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Abstract--In this paper we investigate the use of the area under the receiver operating characteristic (ROC) 
curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six 
machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi-layer Perceptron, k-Nearest 
Neighbours, and a Quadratic Discriminant Function) on six "real world" medical diagnostics data sets. We 
compare and discuss the use of AUC to the more conventional overall accuracy and find that AUC exhibits a 
number of desirable properties when compared to overall accuracy: increased sensitivity in Analysis of Variance 
(ANOVA) tests; a standard error that decreased as both AUC and the number of test samples increased; decision 
threshold independent; and it is invafiant to a priori class probabilities. The paper concludes with the 
recommendation that AUC be used in preference to overall accuracy for "single number" evaluation of machine 
learning algorithms. © 1997 Pattern Recognition Society. Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

The Receiver Operating Characteristic (ROC) curve has 
long been used, in conjunction with the Neyman-Pearson 
method, in signal detection theory. (1'2) As such, it is a 

good way of visualising a classifier's performance in 
order to select a suitable operating point, or decision 
threshold. However, when comparing a number of dif- 
ferent classification schemes it is often desirable to 
obtain a single figure as a measure of the classifier's 
performance. Often this figure is a cross-validated esti- 
mate of the classifier's overall accuracy [probability of a 
correct response, P(C)]. In this paper we discuss the use 
of the area under the ROC curve (AUC) as a measure of a 
classifier's performance. 

This paper addresses the generic problem of how to 
accurately evaluate the performance of a system that 
learns by being shown labelled examples. As a case 
study, we look at the performance of six different classi- 
fication schemes on six "real w o r d "  medical data sets. 
These data sets are chosen to characterize those typically 
found in medical diagnostics, they have primarily con- 
tinuous input attributes and have overlapping output 
classes. When comparing the performance of the classi- 
fication schemes, Analysis of Variance (ANOVA) is used 
to test the statistical significance of any differences in the 
accuracy and AUC measures. Duncan's multiple range (3) 
test is then used to obtain the significant subgroups for 
both these performance measures. Results are presented 
in the form of ROC curves and ranked estimates of each 
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classification scheme's overall accuracy and AUC. Dis- 
cussion is then focused both on the performance of the 
different classification schemes and on the methodology 
used to compare them. 

The paper is structured in the following way: Section 2 
details some commonly used performance measures and 
describes the use of the ROC curve and, in particular, 
AUC as a performance measure; Section 3 briefly de- 
scribes the six data sets to be used in the experimental 
study; Section 4 details the implementations of the six 
learning algorithms used and describes how they are 
modified so that the decision threshold can be varied 
and a ROC curve produced; Section 5 describes the 
experimental methodology used, outlines three types 
of experimental bias, and describes how this bias can 
be avoided; Section 6 gives specific details of the per- 
formance measures and Section 7 the statistical techni- 
ques used to compare these measures. Section 8 presents 
a summary of the results, which are then discussed in 
detail in the remaining sections of the paper. 

2. AUC AS A PERFORMANCE MEASURE 

The "raw data" produced by a classification scheme 
during testing are counts of the correct and incorrect 
classifications from each class. This information is then 
normally displayed in a confusion matrix. A confusion 
matrix is a form of contingency table showing the 
differences between the true and predicted classes for 
a set of labelled examples, as shown in Table 1. 

In Table 1, Tp and Tn are the number of true positives 
and true negatives respectively, Fp and Fn are the num- 
bers of false positives and false negatives respectively. 
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Table 1. A confusion matrix 

True class Predicted class 

- v e  + v e  

-ve  T. Fp C. 
+ve F n Tp Cp 

R. Rp N 

The row totals, Cn and Cp, are the number of truly 
negative and positive examples, and the column totals, 
Rn and R e, are the number of predicted negative and 
positive examples, N being the total number of examples 
(N = Cn + Cp = Rn + Re). Although the confusion ma- 
trix shows all of the information about the classifier's 
performance, more meaningful measures can be ex- 
tracted from it to illustrate certain performance criteria, 
for example: 

(Tp + T~) _ P(C), (1) Accuracy (1 - Error) - (C e + Cn) 

Tp P(T,), (2) Sensitivity (1 - / 3 )  = ~ = 

r .  = e ( r . ) ,  (3) Specificity (1 - a) = 

Positive predictive value = Tp (4) R.' 
T. 

Negative predictive value = - - .  (5) 
R. 

All of these measures of performance are valid only for 
one particular operating point, an operating point nor- 
mally being chosen so as to minimise the probability of 
error. However, in general it is not misclassification rate 
we want to minimise, but rather misclassification cost. 
Misclassification cost is normally defined as follows: 

Cost = Fp . CF. ÷ r .  . CFn. (6) 

Unfortunately, we rarely know what the individual mis- 
classification costs actually are (here, the cost of a false 
positive, Cvp and the cost of a false negative, CF.) and so 
system performance is often specified in terms of the 
required false positive and false negative rates, P(Fp) and 
P(F.). This then is equivalent to the Neyman-Pearson 
method, (1'2) where P(Fn) is specified and P(Fp) is mini- 
raised with that constraint, or vice versa. Often, the only 
way of doing the constrained minimisation required for 
the Neyman-Pearson method is to plot P(Tp) against 
P(Fp) as the decision threshold is varied. Selecting the 
operating point (decision threshold) that most closely 
meets the requirements for P(F.) and P(Fp). The plotted 
values of P(Tp) and P(Fp) as the decision threshold is 
varied is called a Receiver Operating Characteristic 
(ROC) curve. 

There is still, however, a problem with specifying 
performance in terms of a single operating point [usually 
a P(Te), P(T~) pair], in that there is no indication as to 
how these two measures vary as the decision threshold is 
varied. They may represent an operating point where 

sensitivity [P(Tp)] can be increased with little loss in 
specificity [P(Tn)], or they may not. This means that the 
comparison of two systems can become ambiguous. 
Therefore, there is a need for a single measure of 
classifier performance [often termed accuracy, but not 
to be confused with P(C)] that is invariant to the decision 
criterion selected, prior probabilities, and is easily ex- 
tended to include cost/benefit analysis. This paper de- 
scribes the results of an experimental study to investigate 
the use of the area under the ROC curve (AUC) as such as 
a measure of classifier performance. 

