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Abstract—Atomic regions, which are implemented with the

lock or the software transactional memory, are commonly used

to achieve the atomicity. As the manual specification of atomic

regions is labor-intensive and error-prone, we propose an ap-

proach to identify them automatically. Our automatic approach

preserves the maintainability by producing the structured atomic

regions, preserves high performance by finding the minimal

atomic regions, and guarantees the correctness by supporting the

multi-variable atomicity throughout the program. Besides, the

approach allows programmers to bound the region identification

with their domain knowledge. Additionally, our identification can

be used to optimize existing atomic regions or to fix atomicity

violations. The evaluation shows, compared to the original version

with the manual atomic region specification, the version with the

identified atomic regions is 5% slower on average and 13% slower

maximally, which suggests our atomic region identification is a

reasonable candidate for replacing the manual specification.

I. INTRODUCTION

The atomicity property is an important correctness cri-

terion [5] for the shared-memory concurrent programs. The

atomicity requires a group of shared memory accesses to

be executed without being interleaved, and is often specified

by programmers using the lock region, of which the entry

marks the start of the accesses and the exit marks the end

of the accesses. When specifying the atomic lock regions,

programmers need to reason about the accesses to the shared

memory, which are distributed in different code structures in

different methods. The manual reasoning is tedious and often

results in [19] atomicity violations. First, programmers may

ignore some accesses to shared memory as too many accesses

spread over the whole program. Second, given the accesses,

programmers may find the code region that does not suffice to

protect them from being interleaved, due to the complexity of

the code structure layout and the method calls. On the other

hand, the compiler is good at reasoning about the accesses

rigorously and comprehensively. Therefore, we propose to let

the compiler reason about the accesses automatically and leave

to programmers the work that the compiler cannot do.

The compiler cannot do the work related to programmers’

intention. First, the compiler does not know the multi-variable

(or multi-field) atomicity [27], [19]. Consider the fields po-

sition and salary of an employee object, they are corre-

lated and should be updated atomically, otherwise, the heap

state may be left incorrect with the inconsistent field values.

Although the compiler could apply the artificial intelligence

technique to learn [19] the correlation intention, it cannot

capture the intention faithfully. Second, suppose the accesses

of the correlated variables are available, programmers often



break them into groups and find a unique atomic region

to protect each group of accesses. It is impossible for the

compiler to determine the grouping. Given the strength and

the limitations of the compiler, we propose the following

workflow: (1) Programmers provide the multi-variable atom-

icity. Programmers can specify the multi-variable correlation

with the notion of atomic set [27], which is proven simple

because programmers do not need to address the complexity

of the accesses. (2) The compiler finds the accesses of the

multiple correlated variables and identifies an atomic region

to protect them. (3) Programmers may directly adopt the

compiler-generated atomic region as the alternative to the

manual specification, or use it as the working atomic region

and further improve it by breaking it into several finer regions.

In either case, the compiler-based region identification, which

is the focus of this work, provides the correctness guarantee in

reasoning about the accesses and relieves programmers from

the complexity of the accesses

Researchers have made the attempt in automating the region

identification. For example, the approach [25] supports the

single-variable atomicity, by first finding the accesses of a

shared variable and then identifying the atomic region to

protect them. The approaches [27], [4] support the multi-

variable atomicity locally. They maintain precisely the cor-

relation among multiple instance fields which are encoded

using the ownership. However, the ownership-based encoding

limits the applicability to a local scope, i.e., the declaring

class of the object owning the instance fields. For example,

suppose the fields owned by a List object (the root object)

are correlated according to the atomic set specification, the

approaches [27], [4] produce only the atomic regions that

are inside the class of the root object, i.e., the List class.

They cannot produce the atomic regions out of the class to

protect the client-side invocations that transitively access the

fields of the root object. In summary, existing approaches do

not support the multi-variable atomicity or support the multi-

variable atomicity within the local scope, because they cannot

maintain the multi-field correlations throughout the whole

program.

