΛSξ̃

(b)
= ξ̃T ST IΛSξ̃

= ξ̃T ST ΛSξ̃
(c)
= ξ̃T Iξ̃ = ξ̃T ξ̃, (40)

where (a) arises from operating on eigenvectors of a matrix with that matrix, (b) is a property of
rotation matrices, and (c) is by the definitions of S and Λ.

To avoid confusion, will use (ξ) superscripts on densities and logdensities which are expressed
in terms of the new coordinates. In these new coordinates, the prior is

p(ξ)
p (ξ) =

pp(θ)

Jacob(B−1)
=

pp(θ)

Jacob(S−1)Jacob(R−1)

=
pp(θ)

Jacob(S−1)
=

pp(θ)
√

det IL(θ)
, (41)

since

Jacob(S−1) =
d∏

i=1

√

λi =

√
√
√
√

d∏

i=1

λi =
√

det IL(θ). (42)

Performing the usual Taylor expansion of the loglikelihood, as in (28), in terms of the ξ-
coordinates yields

−L(ξ)(x|ξtr , m) ≈ −L(ξ)(x|ξ, m) +
(ξ − ξtr)

T (ξ − ξtr)

2
. (43)
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In our application of Rissanen’s ideas to Bayesian inference in Section 4.3, we explored min-
imizing the maximum possible error, so no expectations were taken; the first partial derivative
was zero in (23) since we were evaluating at the MAP estimate. Here, in Wallace’s approach, the
term involving the first partial derivative has zero expected value due to the assumption that the
quantization error is uniformly distributed.

Instead of Rissanen’s parallelpipeds, Wallace & Freeman (1987a, 1992) consider quantizing
in multiple dimensions using optimal quantizing lattices. For instance, in two dimensions, the
optimal quantizing lattice forms a hexagonal grid. In three dimensions, the optimal lattice is a
body-centered cubic lattice (Conway & Sloane, 1993, p. 60), whose Voronoi regions (Conway &
Sloane, 1993, p. 34) are truncated octahedrons (one of the Archimedean polyhedra). In higher
dimensions, the optimal quantizing lattices are actually unknown.

Let s denote the volume of the quantization region. If we quantize according to an optimum
regular lattice, then

E[(ξ − ξtr)
T (ξ − ξtr)] = dκds

2/d, (44)

where κd is a constant relating to the geometry of the d-dimensional lattice. The constant κd is
not known for every d, although upper and lower bounds are available (Zador, 1982; Wallace &
Freeman, 1987a). Upper and lower bounds for κd are given by

Γ(d
2 + 1)2/dΓ( 2

d + 1)

dπ
> κd > Γ(

d

2
+ 1)2/d(d + 2)π. (45)

As d grows, the upper and lower bounds converge to the same number (Conway & Sloane, Eq. 82,
p. 58), yielding κd → 1

2πe ≈ 0.058550.
Some examples of κd for the best known quantizing lattices, taken from Conway & Sloane

(1993, Table 2.3, p. 61), are displayed in Table 5.2.

d κd

1 0.083333
2 0.080188
3 0.078743
4 0.076603
5 0.075625
6 0.074244
7 0.073116
8 0.071682
12 0.070100
16 0.068299
24 0.065771

Table 1: Constants κd for the best known quantizing lattices in various dimensions d.

We need to find the s which minimizes the approximate expected message length

E[− ln sp(ξ)
p (ξtr|m) − L(ξ)(x|ξtr , m)]

≈ − ln s − ln p(ξ)
p (ξ|m) − L(ξ)(x|ξ, m) +

d

2
κds

2/d. (46)

Straightforward calculus reveals that the minimizing s = κ
−d/2
d . Substituting this back into

(46) yields

d

2
ln κd − ln p(ξ)

p (ξ|m) − L(ξ)(x|ξ, m) +
d

2
. (47)
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Using (41) to translate back into the original θ coordinates gives us the message length

−P (θ|m) +
1

2
ln det IL(θ|m) − L(x|θ, m) +

d

2
(1 + ln κd)

= −H(x, θ|m) +
1

2
ln det IL(θ|m) +

d

2
(1 + ln κd). (48)

The MML procedure seeks the model m and parameters θ which minimize (48). Notice that
κ1 = 1/12 ≈ 0.0833, so (48) reduces to (33) when d = 1.