When the decision threshold is varied and a number of 
points on the ROC curve [P(Fp) = c~, P(Tp) = 1 -/3] 
have been obtained the simplest way to calculate the area 
under the ROC curve is to use trapezoidal integration, 

A U C = ~ / { ( 1 - / 3 i . A c ~ ) + ~ [ A ( 1 - ~ ) . A c ~ ] } ,  

(7) 

where 

A(1 - / 3 )  = (1 - /3 i )  - (1 - [3i-1), (8) 

A o l  = O~ i - -  O~i_ 1 . (9) 

It is also possible to calculate the AUC by assuming that 
the underlying probabilities of predicting negative or 
positive are Gaussian. The ROC curve will then have 
an exponential form and can be fitted either: directly 
using an iterative Maximum Likelihood (ML) estima- 
tion, (4) giving the difference in means and the ratio of the 
variances of the positive and negative distributions; or, if 
the ROC curve is plotted on double probability paper, a 
straight line can be fitted to the points on the ROC 
curve. (5) The slope and intercept of this fitted line are 
then used to obtain an estimate of the AUC. 

As noted in reference (6), the trapezoidal approach 
systematically underestimates the AUC. This is because 
of the way all of the points on the ROC curve are 
connected with straight lines rather than smooth concave 
curves. However, providing there are a reasonable num- 
ber of points on the ROC curve the underestimation of the 
area should not be too severe. In this experiment we 
obtain at least seven points from which to estimate the 
AUC and in most cases there are 15 points. The trape- 
zoidal approach also does not rely on any assumptions as 
to the underlying distributions of the positive and nega- 
tive examples and, as will be elaborated on in Sec- 
tion 9.3, is exactly the same quantity measured using 
the Wilcoxon test of ranks. 

The Standard Error of the AUC(SE((J)) (6) is of im- 
portance if we wish to test the significance of one 
classification scheme producing a higher AUC than 
another. Conventionally there have been three ways of 
calculating this variability associated with the AUC: (7) 

1. from the confidence intervals associated with the 
maximum likelihood estimate of AUC, (0); 

2. from the standard error of the Wilcoxon statistic, 
SE(W); and 

3. from an approximation to the Wilcoxon statistic that 
assumes that the underlying positive and negative 
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distributions are exponential in type. (6) This assump- 
tion has been shown to be conservative; it slightly 
overestimates the standard error, when compared to 
assuming a Gaussian based ROC curve (as in the ML 
method). 

The standard error, SE(W), is given by 

SE(W) 

/0(1 -O) + ( C e - 1)(Q1-02)+ ( Cn -- 1)(Q2 -02) 

= V 
(10) 

where, Cn and C v are the number of negative and positive 
examples respectively and 

0 
Q1 - (2 - 0) '  (11) 

202 
Q2 = (1 + 0)" (12) 

In this paper we shall calculate AUC using trapezoidal 
integration and estimate the standard deviation, SD(t~), 
using both SE(W) and cross-validation, details of which 
are given in Sections 5 and 6. Next, we shall present the 
details of the data sets, classification algorithms, and 
methodology chosen for this experimental study. 

3. THE DATA 

The data sets used in this experiment all have 
two output classes and have between four and 13, 
primarily continuous, input variables. Except for the 
algorithms C4.5 and the Multiscale Classifier which 
automatically handle categorical inputs, any categorical 
input variables were made continuous by producing 
dummy variables. (8) 

The six data sets chosen for use in this experiment 
were: 

1. Cervical cell nuclear texture analysis (Texture); ~9) 
2. Post-operative bleeding after cardiopulmonary bypass 

surgery (Heart); 0°) 
3. Breast cancer diagnosis (Breast); ~11~ 
4. Pima Indian's diabetes prediction (Pima); ~2~ 
5. Heart disease diagnosis: °3'14) 

(a) Hungarian data set (Hungarian); 
(b) Cleveland data set (Cleveland). 

All input variables were scaled to the range [0,1 ] using 
a linear transformation making the minimum value zero 
and the maximum value 1. This is a requirement for the 
Multiscale Classifier, (15)1 but was done for all of the 
learning algorithms for consistency (with no loss of 
generality). Also, all examples in the data sets that 
had any missing input variables were removed; this 

was less than 1% of the available data in most of the 
data sets. 

3.1. Cervical cell nuclear texture 

These data were gathered by Ross Walker as part of a 
study into the use of nuclear texture analysis for the 
diagnosis of cervical cancer. (9) The data set consisted of 
117 segmented images of normal and abnormal cervical 
cell nuclei. Using Grey Levels Co-occurrence Matrix 
(GLCM) techniques, 56 texture features were extracted 
from each of these images. The six most discriminatory 
features were then selected using sequential forward 
selection (SFS) with the Bhattacharyya distance mea- 
sure, (16"17) giving 117 examples (58 normal, 59 abnor- 
mal) each with six features: 

1. Inertia at distance one; 
2. Correlation at distance one; 
3. Cluster prominence at distance one; 
4. Entropy at distance 15; 
5. Inverse Difference Moment (IDM) at distance 11; 
6. Cluster prominence at distance three. 

3.2. Post-operative bleeding 

The data were gathered independently as part of a 
study into post-operative bleeding undertaken at the 
Prince Charles Hospital in Brisbane. °°) Over 200 para- 
meters have been recorded for each of 134 patients. 
However, due to the limited size of the data set, only 
the four routinely measured parameters with the highest 
statistical correlation to blood loss were used. z The four 
parameters were 

1. WBAGCOL: Aggregation with collagen (pre-opera- 
tive); 

2. POAGCOL: Aggregation with collagen (post-opera- 
tive); 

3. POSTPLT: Platelet count (post-operative); 
4. DILNPLAS: Plasma dilution (post-operative). 

Of the original data set of 134 patient records only 113 
contained all four of the required input parameters. All of 
the input parameters are continuous-valued with a lowest 
possible value of zero. These parameters are then used to 
predict the total blood loss, in the three hours post- 
operative, expressed as a ratio of body surface area. 
The blood loss is then quantised into two classes, normal 
and excessive bleeding. Here, a prediction of excessive 
bleeding is defined as a total blood loss, in the 3 h post- 
operative, of greater than 16.4 ml/m 2. This defines 25% 
of all patients to have bled excessively and is an arbitrary 
definition that includes patients not clinically assessed as 
bleeding excessively. It was necessary to associate this 
absolute binary classification to the blood loss to make 
the data set consistent with the others used in this paper, 

lit is also recommended for methods such as k nearest ZThey were not highly correlated to the other features 
neighbours.(16) selected. 
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and as part of this preliminary study, this simplistic 
model was thought to be sufficient. However, most of 
the classification algorithms detailed in Section 4 have 
been used for regression, where the actual amount of 
blood loss would be predicted quantitatively. 