We propose an approach that guarantees the multi-variable

atomicity throughout the whole program. The first phase is to

recognize the accesses of the correlated fields. We need the

encoding of the correlated fields, which is valid and consistent

throughout the whole program. The encoding cannot be based

on the ownership because the ownership is valid only in a

local scope, and it cannot be based on the names of the

variables in the code because the same variable name may

refer to different objects inconsistently at different sites while

different variable names may refer to the same object. In this

work, we propose an encoding based on the static modeling

of the heap. We derive the heap-based encoding from the

atomic set specification, based on which we apply the side

effect analysis to determine the accesses of the correlated fields

in the program.

The second phase of our approach is to identify an atomic

region that protects the accesses found by the first phase. This

phase is also applicable to fixing the atomicity violations [18],

[12], where the accesses are provided by the atomicity vi-

olation detection tools. In this phase, we have two important

designs: (1) We find the block-structured atomic region, which

is like the Java synchronization block. The block-structured

atomic regions (atomic blocks) are predominately used in

existing Java programs according to the study [24] of large-

sized applications in Sourceforge, and therefore are the most

familiar form to the programmers, which allow programmers

to understand them easily and preserve the maintainability.

Comparatively, existing approaches [18], [12] for fixing the

atomicity violations apply the sophisticated analyses to pro-



duce the non-block-structured atomic region with multiple

entries and multiple exits, which is hard to understand and

prevents further optimization tuning. (2) We identify the

minimal atomic block. By keeping the atomic block small,

we leave as much irrelevant code, such as the accesses to

thread-local heap locations, out of the block as possible, which

minimizes the redundancy in the atomic block, minimizes the

execution of the atomic block and minimizes the blocking of

other threads. Comparatively, the previous approaches [27],

[25] produce the large atomic regions, e.g., the whole method

bodies, which may block the execution for the unnecessarily

long period.

Producing the atomic blocks in the methods with the com-

plex code structure layout is challenging because we need

to guarantee the correct locking behaviors, i.e., the entry of

the atomic block always matches the exit at runtime and the

double unlocking/locking is avoided. Producing the minimal

atomic block is also challenging as neither the atomic block

nor the minimality is formally defined. In this paper, we

formally define the atomic block based on the single entry

single exit region [13] and define the minimality based on

the partial orders among the blocks. We propose an algorithm

that leverages the program structure tree [13] to address

the complexity of the code structure layout and leverages the

call graph analysis to address the complexity of the method

calls. We also prove the minimal atomic block guarantee of

the algorithm.

Finally, the third phase is optional. As aforementioned,

programmers may further optimize the compiler-generated

atomic region by breaking it into several children regions

and minimizing each of them. The minimization in the op-

timization inevitably involves the manual reasoning of the

accesses, which is tedious and error-prone. We propose the

bounded region identification to automate the optimization.

Programmers just need to tell the compiler their knowledge

of the semantically independent scopes, e.g., the components

developed independently by different developers. The compiler

then apply the bounded identification automatically to identify

the minimal atomic region that contains the accesses inside

each scope.

We implement our approach and evaluate it on Stamp,

a benchmark suite for atomicity. Our approach infers two

versions of atomic blocks, one with the bounded identification

and one without. The atomic blocks inferred with the bounded

analysis slow down the performance by 5% on average and

13% maximally, tested with different threading configurations.

The minor slowdown suggests our approach is competent for

replacing manual region inference. The atomic blocks inferred

without the bounded analysis slow down the performance by

43% maximally, which suggests that the bounding scope can

effectively leverage the atomic block identification.

The contributions of this work are:

• We formally define the structured atomic region and

design an algorithm that identifies the minimal structured

atomic region which contains the accesses that require

the atomicity. The minimal structured atomic regions

preserve the maintainability and the high performance.

• We propose an approach to maintain the multi-variable

correlation and support the multi-variable atomicity

throughout the program.

• We allow programmers who have the domain knowledge

to bound the identification. The bounded identification

produces fine-grained atomic blocks within each scope.