As in the one-dimensional case discussed above, one could follow O’Hagan’s reasoning and
expand the prior as well, yielding a message length

−H(x, θ|m) +
1

2
ln det IH(θ|m) +

d

2
(1 + ln κd). (49)

We again seek the m and θ which minimize (49). As mentioned earlier, Wallace and Freeman
(1992) employ (49) in their study of factor models of multivariate Gaussian distributions.

Wallace & Dowe (2000) employ MML for clustering mixtures of multi-state, Poisson, von Mises,
and Gaussian data. Baxter & Oliver (2000) compare the performance of an MML classifier for
Gaussian data with several other clustering techniques.

Takeuchi’s Description Length: Taking a hybrid approach, in which the truncation error
is viewed as a uniform random variable as in Wallace’s work, but the regions are taken to be rect-
angular as in Rissanen’s work, yields Takeuchi’s description length (Takeuchi, 1997, first equation
on p. 1172):

−H(x, θ|m) +
1

2
ln det IH (θ|m) +

d

2
(1 − ln 12). (50)

Takeuchi’s procedure seeks the model m and parameters θ which minimize (50).
Notice that for d = 1, the Takeuchi (50) and Wallace-O’Hagan (49) description lengths are the

same, whereas for d > 1, Takeuchi’s description length is greater due to the nonoptimality of the
rectangular quantizing lattice in higher dimensions. Takeuchi refers to estimates which minimize
(50) as minimum description length estimators, although they might be more accurately called
minimum message length estimators in reverence to Wallace’s work. Unlike both Wallace and
Rissanen, Takeuchi allows cases with improper priors; since he focuses on “the case of parameter
estimation in a fixed family,” and not on model selection, Wallace’s objections to improper priors
noted in the introduction to Section 5 are somewhat alleviated.

6 Penalized Loglikelihood Interpretation

As suggested, for example, by Green (1998), it is often fruitful to express model selection procedures
via penalized loglikelihoods:

Lpen(θ, x|m) = L(x|θ, m) − C(θ, x|m). (51)

The penalties associated with Schwarz’s approach (5), our Bayesian/Rissanen approach (from
Section 4.3), and the Wallace-O’Hagan data-independent quantization approach (49) are given by

CS(θ, x|m) = −P (θ|m) +
1

2
ln det IH (x : θ|m) − d

2
(ln 2π), (52)

CR(θ, x|m) = −P (θ|m) +
1

2
ln det IH (x : θ|m) − d

2
(ln 4 − 1), (53)

CW (θ, x|m) = −P (θ|m) +
1

2
ln det IH (θ|m) − d

2
(ln

1

κd
− 1). (54)
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For CR and CS , θ is the MAP estimate (in order to make the Laplace approximation and Rissanen’s
truncation techniques work), whereas for CW , we take the θ which minimizes CW (θ, x|m).

In the applied literature, C is occasionally interpreted as a logprior; this is somewhat misleading.
We prefer to think of C as an adaptive complexity penalty.

Although they arrive from quite different viewpoints, Schwarz, Rissanen, and Wallace yield
strikingly similar criteria. All three criteria have terms involving the posterior, a term which is
one-half the log of the Fisher information (either the observed or the expected Fisher information,
according to the particular strategy), and a term which is linear (for Rissanen and Schwarz) or
almost linear (for Wallace) in the number of parameters. All three techniques involve a Taylor
series expansion, so the appearance of the Fisher information terms is perhaps not too surprising.

Yang & Barron (1998) consider a wide class of penalized-likelihood selection criteria, including
some penalties which do not necessarily have a description length interpretation.