The remaining data sets were obtained from the 
University of Southern California, machine learning 
repository, ftp://ic s.uci.edu:pub/machine-leaming-data- 
bases. 

3.3. Breast cancer diagnosis 

Collected by Wolberg ° 1) at the University of Wiscon- 
sin, this domain contains some noise and residual varia- 
tion in its 683 data points, the 16 examples with missing 
attributes being removed. There are nine integer inputs, 
each with a value between 1 and 10. The two output 
classes, benign and malignant, are non-evenly distributed 
(65.5% and 34.5% respectively). 

3.4. Pima Indian's diabetes 

The diagnostic, binary-valued variable investigated is 
whether the patient shows signs of diabetes according to 
World Health Organization criteria (i.e. if the 2 h post- 
load plasma glucose was at least 200 mg/dl at any survey 
examination or if found during routine medical care). The 
population lives near Phoenix, Arizona, U.S.A. There are 
eight continuously valued inputs with some noise 
and residual variation. ~12) The two non-uniformly dis- 
tributed output classes (65.1% and 34.9%) are tested 
negative or positive for diabetes. There is a total of 768 
data points. 

3.5. Heart disease diagnosis 

The goal of this data set is to predict the presence of 
coronary artery disease from a number of demographic, 
observed, and measured patient features. Here, we used 
two of the available data sets (the ones with the most 
instances); both data sets have the same instance format 
but were collected at different hospitals. 

3.5.1. Cleveland data. These data were collected by 
Robert Detrano, M.D., Ph.D. at V. A. Medical centre, 
The Cleveland Clinic Foundation. The data originally 
were collected with 76 raw attributes; however, in 
previous studies (13'14) only 14 attributes were actually 
used. The data set contains 297 examples, there being 
six examples removed because they had missing values. 
Class distributions are 54% heart disease absent, 46% 
heart disease present. 

3.5.2. Hungarian data. These data were collected by 
Andras Janosi, M.D. at the Hungarian Institute of 
Cardiology, Budapest. The data are in exactly the same 
format as the Cleveland data, except three attributes 
were removed due to a large percentage of missing 
values. There are 261 examples, 34 examples being 
removed because they had missing values. Class 

distributions are 62.5% heart disease absent, 37.5% 
heart disease present. 

4. THE LEARNING ALGORITHMS 

The learning algorithms chosen for this experimental 
comparison were: 

• Quadratic Discriminant Function °8) (Bayes); 3 
• k-Nearest Neighbours °9) (KNN); 
• C4.5 ~2°) (C4.5); 
• Multiscale Classifier O5) (MSC); 
• Perceptron ~21) (PTRON); 
• and Multi-layer Perceptron ~22) (MLP). 

We chose a cross-section of popular machine learning 
techniques together with one algorithm developed in 
association with the author. There were two statistical 
methods (KNN and Bayes), two neural networks 
(PTRON, and MLP), and two decision trees (C4.5 and 
MSC). 

The following should be noted about the imple- 
mentations of each of the methods, Quadratic discrimi- 
nant function (Bayes). The training data are used to 
estimate the prior probabilities, P(wj), mean, mj, and 
covariance, Cj of the two class distributions. The Bayes 
decision function for class wj of an example x is then 
given by 

1 1 
dj(x) = lnP(wj) - ~ In Icjl - ~ [(x - mj)Tcf l (x  -- mr) ]. 

(13) 

This decision function is then a hyper-quadric, the class 
of an example being selected as the minimum distance 
class. Misclassification costs, cj, are then applied to these 
distances, dj, so as to weight the decision function and 
minimise the Bayes risk of misclassification. For these 
experiments misclassification costs were used in the 
range [0,1] in steps of 1/14. 

k-Nearest Neighbours. For each test example, the five 
nearest neighbours (calculated in terms of the sum of the 
squared difference of each input attribute) in the training 
set are calculated. Then, if greater than L, where 
L=[0, 1, 2, 3, 4, 5], if the nearest neighbours are of class 
1, the test sample is assigned to class 1; if not, it is 
assigned to class 0. 

Release 5 of the C4.5 decision tree generator (2°) was 
used with the following modification: when pruning a 
decision tree (in file prune.c) weight the local class 
distributions with the misclassification costs for each 
class. The default values for all parameters were used 
on all the data sets. Relative misclassification costs of 
[0.0:1.0, 0.015625:1.0, 0.03125:1.0, 0.0625:1.0, 0.125:- 
1.0, 0.25:1.0, 0.5:1.0] were used for both classes on all 
the data sets. 

3We shall refer to this method as "Bayes" even though it is 
not a truly Bayesian method. It would only be a Bayesian 
method, i.e. optimal, if the true distributions of the input 
variables were Gaussian. 
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The Multiscale Classifier. Version 1.2bl of the Multi- 
scale Classifier was used on each data set. The MSC was 
first trained for 10 epochs, or until 100% classification 
was achieved on the training set, then both pessimistic 
(MSCP) and minimum error (MSCM) pruning were used 
on the decision trees produced on each training set. The 
default pruning parameters of c f - l %  and of m=8 were 
used on all data sets for pessimistic and minimum error 
pruning respectively. Relative misclassification costs of 
[1.0:1.0, 1.25:1.0, 1.5:1.0, 2.0:1.0, 4.0:1.0, 8.0:1.0, 16.0- 
:1.0, 32.0:1.0] were used for both of the classes on all 
data sets. 