II. OVERVIEW

In this section, we outline our approach with the code

snippet from the Bayes benchmark, a Bayesian network

application.



1 isTaskValid= true;

if(op==INSERT)

3 {

if(learnerPtr.hasEdge(fromId, toId))

5 isTaskValid=false;

}

7 else{...}

if(isTaskValid)

9 learnerPtr.applyOp(op, fromId, toId);

The code checks (line 4) if an edge exists between two

nodes in the Bayesian network learnerP tr, and inserts (line

9) an edge if no edge is present. The operations should be

protected in one atomic block to guarantee that, the insert

operation is carried out only if the check operation returns

false, i.e., no edge is present.

Our analysis produces the minimal atomic block to enclose

the two operations as follows.

Multi-variable atomicity. Programmers first declare the

program states that require the atomicity based on the notion

of atomic set [27]. In our example, the state of the list

transitively referenced by learnerPtr (Figure 4) needs to be

accessed atomically, the corresponding atomic set declara-

tion is, {List.size, List.head, List.head.next+}1. The free

type variable List is then bounded to a list object o1 in

Figure 4 so that the declaration becomes a concrete atomic

set, {o1.size, o1.head, o1.head.next, o1.head.next.next} or

{o1.size, o1.head, o2.next, o3.next}. In our static analysis,

to get the concrete atomic set, we approximate the heap with

the abstract heap and bind the type variable to a representation

from the abstract heap. With the concrete atomic set and the

side effect analysis, we identify the accesses of the program

state that requires the atomicity, e.g., the accesses at line 4 and

9 in our example. More details are explained in Section V.

1The symbol “+”is a shortcut for one or more.

Identifying the minimal atomic block. In our running

example, the minimal atomic block (i.e., a single entry single

exit code structure) that contains the accesses is from line 2 to

line 8. However, when the method body has a complex layout,

identifying the minimal atomic block becomes more complex

and error-prone. We rely on the program structure tree (Fig-

ure 1(b)), derived from the control flow graph (Figure 1(a)),

to reason about the complex layout. Algorithm 1 identifies the

minimal atomic block by finding the lowest common ancestor

in the program structure tree.

When the accesses are distributed in different methods,

we need to reason about the complex calling relations too.

Suppose in the call graph (Figure 2), both the accesses are in

different methods D and E, they should be protected by the

atomic block in whatever calling contexts. Placing the atomic

block in the method B is incorrect because the accesses will

not be protected when invoked by the method C. Algorithm 2

identifies the atomic block in the immediate dominator method

A so that the atomic block is always present when the accesses

are executed. Section III presents our identification technique.

Bounding the atomic block identification. Program-

mers are allowed to bound the identification into independent

scopes, based on their domain knowledge. In order to pre-

serve the independence between different bounding scopes,

the atomic blocks should be identified in the method that is

“unique” to the bounding scope. Besides, the atomic blocks

can be safely placed in the bound-aware dominator, which

is less strict than the dominator. Besides, the bounded identi-

fication can be used as the optimization that refines existing

atomic blocks specified as the bounding scopes. More details

can be found in Section IV.

The rest of the paper is organized as follows. Section III,

Section IV and Section V present the core of our approach.

Section VI discusses the threats to validity and Section VIII



presents the evaluation.

III. IDENTIFYING THE MINIMAL ATOMIC BLOCK

Given the accesses ACC that require the atomicity, our

goal is to identify the minimal atomic block, a synchronized

block like code structure, to contain them. The atomic block,

after being equipped with the lock or the transactional memory,

excludes the buggy interleavings to the accesses. The accesses

ACC may be determined (Section V) as the accesses of an

atomic set, or provided by the bug detection tools [5] as the

accesses in an atomicity violation.

To identify the minimal atomic block, we need to solve

the following problems: (1) Although the atomic block is

commonly referred to, the formal definition of it is unclear,

which disables the inference. (2) As for the minimal atomic

block that contains the accesses, what does the minimality

and the containment mean? (3) If the accesses are nested in

different code structures in a method with the complex layout,

the identification algorithm needs to reason about the layout

precisely. (4) If the accesses are in different methods, we

need to extend the above definitions in an inter-procedural

fashion and the identification algorithm needs to reason about

the methods calls correctly.