7 MDL for Unbounded Nonrandom Parameters via a Uni-

versal Code for the Integers

In Section 4.3, we explored the MDL idea assuming that a prior on the parameters is available. In
the early 80’s, Rissanen (1983; 1987a) proposed a novel way of getting around the prior issue by
representing parameters via a “universal” encoding of the integers.

Following his usual “worst-case” line of reasoning, Rissanen derives such a universal prior from a
particular minimax problem. Suppose we must encode natural numbers generated by a probability
distribution p(θ), where p is unknown, but is known to belong to some class P . The objective is
to find a prefix code with length len(θ) which minimizes the worst-case average redundancy

min sup
p∈P

∑

θ∈N

p(θ)
len(θ)

H(p)
, (55)

where the minimization is taken over codes which satisfy the Kraft inequality and H(p) is the
entropy of p. If P is the set of non-singular distributions with finite support, then the minimax
prior is the uniform prior over the region of support, which coincides with our intuitive notions of
uninformative prior knowledge on bounded intervals. If P is the set of distributions with infinite
support and infinite entropy that are nondecreasing in θ, then Rissanen (1983, Appendix B) proves
that the minimax code has codewords of length len(θ) = log∗ θ + log(c) bits, where

log∗ θ = log θ + log log θ + log log log θ + · · · (56)

and c ≈ 2.865064. The logarithms are base-2 and the sum only includes positive terms. See
Rissanen (1983, p. 420) or Cover & Thomas (1991, p. 150) for an explanation of the log∗ integer
encoding scheme.

7.1 The Univariate Case with log∗ MDL

If θ is a nonnegative real, Rissanen suggests converting it to an integer by dividing by a precision
δθ, and encoding it using log∗(θ/δθ) + log(c) bits. This forms the basis for Rissanen’s “objective”
minimum description length criteria. This approach is most natural in nested models in which
setting a parameter to zero is equivalent to using a lower-dimensional model; in these cases, there
is an obvious canonical origin to the coordinate system.

Since our loglikelihoods are often conveniently expressed in terms of natural logarithms, it
will be convenient to denote ln∗ θ = ln(2) log∗ θ, so we can convert bits in the log∗ formulation
into nats. Again assuming appropriate regularity conditions, performing the now familiar second-
order Taylor series expansion on the loglikelihood around the maximum-likelihood estimate θ̂(x) =
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arg maxθ L(x : θ) and substituting δθ = θ̂(x) − θtr for a worst-case analysis yields the total
approximate description length

−L(x : θ̂(x)) +
1

2

(
δθ

2

)2

IL(x : θ̂(x)) + ln∗

(

θ̂(x)

δθ

)

+ ln(c). (57)

Finding the optimum δθ is difficult. If we approximate ln∗ ≈ ln, then straightforward differentiation
yields an approximate optimum precision

δθ

4
IL(x : θ̂(x)) − 1

δθ
= 0 ⇒ δθ =

2
√

IL(x : θ̂(x))
. (58)

Substituting the approximate optimum δθ back into (57) yields

−L(x : θ̂(x)) +
1

2
+ ln∗




θ̂(x)

√

IL(x : θ̂(x))

2



+ ln(c). (59)

If we have N independent snapshots, the usual asymptotics for N → ∞ apply if we again approx-
imate ln∗ ≈ ln:

−L(x : θ̂(x)) +
1

2
+ ln θ̂(x) +

1

2
ln IL(x : θ̂(x)) − ln 2 + ln(c)

→ −L(x : θ̂(x)) +
1

2
ln N. (60)

Notice that in Rissanen’s formulation, the prior exists on the integers resulting from the trun-
cated parameter, not the parameter itself. The prior is not used in computing the estimate of the
parameter θ; it only appears in computing the description length. This represents a compromise
in the Bayesian/non-Bayesian dispute, and contrasts with Wallace’s MML principle (Section 5) in
which the MML estimates may differ from both the ML and the MAP estimates.