The Perceptron. Consisting of one neuron with a 
threshold activation function. The number of inputs 
(and weights) to the neuron is equal the number of input 
attributes for the problem, plus a bias. The network was 
trained, using the Perceptron learning algorithm (23) for 

1000 epochs. The weights learnt were then tested using a 
neuron with a linear activation function, scaled to give an 
output in the range [0,1]. The output of this linear neuron 
was then thresholded at values [0, 0.1, 0.2, 0.3 . . . . .  1.0] 
to simulate different misclassification c o s t s .  (24) 

The Multi-layer Perceptron. Three network architec- 
tures were implemented, each with different numbers of 
hidden units. Their network architecture was as follows: 
an input layer consisting of a number of units equal to the 
number of input attributes for the problem domain; a 
hidden layer consisting of 2, 4 and then 8 units; and 
finally one output unit (MLP2, MLP4, and MLP8 re- 
spectively). All of the neurons were fully connected, with 
log-sigmoid activation functions, i.e. their outputs were 
in the range [0,1]. All three networks were trained using 
back-propagation with a learning rate of 0.01, and a 
momentum of 0.2. Initial values for the weights in the 
networks were set using the Nguyen-Widrow method, ~25) 
and the networks were trained for 20,000 epochs. Again, 
during the testing phase the output neuron was thre- 
sholded at values [0, 0.1, 0.2, 0.3 . . . .  ,1.0] to simulate 
different misclassification costs. (24) 

5. THE TRAINING METHODOLOGY 

It is known that single train and test partitions are not 
reliable estimators of the true error rate of a classification 
scheme on a limited data set. (26'27) Therefore, it was 

decided that a random sub-sampling scheme should be 
used in this experiment to minimise any estimation bias. 
A leave-one-out classification scheme was thought com- 
putationally too expensive 4 and so, in accordance with 
the recommendations in reference (26), 10-fold cross- 
validation was used on all of the data sets. For consis- 
tency, exactly the same data were used to train and test all 
of the nine classification schemes, this is often called a 
paired experimental design. (7) The 10-fold cross-valida- 
tion scheme has been extensively tested and has been 
shown to provide an adequate and accurate estimate of 

4particularly for the Multi-layer Perceptron. 

the true error rate. (27) The cross-validation sampling 

technique used was random but ensured that the approx- 
imate proportions of examples of each class remain 90% 
in the training set and 10% in the test set. This slight 
adjustment to maintain the prevalence of each class does 
not bias the error estimates and is supported in the 
research literature. (26) 

As pointed out by Friedman, (2s) no classification 
method is universally better than any other, each method 
having a class of target functions for which it is best 
suited. These experiments then, are an attempt to inves- 
tigate which learning algorithms should be used on a 
particular subset of problems. This subset of "medical 
diagnostic" problems is characterized by the six data sets 
presented. Our conclusions are therefore targeted to- 
wards this subset of problems and should not be extra- 
polated beyond the scope of this class of problem. We 
have tried to minimise any bias in the selection of the 
problem domains, whilst tightly defining the subset of 
problems (selection bias). We have selected problems 
with a wide range of inputs (4-13) which would represent 
a typical number of features measured, or feature subset 
selected for medical diagnostic problems. The binary 
output classes are, as would be typically expected, over- 
lapping. This is due to varying amounts of noise and 
residual variation in the measured features, and so a 
100% correct classification would not, in general, be 
possible. 

We have tried to minimise the effect of any expert bias 
by not attempting to tune any of the algorithms to the 
specific problem domains. Wherever possible, default 
values of learning parameters were used. These para- 
meters include the pruning parameters for the decision 
trees, the value of k for the nearest neighbour algorithm, 
and the learning parameters (learning rate, momentum, 
and initial conditions) for the neural networks. This naive 
approach undoubtedly results in lower estimates of the 
true error rate, but it is a bias that affects all of the 
learning algorithms equally. If we had attempted to tune 
the performance of each algorithm on each data set, then 
our different expertise with each method would of ad- 
vantaged some algorithms but disadvantaged others. The 
experimentation time would also have increased drama- 
tically as we evaluated different input representations, 
input transformations, network architectures, learning 
parameters, pruning parameters, or identified outlying 
examples in the training set. Also, in domains with a 
limited availability of data the introduction of an evalua- 
tion set (extracted from the training set) could actually 
reduce the overall accuracy of the algorithms. 

6. THE PERFORMANCE MEASURES 

For each learning algorithm (9 off) on each data set (6 
off), 10 sets of results (one for each of the 10-fold cross- 
validation partitions) were stored. The raw data were 
stored in the form of a confusion matrix and for each of 
the 10 test partitions the decision thresholds were varied 
(to produce the ROC curves), giving between 7 and 15 
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sets of results for each test partition. In order to 
evaluate the performance of the different learning algo- 
rithms on each of the data sets, a number of measures 
have to be extracted from this raw data (over 6000 sets of 
results). 

Overall accuracy, P(C). For the default (conventional) 
decision thresholds, with equal misclassification costs, 
the value of the estimate of the true error rate [equa- 
tion (1)] was calculated for the 10 cross-validation parti- 

tions. 
The ROC curve. On each test partition the decision 

thresholds were effectively varied (by varying 
misclassification costs, as described in Section 4) to give 
a set of values for P(Tp) and P(Fp). The "average" 
ROC curves for each classification scheme are shown 
in Section 8. 

The area under the ROC curve (AUC). As the 
misclassification costs were varied, as described in 
Section 4, each successive point on the ROC curve 
was used in the trapezoidal integration to calculate 
AUC. The AUC was calculated for each learning algo- 
rithm on each of the 10 test partitions. This is in effect 
using a jackknife estimate to calculate the standard error 
of the AUC (29) and will be discussed in more detail 

shortly. 
Remark. It should be noted that there are two distinct 

possibilities when it comes to combining the ROC curves 
from the different test partitions, (3°) 

1. Pooling. In pooling, the raw data (the frequencies of 
true positives and false positives) are averaged. In 
this way one average, or group ROC curve is 
produced from the pooled estimates of each point 
on the curve. In this case we have 10 estimates of 
P(Tp) and P(Fp) for each point on the ROC curve. 
The assumption made when pooling the raw data is 
that each of the classifiers produced on each of the 
training partitions comes from the same population. 
Although the assumption that they come from the 
same population may be true in terms of their overall 
discrimination capacity (accuracy), the assumption 
that for each partition they are all estimating the 
same points on the ROC curve is less palatable. This 
can be seen from the fact that pooling the data in this 
way depresses the combined index of accuracy, 
AUC.(3°) 

2. Averaging. This alternative approach is to average 
the accuracy index extracted from each of the ROC 
curves on the 10 train and test partitions. So, AUC 
is calculated for the 10 ROC curves and then 
averaged, giving an estimate of the true area and an 
estimate of its standard error, calculated from the 
standard deviation of the 10 areas. The only problem 
with this approach is that it does not result in an 
average ROC curve, only an average AUC. For this 
reason the pooled responses are used when actually 
visually showing the whole ROC curves, as in 
Section 8. 