In the following, we first formalize (Section III-A) the

atomic block, the containment and the minimality, based on

the single entry single exit region [13]. Then, we present

(Section III-A) the intra-procedural analysis that identifies the

minimal atomic block, on the assumption that the accesses are

in the same method, and prove the guarantee of the minimality.

Finally, if the accesses are not in the same method, we extend

(Section III-B) the definitions and the identification algorithm.

A. Intra-procedural analysis

In this section, we assume the accesses are in the same

method. Section III-B handles the scenarios where the accesses

are not in the same method. Our definition of the atomic block

(Definition 3) is based on the basic concepts of control flow

graph (Definition 1) and domination (Definition 2).

Definition 1 (Control Flow Graph): The control flow graph

G is a graph with nodes connected by edges, where each node

represents the statement S and each edge represents the control

flow. Two distinguished nodes, nstart and nend, represent the

unique start and the unique end. Every node occurs on some

path from nstart to nend.

Definition 2 (Domination and PostDomination): In a di-

rected graph, a node nx dominates node ny if every path from

nstart to ny includes nx. A node ny postdominates node nx

if every path from nx to nend includes ny .

Definition 3 (Atomic Block): Atomic block R is a single

entry single exit code region (SESE region) in the control flow

graph. It is denoted as a pair of control flow nodes, (na, nb),

where (1) na dominates nb, (2) nb postdominates na, and (3)

every cycle containing na also contains nb and vice verse.

The SESE region is previously defined by Johnson et

al. [13] and used to study the parallel or incremental program

analysis. The three conditions in Definition 3 characterize the

behavioral constraints of the atomic block: (1) Take the lock

implementation for example, if the lock release at the exit nb

is executed, the lock acquisition at the entry na must also

be executed. (2) If the lock acquisition at na is executed, the

lock release at nb must be executed. (3) When the execution

goes from the inside to the outside of the atomic block (from

the outside to the inside), it must execute the lock release

at the exit nb (the lock acquisition at the entry na). The

third constraint is especially important as it guarantees the

pairing between the acquisition and release, and precludes

the incorrect behaviors such as double unlocking or double

locking.

Definition 4 (Containment): A control flow node n is inside



or contained by the atomic block R, (na, nb), if na dominates

n and nb postdominates na. We denote the containment

relation as n ∈ R.

The minimal atomic block (Definition 6) that contains the

accesses is defined in terms of the containment between atomic

blocks (Definition 5).

Definition 5 (Containment between Atomic Blocks): Given

two atomic blocks R1, (na, nb), and R2, (ns, nt), R2 is

contained by R1, denoted as R2 ⊆ R1, if na dominates ns

and nb postdominates nt.

Definition 6 (Minimal Atomic Block): An atomic block

Rmini is the minimal if there is no atomic block R such that

R ⊆ Rmini.

According to the results [13], the containment among atomic

blocks defines a partial order, which can be graphically

depicted by the graph called program structure tree or

PSTree, where each node represents a block (Definition 5)

and each edge represents the immediate containment. Besides,

according to the results [13], in structured programs such

as the C/C++/Java/Fortran programs, the blocks are either

disjoint or nested, they cannot overlap partially. Therefore,

each block has at most one parent as it cannot be contained

within two blocks immediately, and hence the PSTree graph

is a tree. The PSTree can be constructed from the control flow

graph with E edges in O(E) time [13].

Figure 1 shows an example control flow graph and its

program structure tree. The blocks b and c are disjoint, the

blocks a and b are nested, i.e., a contains b. Specially, the

blocks may be sequentially composed, e.g., the blocks f and

g are sequentially composed.

Our identification algorithm is based on the PSTree. In

Algorithm 1, the input includes the accesses ACC that require

the atomicity and the PSTree tree of the current method, the

output is the minimal atomic block that contains the accesses.