Foster & Stine (1999) explore a variation of Rissanen’s log∗ scheme in which the parameter
estimates are allowed to differ from the ML estimates. They discuss explicit coding schemes which
yield estimators which seem to be nondifferentiable, although piecewise differentiable, functions of
the data.

Related work: Moulin and Liu have employed log∗ to construct priors on wavelet coefficients
for Bayesian image denoising (Liu & Moulin, 1998; Moulin & Liu, 1999).

7.2 The Multivariate Case with log∗ MDL

The multivariate case is substantially more complicated. A naive approach would be to quantize
and represent each parameter separately. A better approach, as described in Section 4 of Rissanen
(1983), is to divide the space into rectangles and employ a worst case analysis as in Section 4.3,
except we encode the representative rectangle using the universal prior on the integers, where the
rectangles are numbered in a spiral fashion, with index increasing with distance from the origin.
The precise arguments are quite intricate; we refer the reader to Rissanen (1983) for the details,
and merely cite the resulting description length:

−L(x : θ̂(x)) + ln∗(vol(d)[θ̂(x)T IL(x : θ̂(x))θ̂(x)]d/2), (61)

where vol(d) is the volume of the d-dimensional unit hypersphere

vol(d) =
2b(k+1)/2c

k(k − 2)(k − 4) · · ·π
bk/2c. (62)

The MDL procedure seeks the model which minimizes (61).
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8 Rissanen’s Stochastic Complexity

Later in the 80’s, Rissanen (1986; 1987b; 1989) introduced the notion of the stochastic complexity
of a data set relative to a parametric model pl(x|θ), defined as

∫
pl(x|θ)w(θ)dθ, where w(θ) is

a weighting function. Rissanen prefers to interpret w(θ) as specifying a convex combination of
models, and not as a prior probability. Stochastic complexity has been applied to the problem of
nonparametric density estimation (Rissanen et al., 1992; Hall & Hannan, 1988). Later, Rissanen
(1995a; 1995b; 1996) profoundly refined his definition of stochastic complexity by removing the
dependence of its definition on the weighting function w(θ). This section explores this polished
version of stochastic complexity.

8.1 Minimax Regret and Normalized Maximum-Likelihood

Suppose we have a parametric likelihood model pl(x|θ), but that we do not have a prior pp(θ).

The θ leading to the shortest code length of x is given by the maximum-likelihood estimate θ̂(x),

yielding a code length − ln p(x|θ̂(x)). In Section 7, the problem was addressed by encoding x̂ with
some precision using a “universal” prior on the integers. Here we explore an approach presented
by Barron, Rissanen,2 and Yu (1998) which does not explicitly encode θ. If we encoded the data
using a density q(x), then the extra number of nats needed, which Barron calls regret, in encoding
x using q(x) is

− ln q(x) + ln pl(x|θ̂(x)) = ln
pl(x|θ̂(x))

q(x)
, (63)

where we have explicitly noted that θ̂ is a function of x. Suppose we want to choose the q(x) which
minimizes the worst case regret:

min
q

max
x

ln
pl(x|θ̂(x))

q(x)
. (64)

As cited in Barron et al. (1998), Shtarkov (1987) showed that the solution to this minimax problem
is

q(x) =
pl(x|θ̂(x))

∫

X
pl(x̃|θ̂(x̃))dx̃

. (65)

Rissanen (1999a) calls this the normalized maximum-likelihood (NML) density, and the length of
the resulting code,

−L(x|θ̂(x)) + ln

∫

X

pl(x̃|θ̂(x̃))dx̃, (66)

the stochastic complexity of the data x under the parametric model pl; models with lower stochastic
complexity are considered preferable to models with higher stochastic complexity. The second term
is referred to as the parametric complexity, since it indicates the cost of not knowing the parameter
θ. Barron & Cover (1991, p. 1038) observe that pl(x|θ̂(x)) itself cannot be used to create a code;
the normalization in (65) is essential. In a few problems, such as linear regression with Gaussian
residuals (Barron et al., 1998, Rissanen, 2000a), (66) can be computed via a direct attack. More
often, this is exceptionally difficult, so Rissanen offers an approximation derived in the next two
sections.