The standard deviation of AUC, SD(0). In order to 
validate our estimate of the standard deviation of AUC 

obtained using averaging, SD(0), SE(W) was also cal- 
culated using the approximation to the Wilcoxon method, 
given in equation (10). 

7. THE COMPARATIVE TECHNIQUES 

7.1. Analysis of variance 

In this paper we will use Analysis of Variance (ANO- 
VA) techniques to test the hypothesis of equal means over 
a number of learning algorithms (populations) simulta- 
neously. (3) The experimental design allows us to com- 
pare, on each data set, the mean performance for each 
learning algorithm and for each train and test partition. 
This is called two-way classification and effectively tests 
two hypotheses simultaneously: 

1. H i, that all the means are equal due to the different 
train and test partitions; 

2. H~, that all the means are equal due to the different 
learning algorithms. 

Of these two hypotheses we are only really inter- 
ested in the second, H~, and we could have used a 
one-way ANOVA to test this hypothesis alone. However, 
a one-way ANOVA assumes that all the populations 
are independent, and can often be a less sensitive test 
than a two-way ANOVA, which uses the train and 
test partitions as a blocking factor. (31) The f ratio 
calculated from this ANOVA table is insensitive to 
departures from the assumption of equal variances when 
the sample sizes are equal, as in this case. O) For this 
reason a test for the equality of the variances was not 
done. 

7.2. Duncan's multiple range test 

When the analysis of variance test on an accuracy 
measure produces evidence to reject the null hypo- 
theses, H~ and H~, we can accept the alternative hypoth- 
e s i s - tha t  all of the mean accuracies are not 
equal. However, we still do not know which of the means 
are significantly different from which other means, so we 
will use Duncan's multiple range test to separate sig- 
nificantly different means into subsets of homogeneous 
means. 

For the difference between two subsets of means to be 
significant it must exceed a certain value. This value is 
called the least significant range for the p means, Rp, and 

is given by 

Rp = rp V / ~ ,  (14) 

where the sample variance, s 2, is estimated from the 
error mean square from the analysis of variance, s~, r 
the number of observations (rows), and rp the least 
significant studentized-range for a given level of 
significance (we chose ct=0.05), and the degrees of 
freedom [ ( r - 1 ) ( c -  1 ) =  721. Tables 2-7 show the 
subsets of adjacent means that are not significantly 
different, this being indicated by drawing a line under 
the subset. 
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8. RESULTS 

In this sect ion we give the  s u m m a r y  o f  the  results.  

• Nuclear Texture: See Table 2 and  Figs  1 and  2. 

• Post-operative Heart Bleeding: See Table 3 and  Figs  3 

and 4. 

• Breast Cancer: See Table 4 and Figs  5 and 6. 

• Pima Indians Diabetes: See Table 5 and  Figs  7 and 8. 

• Cleveland Heart Disease: See Table 6 and  Figs  9 adn 

10. 

• Hungarian Heart Disease: See Table 7 and  Figs  11 

and  12. 

Table 2. Rank ordered significant subgroups from Duncan's multiple range test on the nuclear texture data 

Classifier: PTRON MSCM MSCP C4.5 KNN BAYES MLP8 MLP4 MLP2 
Accuracy: 85.0 85.0 85.0 89.2 89.2 89.2 90.0 90.0 91.7 

Classifier: MSCP MSCM C4.5 KNN BAYES PTRON MLP4 MLP8 MLP2 
AUC: 88.1 88.7 92.1 96.2 96.7 97.8 98.3 98.5 98.6 

Table 3. Rank ordered significant subgroups from Duncan's multiple range test on the heart bleeding data 

Classifier: MSCM MSCP C4.5 PTRON KNN MLP8 MLP4 MLP2 BAYES 
Accuracy: 69.2 70.8 71.7 72.5 74.2 75.0 76.7 78.3 79.1 

Classifier: C4.5 KNN MLP4 MLP8 MLP2 PTRON MSCM MSCP BAYES 
AUC: 48.7 60.9 65.5 65.7 66.1 69.8 70.0 70.5 73.3 

Table 4. Rank ordered significant subgroups from Duncan's multiple range test on the breast cancer data 

Classifier: PTRON C4.5 MSCM MSCP MLP8 MLP4 MLP2 KNN BAYES 
Accuracy: 72.2 90.7 90.9 91.2 92,7 93.3 93.5 93.6 94.2 

Classifier: C4.5 MSCM MSCP PTRON MLP4 MLP8 MLP2 KNN BAYES 
AUC: 93.7 94.4 94.4 94.5 95.2 96.2 96.5 97.0 98.2 

Table 5. Rank ordered significant subgroups from Duncan's multiple range test on the Pima diabetes data 

Classifier: MSCM MSCP C4.5 PTRON KNN BAYES MLP8 MLP4 MLP2 
Accuracy: 68.1 68.2 71.7 73.6 74.8 75.9 77.0 77.1 78.4 

Classifier: MSCM MSCP BAYES KNN C4.5 MLP8 MLP4 PTRON MLP2 
AUC: 74.1 74.4 76.3 79.4 80.2 82.3 83.4 84.7 85.3 
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Table 6. Rank ordered significant subgroups from Duncan's multiple range test on the Cleveland heart disease data 

Classifier: MSCM MSCP PTRON C4.5 MLP8 MLP4 MLP2 KNN BAYES 
Accuracy: 68.7 68.7 75.0 77.7 81.0 81.0 81.3 82.7 86.3 

Classifier: MSCP MSCM C4.5 MLP8 MLP2 MLP4 KNN BAYES PTRON 
AUC: 73.7 73.8 84.2 84.4 85.9 86.1 86.9 90.8 91.2 

Table 7. Rank ordered significant subgroups from Duncan's multiple range test on the Hungarian heart disease data 

Classifier: MSCM MSCP C4.5 KNN MLP4 P T R O N  MLP8 BAYES MLP2 
Accuracy: 71.5 71.5 73.0 74.1 75.5 76.7 77.4 78.9 79.3 

Classifier: MSCM MSCP C4.5 KNN MLP8 MLP4 B A Y E S  MLP2 PTRON 
AUC: 70.1 70.2 79.2 82.0 82.1 82.3 83.8 84.7 87.8 

ROC Cuwe ROC Cu~e 

0.9 0.9 

0.8 0.8 

2i.!  t g 

o~ o21f// / • Perceptron 

o /o V 
P(Falee Positive) (Alpha) P(False Positive) (Alpha) 

Fig. 1. ROC curve for Bayes, KNN, and MLP on the nuclear Fig. 2. ROC curve for C4.5, MSC, and Perceptron on the 
texture data. nuclear texture data. 