(a) (b)

Fig. 1: (a) control flow graph labelled with atomic blocks (b)
program structure tree.

At line 3, we find the atomic blocks that contain immediately

the accesses. Then we find (line 5) their lowest common

ancestor Rlca in the PSTree, which is returned as the minimal

atomic block (line 16) except when the children blocks of Rlca

are sequentially composed. Consider the example in Figure 1,

the minimal atomic block that contains c and d is not the

lowest common ancestor a but sequence(c, d), where the

helper function sequence decides the minimal sequence that

contains the sequentially placed items. Therefore, Algorithm 1

finds (Lines 6-12) the child R′i of Rlca which is meanwhile the

ancestor of Ri. Algorithm 1 returns (Line 13-15) the minimal

sequence of these children blocks if they are sequentially

composed.

1 n = ACC.size();
2 for acci:ACC do
3 Ri = region(acci);
4 end
5 Rlca= tree.lowestCommonAncestor(R1, R2, . . . , Rn);
6 for Ri: from R1 to Rn do
7 for child: Rlca.children() do
8 if child.isAncestor(Ri) then
9 R′

i = child;
10 end
11 end
12 end
13 if R′

1, R′
2. . . , R′

n are sequentially composed then
14 return sequence(R′

1, R′
2, . . . , R′

n);
15 end
16 return Rlca;

Algorithm 1: The function miniAtomBlock

Theorem 1: The atomic block Rmini computed by Al-

gorithm 1 is minimal, i.e., ∀R that contains the accesses,



Rmini ⊆ R.

Proof 1: We divide the proof into two cases.

Case 1: If R * Rlca, then Rlca ⊆ R and therefore Rmini ⊆

Rlca ⊆ R. More specifically, as the ⊆ relation is equivalent

to the “ancestor” relation in the PSTree, ∀i ∈ 1 . . . n,Ri ⊆ R

means R is the common ancestor of the blocks Ri. Therefore,

R must be2 an ancestor of the lowest common ancestor Rlca,

i.e., Rlca ⊆ R, therefore Rmini ⊆ Rlca ⊆ R.

Case 2: If R ⊆ Rlca, R must contain the child block R′i

of Rlca (line 9 of Algorithm 1). If the children blocks R′i

(i ∈ 1 . . . n) are sequentially placed, R must contain Rmini,

i.e., sequence(R′1, R′i, . . . , R′n). Otherwise, R must be Rlca.

In either case, Rmini ⊆ R.

B. Inter-procedural analysis

Our analysis in Section III-A assumes the accesses are in

the same method body. In this section, we design the inter-

procedural analysis which finds the minimal atomic block if

the accesses are contained in different methods. Note that the

resultant atomic block is still placed in a method, i.e., its entry

and exit are in the same method. In the following, we first ex-

tend the definitions of the containment relation (Definition 8)

and the minimality (Definition 9) in an inter-procedural way,

based on the inter-procedural closure (Definition 7).

Definition 7 (Inter-procedural Closure): Given the block

R, the inter-procedural closure closure(R) stands for the

statements in R and the statements in the transitive callee

methods callees(R).

Definition 8 (Containment): A control flow node n is

contained inter-procedurally within the atomic block R if

both the conditions hold: (1) method(R)3 is present in any

call chain to method(n). (2) n ∈ closure(R).

2R may also be a sequential composition of the ancestor of Rlca and other
blocks, which does not affect the correctness of our proof.

3The helper function method(x) returns the directly containing method.

A

B C

D E

Fig. 2: Call graph. Nodes stand for methods and Edges stand
for method calls.

Condition 1 requires the atomic block R to protect the

access (represented by node n) in any calling context. There-

fore, method(R) should be the dominator in the call graph

of method(n), otherwise, the access n may be executed

in a calling context where method(R) is not present. For

example, in the call graph (Figure 2), suppose the accesses

are in the methods D and E. If we place the atomic block

in the dominator method of D and E, i.e., the method A,

we guarantee the method A and the contained atomic block

are always present when D or E is executed. However, if we

place the atomic block in the lowest common ancestor method

such as B, the method B and the contained atomic block may

not be present when D or E is executed along the call chain

A→ C. Condition 2 specifies that the atomic block R is large

enough so that its closure includes the access n.