2We are indebted to Jorma Rissanen for answering several pertinent questions on stochastic complexity and
sending us a preprint of this paper.
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Interestingly, the NML density (65) also solves a related minimax problem involving the expected
regret:

min
q

max
g∈G

Eg

[

ln
pl(x|θ̂(x))

q(x)

]

. (67)

where G is a rather broad class of probability distributions which include the parametric models
pl(x|θ) as a subset (Rissanen, 2000b).

8.2 The Bernardo-Jeffreys Prior

The Bayesian version of Rissanen’s MDL and Wallace and Freeman’s MML both required a prior
pp(θ). Sometimes no clear choice of prior is available. Bernardo (1979) suggests a novel way
of crafting an “objective” prior based on viewing the statistical estimation problem as a com-
munication channel with source Θ and data X , and choosing the prior to maximize the mutual
information I(Θ; X) = H(Θ) − H(Θ|X). Bernardo’s idea is that this places the least emphasis
on the prior knowledge, and puts the greatest importance on the data. Using arguments from
differential geometry, Balasubramanian (1997) substantiates this idea by showing that this prior
is a uniform prior on the “natural” space of probability distributions (which is not the same as
the uniform prior on the space of parameter values). For discrete sources, the iterative Blahut-
Arimoto (Blahut, 1972; Arimoto, 1972; O’Sullivan, 1998) algorithm reveals the maximizing prior.
For a continuous, sufficiently regular source distribution, Bernardo uses Laplace’s approximation,
replacing the observed Fisher information with its expected version. We have

H(Θ|X)

=

∫

X

p(x)

∫

Θ

p(θ|x) ln p(θ|x)dθdx

=

∫

X

p(x)

∫

Θ

p(x|θ)p(θ)

p(x)
ln

p(x|θ)p(θ)

p(x)
dθdx

=

∫

X

∫

Θ

p(x|θ)p(θ) ln
p(x|θ)p(θ)

p(x)
dθdx

=

∫

X

∫

Θ

p(x|θ)p(θ){ln[p(x|θ)p(θ)]

− ln[

∫

Θ

p(x|θ̃)p(θ̃)dθ̃]}dθdx

≈
∫

X

∫

Θ

p(x|θ)p(θ){ln p(x|θ) + ln p(θ)

− ln p(x|θ) + ln
√

det IL(θ) − d

2
ln 2π − ln p(θ)

︸ ︷︷ ︸

from Laplace approximation of p(x)

}dθdx

=

∫

X

∫

Θ

p(x|θ)p(θ){ln
√

det IL(θ) − d

2
ln 2π}dθdx

=

∫

Θ

p(θ){ln
√

det IL(θ) − d

2
ln 2π}dθ

=

∫

Θ

p(θ) ln
√

det IL(θ)dθ − d

2
ln 2π, (68)
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yielding

I(Θ; X) =

∫

Θ

p(θ) ln p(θ)

−
∫

Θ

p(θ) ln
√

det IL(θ)dθ +
d

2
ln 2π

=

∫

Θ

p(θ) ln
p(θ)

√

det IL(θ)
dθ +

d

2
ln 2π. (69)

In order for p(θ) to maximize I(Θ; X), we need p(θ) ∝
√

det IL(θ), hence the Bernardo-Jeffreys
“reference” prior3 is

pp(θ) =

√

det IL(θ)
∫

Θ

√

det IL(θ̃)dθ̃
. (70)

Several decades before Bernardo, Jeffreys (1946; 1967) derived this prior from a quite different
viewpoint involving invariance arguments. Of course, this is only valid if the integral in the
denominator of (70) exists. For many interesting problems (for instance, the exponential and
Gaussian models of Examples 2 and 3 in Section V of Rissanen (1996)), it does not, and the
Bernardo-Jeffreys prior is not directly applicable. Necessary modifications for our application are
discussed in the next section.