9. DISCUSSION 

In this section we discuss only the second hypothesis 

tested by the two-way analysis of variance (ANOVA), 

H~. This is the variance due to the different learning 

algorithms (column effects). The reason for this is that 
the train and test partitions are being used as what is 
called a blocking factor. We would hope for a significant 
effect due to the train and test partitions, 5 not because this 

5So that we can reject H~. 

variance is of any scientific interest, but because it is 

necessary for the two-way ANOVA to be more efficient 

than the one-way ANOVA. 

9.1. Overall accuracy 

All of the data sets showed some difference in average 

accuracy for each of the learning algorithms. However, 
the ANOVA showed that on one of these data sets 

(Nuclear Texture) there was no significant evidence 
(p < 0.05) for the mean accuracies to be actually differ- 
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Fig. 5. ROC curve for Bayes, KNN, and MLP on the breast 
cancer data. 
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Fig. 6. ROC curve for C4.5, MSC, and Perceptron on the breast 
cancer data. 

ent. On the other five data sets (where there was sig- 
nificant evidence to reject the null hypothesis, I~ )  
Duncan's multiple range test was used to find the sig- 
nificant subgroups. 

The Post-operative heart bleeding data set shows only 
two significant subgroups. Table 3 also shows that there 
is only a significant difference between the two decision 
trees methods (MSC and C4.5) and the MLP with two 
and four hidden units and Bayes. 

Table 4 shows that for the Breast Cancer data set there 
are three significant subgroups: one subgroup containing 
only the Perceptron; one containing the two decision 
trees (MSC and C4.5); and the other learning algorithms 
in the third. There is also an overlap between the last two 

groups as the number of hidden units in the MLP is 
increased above 2. The fact that the Perceptron is in the 
lowest subgroup on its own would indicate that this 
problem is not linearly separable and so the Perceptron 
lacks the representation power to achieve a high overall 
accuracy. In addition, the lower performance observed 
using the decision tree methods may indicate that the 
optimal decision surface is smooth in nature. 

The Pima Indians diabetes data set (Table 5) shows 
three significant subgroups under overall accuracy. The 
lowest accuracy group contains the decision trees (MSC 
and C4.5) though only Bayes and the Multi-layer Per- 
ceptrons (MLP) have a significantly (p < 0.05) higher 
overall accuracy. The poor performance of the decision 
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Fig. 9. ROC curve for Bayes, KNN, and MLP on the Cleveland Fig. 10. ROC curve for C4.5, MSC, and Perceptron on the 
heart disease data. Cleveland heart disease data. 

trees may indicate that the smooth decision hyperplanes 
are perhaps better suited to this problem, especially with 
the limited training data available. The relative success of 
the MLPs over the Bayesian method would indicate that 
the input features are not Normally distributed and so the 
covariance matrix is not being reliably calculated. 

From Table 6, it can be seen that the Cleveland heart 
disease data set has four significant subgroups under 
overall accuracy. However, due to the large amount of 
subgroup overlap, there seems to be little discrimination 
due to the classification method. Perhaps of note, though, 
is the fact that on this problem the Bayes and KNN 
methods obtained the highest overall accuracies. This 
was surprising because the number of input features is 13, 

it being considered that when you have more than 10 
input features the curse of dimensionality will start 
having a major effect. (8) Of all the learning algorithms 
used in this experiment, one would expect the Bayes and 
KNN to be the most severely affected by the curse of 
dimensionality. However, on this domain, this was ob- 

viously not the case. 
Table 7 shows two significant subgroups for overall 

accuracy on the Hungarian heart disease data set. How- 
ever, both of these subgroups are widely overlapping, the 
only significant differences being between the MSC and 
both the Bayes and the MLP (with two hidden units). 

In general, when performance is measured in terms of 
overall accuracy, the hyper-plane (Bayes and MLP) and 
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exemplar (KNN) based methods seemed to have a better 
performance when compared to the decision trees (MSC 
and C4.5). This result confirms what, from previous 
discussion, might be expected for data sets of this type, 
where the optimal decision boundary is a smooth hyper- 
plane. For the decision tree methods to accurately esti- 
mate this type of decision boundary they would require a 
lot more training data to adequately populate decision 
nodes deep in the tree. 

9.2. The ROC curve 

The ROC curves for each learning algorithm on each 
data set are shown in Figs 1-12. These curves are the 
pooled ROC curves over the 10 train and test partitions. 
Curves for the MLPs with four and eight hidden units are 
not shown because of their similarity to the MLP with 
two hidden units (MLP2); also, for the same reason, only 
the curves for MSC with minimum error pruning are 
shown. It is perhaps worth making a couple of general 
comments as to the visual shape of the ROC curves 
presented in Figs 1-12. 

• Decision trees (MSC and C4.5) do not appear to be 
producing ROC curves that conform to any Gaussian 
underlying distributions for the negative and positive 
classes, i.e. they do not form smooth exponential 
curves. This confirms our choice of trapezoidal inte- 
gration over Maximum Likelihood estimation to cal- 
culate AUC. The dips and peaks seen in the ROC 
curves for the decision trees are probably due to the 
discrete way in which the decision trees are pruned, i.e. 
when the decision tree is pruned, a sub-tree is reduced 
to either a single leaf of the class with the minimum 
error, this single leaf can then subsequently lead to a 
number of misclassifications and so, the error rises in a 
discrete step. 

• Though the ROC curves often appear to be producing a 
similar AUC, one curve may be preferable because it 
may have a lower P(Fp) or P(F,)  at a specific operating 
point. This reiterates the fact that for one particular 
application, the best way to select a classifier, and its 
operational point, is to use the Neyman-Pearson 
method. (]'2) Here, we select the required sensitivity 
and then maximise the specificity with this constraint 
(or vice versa). 

The ROC curve is mainly of use when visualizing the 
performance of a classification algorithm as the decision 
threshold is varied. Any one point on the curve is a 
possible operational point for the classifier and so can be 
evaluated in the same manner as accuracy, P(C), as 
above. However, in order to evaluate the whole curve 
we need to extract some distinguishing feature from it. 
The feature we have chosen to measure and evaluate is 
the area under the ROC curve (AUC). 

9.3. The area under the ROC curve 

As was the case for overall accuracy, all of the data sets 
showed some difference in average AUC for each of the 
learning algorithms. However, for the AUC the analysis 
of variance showed that on all of the data sets there were 
significant (p < 0.01) differences in mean AUCs. In 
addition, on all but one data set (Breast Cancer) the 
computedfvalues were greater for the AUC ANOVA test 
than for overall accuracy ANOVA. These largerfvalues 
led to a higher level of significance (p < 0.01 rather than 
p < 0.05) on two of the data sets (Post-operative bleed- 
ing and Hungarian heart disease). This indicates that the 
AUC is a more sensitive test than overall accuracy. The 
variance associated with the AUC, especially on the data 
sets with either high accuracy or ample test data, was less 
than that associated with P(C). Again, Duncan's multiple 
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range test was carried out on all six data sets to determine 
the significant subgroups. 

On the nuclear texture data set, three significant sub- 
groups were obtained, as shown in Table 2. The decision 
trees (MSC and C4.5) are in a lower performance sub- 
group of their own, with C4.5 in a second subgroup with 
KNN, and Bayes, the third, highest performance group, 
now includes the Perceptron and Multi-layer Perceptrons 
but excludes the decision trees (C4.5 and MSC). The poor 
performance obtained using the decision tree methods 
can be attributed to the fact there are limited data with 
which to construct and prune the trees and that smooth 
decision hyper-planes are probably more suitable than 
hyper-rectangles in this problem domain. Of note is the 
fact that the Perceptron and MSC obtained the same 
accuracy, P(C), but the Perceptron now has a signifi- 
cantly higher (p < 0.05) AUC. With that exception there 
is an extremely good correlation between the rankings 
given from P(C) and that given from AUC. However, 
AUC produced significant differences between the mean 
performance, whereas P(C) did not. 

There are two significant subgroups for the post- 
operative bleeding data set, as shown in Table 3. The 
lowest performance subgroup contains C4.5 only, the 
other subgroup containing all of the other methods. The 
low performance of C4.5 when measured using AUC can 
also be visually seen in the ROC curves of Figs 3 and 4. 
In this data set there are patients who have bled exces- 
sively due to a surgically related complication (a tech- 
nical error). Some of the training data have therefore 
effectively been misclassified because the excessive 
bleeding was not related to any of the features measured, 
but was a consequence of the technical error. These cases 
should randomly affect the data and therefore become 
isolated examples in feature space. We would hope that 
they would have little effect on the classifier during 
training, but this will be dependent on the classification 
algorithm used. The effect of these points on the MLP, 
Perceptron, and Bayes methods is to bias the position of 
the decision boundary(s); however, if, as is thought for 
this case, the number of misclassified points is not too 
large, this effect should be minimal. KNN will be af- 
fected dependent upon the amount of smoothing built 
into the classification, i.e. upon the choice of K. For the 
decision tree methods (C4.5 and MSC) these points will 
cause the formation of erroneous decision nodes in the 
tree. However, it should then be possible to prune these 
examples from the tree to eliminate their effect, as they 
will be nodes that have seen very few training points, i.e. 
they have a low confidence level. However, because of 
the lack of data in this domain it is very difficult to 
determine with certainty which data points are due to a 
technical error and therefore should be pruned and which 
data points are due to the underlying problem. This can 
be seen in Fig. 4 particularly in the cases of the decision 
tree C4.5 where the pruning has reduced the structure of 
the tree too much and hence reduced the sensitivity. This 
means that C4.5 is very rarely predicting any cases as 
being positive; this "over caution" leads to what appears 
to be a acceptable accuracy, but a very low AUC. This 

means that the decision tree is actually doing very little 
work. In previous experiments (32) we found that the MSC 
obtained a higher accuracy (76%) when no pruning was 
done on the tree. This is an example of a problem domain 
where the algorithm has been biased by the decision tree 
pruning. (33) 

There are three significant subgroups shown for the 
Breast Cancer data set in Table 4. There is a large amount 
of overlap in these subgroups and so no real identifiable 
groups seem to exist. However, there is an indication of a 
general increase in performance from the decision trees 
through the Perceptron on to the MLPs and then up to the 
KNN and Bayes methods. Again, with the exception of 
the Perceptron, which again obtained a higher ranking of 
performance under AUC than it did under P(C), there is 
good agreement in the ranking between the two perfor- 
mance measures. 

Table 5 shows that for the Pima Indians Diabetes data 
set there are four significant subgroups (as compared to 
three for overall accuracy). This again would indicate the 
increased sensitivity of AUC over P(C) as a measure of 
classifier performance. In fact, it may well be worth 
going to a higher level of significance (say p=0.01) to 
reduce the number of subgroups and reveal a more 
general underlying trend. In addition, it can be seen from 
the ROC curve for the Bayes classifier (Fig. 7) that there 
are only really three points from which to estimate the 
AUC. This means that the AUC calculated for the Bayes 
classifier on this data set will be pessimistically biased. 
To avoid this effect it may be possible to implement a 
systematic way of varying the decision threshold when 
producing the ROC curves, rather than using linear 
steps. (34) 

The Cleveland heart disease data set has three sig- 
nificant subgroups of performance under AUC (see 
Table 6). The MSC is in a subgroup of its own, the other 
two groups being fairly overlapping and so no mean- 
ingful subgroups can be identified. Again, the Perceptron 
obtained a higher ranking under AUC than it did under 
overall accuracy. With this exception, there is a good 
level of agreement in the ranking of the performance of 
the classification algorithms under accuracy and AUC. 

Where accuracy found two broad significant sub- 
groups, Table 7 shows that AUC has produced three 
subgroups on the Hungarian Heart Disease data set. 
The MSC is in the lowest performance subgroup (on 
its own) while the remaining two subgroups are broadly 
overlapping with only a significant difference between 
the AUC for C4.5 (lowest) and the Perceptron (highest). 
As was the case for the Cleveland heart disease data set, 
the Perceptron performed better under AUC than it did 
under overall accuracy, but otherwise accuracy and AUC 
produced similar rankings of performance. 