Usually, a prior is chosen to represent knowledge which exists before any data is taken, and in
fact is independent of whatever sensors may be employed. This prior knowledge is then fused with
the data through the likelihood to form the posterior distribution; adding additional sensors merely
requires adding further loglikelihoods, while the prior may remain unmolested. The Bernardo-
Jeffreys prior, on the other hand, is a function of the likelihood, and hence the prior will change as
different sensors are added or removed. In this sense, the Bernardo-Jeffreys prior is a creature quite
unlike traditional Bayesian priors and cannot be interpreted the same way. See Berger & Bernardo
(1992), Bernardo (1997), and Ghosh & Mukerjee (1992) for further discussion on non-informative
reference priors.

8.3 Rissanen’s Formula for Stochastic Complexity

Suppose we employ the Bernardo-Jeffreys prior

pp(θ|m) =

√

det IL(θ|m)
∫

Θ

√

det IL(θ̃|m)dθ̃
, (71)

assuming the integral in the denominator is defined.
Suppose the data is sufficiently strong that the MAP estimate θ̂ may be approximated with

the ML estimate θ̂ML. Employing Baxter & Oliver’s application of Laplace’s method (in which

3In the literature, the term “Jeffreys’ prior” refers to one of two functions: the improper prior 1/θ on the positive
reals, or a prior constructed from a Fisher information matrix as described in this section. We add the name
“Bernardo” to make clear that the second meaning is intended, and to emphasize Bernardo’s information-theoretic
view which motivates its use here.
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the likelihood is expanded to second order, but only the constant term of the prior is used) yields

p(x|m) =

∫

pl(x|θ)pp(θ)dθ

=

∫

Θ

pl(x|θ)
√

det IL(θ|m)
∫

Θ

√

det IL(θ̃|m)dθ̃

=
1

∫

Θ

√

det IL(θ̃|m)dθ̃

∫

Θ

pl(x|Θ)
√

det IL(θ|m)dθ

≈ 1
∫

Θ

√

det IL(θ̃|m)dθ̃
pl(x|θ̂ML)

(2π)d/2

√

det IL(θ̂|m)
︸ ︷︷ ︸

expansion of likelihood

×
√

det IL(θ̂|m)
︸ ︷︷ ︸

expansion of prior

=
1

∫

Θ

√

det IL(θ̃|m)dθ̃
pl(x|θ̂ML)(2π)d/2. (72)

Using some rather complicated coding theoretic arguments, Rissanen shows that the negative
logarithm of this approximation to p(x|m) using the Bernardo-Jeffreys prior is in fact an approxi-
mate expression for the priorless stochastic complexity defined by (66):

− ln p(x|m) ≈ −L(x|θ̂ML) − d

2
ln 2π + ln

∫

Θ

√

det IL(θ̃|m)dθ̃. (73)

We choose the model m which minimizes (73). The reader is referred to Rissanen (1996) for
details. Asymptotically, (73) holds exactly with P -probability one under the assumption that the
data are generated by some i.i.d. distribution P in M. If this assumption is dropped, then (66)
and (73) and can differ by a constant (Balasubramanian, 1997). Kontkanen et al. (2000) discuss
the role of stochastic complexity and Fisher information in the context of predictive distributions
and Bayesian networks.

Note, as was the case in using the log∗ prior in Section 7, that Rissanen does not use the
Bernardo-Jeffreys prior to compute a Bayesian estimate θ; the prior only appears in computing
the stochastic complexity of data under the model.

If the square root of the determinant of the Fisher information matrix is not integrable, we can
integrate over subsets of the full space; Rissanen (1996) suggests using log∗ to denote which subset.
Several examples of this are given by Rissanen (1996, Section V); this is presented in a general
form by Qian & Kunsch (1998, Eq. 7). We choose an increasing sequence Θ(1) ⊂ Θ(2) ⊂ · · · of
bounded open subsets converging to Θ, and take the stochastic complexity to be

− ln p(x|m) ≈ −L(x|θ̂ML) − d

2
ln 2π

+ ln

∫

Θ(â)

√

det IL(θ̃|m)dθ̃ + ln∗(â) + ln(c), (74)

where â is the smallest a such that θ̂ML ∈ Θ(a).
It is not obvious at present how to choose the best sequences of subsets to use in (74). Indeed,

different sequence will lead to different expressions for the stochastic complexity. Rissanen (1996)
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chooses them to ease the computation of the integral in (74). Addressing this issue rigorously in
a general context should be a subject of future research.