9.3.1. The meaning of AUC. It may seem that 
extracting the area under the ROC curve is an 
arbitrary feature to extract. However, it has been 
known for some time that this area actually represents 
the probability that a randomly chosen positive example 
is correctly rated (ranked) with greater suspicion than a 
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randomly chosen negative example. (6) Moreover, this 
probability of correct ranking is the same quantity 
estimated by the Wilcoxon statistic. (6'35) 

The Wilcoxon statistic, W, is usually used to test the 
hypothesis that the distribution of some variable, x, from 
one population (p) is equal to that of a second population 
(n), H0 : Xp = Xn .(3) If this (null) hypothesis is rejected 
then we can calculate the probability, p, that Xp > xn, 
Xp < xn, or Xp ¢ xn. In our case, where we want good 
discrimination between the populations p and n, we 
require P(xp > xn) to be as close to unity as possible. 
The Wilcoxon test makes no assumptions about the 
distributions of the underlying populations and can work 
on continuous, quantitative, or qualitative variables. 

As already discussed AUC effectively measures 
P(xp > xn). In the same situation, given one normal 
example and one positive example, 6 a classifier with 
decision threshold t will get both examples correct with a 
probability, 

P(C) = P(xp > t)P(x. < t). (15) 

P(C) is dependent on the location of the decision thresh- 
old t and is therefore not a general measure of classifier 
performance. 

9.3.2. The standard error of AUC. The AUC, 0, is an 
excellent  way to measure P(xp >xn)  for binary 
classifiers and the direct relationship between, W, and 
0 can be used to estimate the standard error of the AUC, 
using SE(W) in equation (10). 

Figures 13 and 14 show how the standard error of the 
Wilcoxon statistic, SE(W), is related to the standard 

6Often referred to as a two alternative forced choice 
experiment (2AFC). 

deviation of the averaged AUC, SD(0), calculated using 

10-fold cross-validation. The correlation coefficient be- 
tween SE(W) and SD(0) is 0.9608 which indicates that 
there is a very strong linear relationship between SE(W) 
and SD(0). Over all six data sets, SE(W) has a mean value 
of 0.0770 and a standard deviation of 0.0482, whilst 
SD(0) has mean 0.0771 and standard deviation 0.0614. 
This again would indicate that although SD(0) has a 
higher variance it is a very good estimator of SE(W). The 
straight line fitted (in a least squared sense) to SE(W) and 
SD(0) in Fig. 14 again reiterates the quality of SD(0) as 
an estimate of SE(W). 

The larger variance observed for SD(0) can be ex- 
plained when you consider the fact that SD(0) has two 
sources of variance. The first source of variance, which is 
also the variance estimated by SE(W), is due to the 
variation of the test data. That is, in each of the 10 
iterations of cross-validation there is a different 10% of 
the data in each test partition. These different sets of test 
data therefore produce different ROC curves, and AUC 
varies accordingly. The second source of variance is due 
to variation of the training data in each cross-validation 
partition. The variation in the training data used in each 
cross-validation partition also affect the ROC curves 
produced and this causes AUC to vary. However, because 
only one-ninth of the training data vary with each sub- 
sequent training partition, this second source of variance 
is small and therefore, as was shown, SD(0) is a good 
estimator of SE(W). 

Figure 15 shows how the standard error of the Wil- 
coxon statistic varies with the number of test samples and 
the actual value of the AUC. The two trends to notice are: 

1. As the number of test samples increase the stan- 
dard error decreases, SE(W) being inversely pro- 
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Fig. 15. Variation of the standard error of the Wilcoxon 
statistic with AUC and the number of test examples, assuming 

c . = c p .  

portional to x/N, where N is the number of test 
samples• 

2. SE(W) is inversely proportional to AUC. There is a 
high variance associated with small values of AUC 
(< 0.8) and the variance becomes very small as the 
AUC gets close to 1. This effect can also be seen in 
Fig. 13; the " x "  points represent the standard 
error and deviation estimated for the heart bleeding 
domain. On this domain the AUC was quite low 
(~0.66) and so the variation is noticeably higher. 

There are also methods to reduce the standard error 
estimate for classifiers tested on the same data, ~7> with its 

own significance test (to compare two AUCs). There are 
other measures of performance such as output signal-to- 
noise ratio, or deflection criterion, O6) but the AUC seems 
to be the only one that is independent of the decision 
threshold and not biased by prior probabilities. 

• It gives an indication of how well separated the 
negative and positive classes are for the decision index, 

e(xp > Xn); 
• It is invariant to prior class probabilities• 
• I t g ivesan ind ica t ionof theamoun t  of "work done"  by 

a classification scheme, giving low scores to the ran- 
dom or "one class only" classifiers• 

However, there was good agreement between accuracy 
and AUC as to the ranking of the performance of the 
classification algorithms. It was also found that the 
standard deviation of the averaged AUCs from the 10- 
fold cross-validation can be used as an estimate of the 
standard error of the AUC calculated using the approx- 
imation to the Wilcoxon statistic. 

The results quoted for the all the algorithms are only 
valid for the particular architecture or parameter settings 
tested, there may be other architectures that offer better 
performance. However, care should be taken when 
choosing parameters so as not to optimistically bias 
the results• Using a training, evaluation, and test set 
methodology should prevent this. Finally, for one parti- 
cular application, the best way to select a classifier and its 
operational point is to use the Neyman-Pearson method, 
of selecting the required sensitivity and then maximising 
the specificity with this constraint (or vice versa). The 
AUC however, appears to be one of the best ways to 
evaluate a classifier's performance on a data set when a 
"single number" evaluation is required or an operational 
point has not yet been determined. 
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I0. C O N C L U S I O N S  

In general there was not a great difference in the 
accuracies obtained from each of the learning algorithms 
over all the data sets. Generally, the hyperplane (Bayes, 
MLP) and exemplar (KNN) based methods performed 

better than the decision trees (C4.5, MSC) in terms of 
overall accuracy and AUC. However, this is due, in part, 

to the type of problems we have analysed, being primar- 
ily continuous inputs with overlapping classes; the mod- 

els used by these methods are particularly well suited to 
this type of problem. 

The area under the ROC curve (AUC) has been shown 
to exhibit a number of desirable properties as a classi- 
fication performance measure when compared to overall 

accuracy: 

• Increased sensitivity in the Analysis of Variance 
(ANOVA) tests; 

• It is not dependent on a decision threshold chosen; 
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