In applying stochastic complexity to the least-squares linear regression problem mentioned in
Section 8.1, Rissanen’s most recent work (2000a) drops the enumerated subset approach he takes
in Section V of Rissanen (1996) in favor of making the limits of the integration a hyperparameter
and applying NML to this hyperparameter. Alas, another unbounded normalizing integral is
encountered; making the limits of this normalizing integral a hyper-hyperparameter and applying
NML a third time finally reveals an exact closed-form (albeit rather cumbersome) formula for
the stochastic complexity. It is not clear at present whether such a tactic of repeatedly limiting
integrals and applying NML to the limits will yield fruit in other problems.

Remark: Using different assumptions and approximations than Rissanen, Qian & Kunsch
(1998) derive a different approximation for stochastic complexity. We mention it for completeness
and will not consider it further here.

9 Conclusions

This paper has detailed a wide variety of model selection methods, and attempted to alleviate some
common misconceptions about them. Some of the methods, such as those presented in Sections 3,
4.3, and 5, are fundamentally Bayesian in nature.

Section 7 presented Rissanen’s log∗-based MDL and Section 8.3 discussed his recent formula
for stochastic complexity. Both approaches are manifestly non-Bayesian and attempt to provide
“objective” inference in cases where little prior knowledge is available. They are also not based
on the “classical frequentist” philosophy which underlies AIC and cross-validation (Smyth 2000).
The original early-80’s MDL approach employs a “universal” prior on the integers; the stochastic
complexity tactic uses no prior at all, but can be seen to be almost equivalent to using a Bernardo-
Jeffreys prior. These technical priors are constructed so as to inject as little prior knowledge into
the inference as possible, and are solely used to determine model class, and not in estimating the
parameters within that class.

We conclude by suggesting three areas of exploration which we have not addressed. One is
Barron’s work on minimum complexity density estimation (Barron & Cover, 1991; Yang & Barron,
1998), in which he shows not only that such estimators converge to the correct model, but that the
rate of convergence can be bound by an index of resolvability. Some intriguing results on minimum
complexity estimators are presented by Chi & Geman (1998). Another area is predictive inference
via multiple models, as discussed by Rissanen (1984) and Gelman et al. (1996), where the goal
is to infer future samples from previous samples. MDL and stochastic complexity, even for fixed
length data, have a compelling predictive interpretation (Rissanen 1986; 1987b). Grünwald et al.
(1998) compare MDL and MML from a predictive point of view. The predictive interpretation
of MDL has close analogies with Dawid’s prequential principle (Dawid 1984; 1992) and a version
of cross-validation called forward validation (Rissanen 1989, Section 3.3). In some cases, it is not
necessary to pick a specific model order; it may be better, in fact, to employ all the models in
a weighted fashion (Wasserman, 2000; Hoeting et al., 1999; Chickering & Heckerman, 2000), as
Singer & Feder (1999) illustrate for linear least-squares prediction problems.

The final avenue we would like to mention is the field of rate-distortion theory, which addresses
lossy source coding subject to a fidelity constraint. Liu & Moulin (1997) explore some connections
between MDL and operational rate-distortion curves in the application of image denoising via
wavelets. Although it seems that the quantization questions confronted in Sections 4, 5, and 7
would mesh naturally with a rate-distortion framework, little further work seems to have been
done in employing rate-distortion results in MDL and MML contexts. Such an approach seems
compatible with the information theoretic viewpoint of Bernardo (Section 8.2), as well as work by
Shusterman, Miller, & Rimoldi (1997) on designing target libraries for automatic target recognition
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via rate-distortion techniques.
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