Definition 9 (Minimal Atomic Block): An atomic block

Rmini is the minimal if there is no atomic block R such that

closure(R) ⊆ closure(Rmini).

1 ms=∅;
2 foreach acci:ACC do
3 ms.add(method(acci));
4 end
5 midom= iDom(ms);
6 foreach S′

j: midom.stmts() do
7 if S′

j .callsAny(ms) then
8 callsites.add(S′

j);
9 end

10 end
11 return miniAtomBlock(PSTree(midom), callsites);

Algorithm 2: The function interMiniAtomBlock



As shown in Algorithm 2, we compute the minimal atomic

block by reduction to the intra-procedural scenario (Algo-

rithm 1). Given the methods ms that contain the accesses di-

rectly, we first compute (lines 1-5) their immediate dominator

midom in the call graph and then find (lines 6-10) the state-

ments callsites in midom that invoke the methods ms transi-

tively. Finally, we identify (at line 11) intra-procedurally the

minimal atomic block that contains the statements callsites.

Theorem 2: According to Definition 9, the atomic block

Rmini computed by Algorithm 2 is minimal.

We sketch the proof briefly. For any atomic block R that

is not in the immediate dominator midom, to contain all the

accesses inter-procedurally, it must invoke midom and hence

its closure is larger than closure(midom) and closure(Rmini).

For any atomic block in the midom, it must contain all

the statements callsites intra-procedurally, otherwise some

accesses may be invoked out of the atomic block. According

to Algorithm 1, Rmini is the minimal atomic block of such.

IV. BOUNDING THE IDENTIFICATION

Programmers, who have domain knowledge, may specify

the scope bounding the identification of the atomic block.

For example, a program may consist of multiple components,

each written by a developer independently, the inference

can be carried out inside the scope of each component and

the resultant atomic blocks are bounded by the scope. By

bounding the identification, we increase the granularity of

the atomic blocks and avoid the monolithic atomic block that

spans the whole program.

In our work, programmers only need to specify the bound-

ing method, e.g., the entry method of the component. The

bounding method Bound and the methods transitively in-

voked inside it constitute the bounding scope, denoted as

scope(Bound). Two important properties are associated with

the bounding method: (1) Correctness. The identified atomic

block needs to be present in any call chain from the bounding

method to the methods that contain the accesses. (2) Indepen-

dence. The atomic block synchronizes the execution only in

the scope of the bounding method, it does not take effect in

the scope of other bounding methods. In the following, we

explain how to ensure the properties.

Correctness. As stated above, the atomic block is required

to be present in any call chain from the bounding method

to the methods that contain the accesses. Instead of placing

the atomic block in the dominator of the containing methods,

which is unnecessarily strict, we place the atomic block in the

bound-aware dominator.

Definition 10 (Bound-aware Dominator): Given the bound-

ing method Bound, the bound-aware dominator of the method

m is the method that is present in any call chain from Bound

to m. It is a dominator method in the trimmed call graph,

where all methods except the transitive callee methods of

Bound are removed4.

Take Figure 2 for example, although the method B is not a

dominator of D and E, it is a bound-aware dominator given

that the bounding method is B. By placing the atomic block

in the bound-aware dominator B, we can guarantee that the

accesses are always protected when invoked inside B.

Independence. To guarantee the independence among

the bounding scopes, we place the atomic block in the

unique method of each bounding scope. The unique method,

unique(Boundi), is a method in the scope scope(Boundi),

but not a method in any other scope scope(Boundj). More

strictly, the unique methods are computed as scope(Boundi)−⋃
Boundx!=Boundi

scope(Boundx). It is possible that the

unique methods do not exist, e.g., when the bounding method

Boundi may be invoked in another bounding method Boundj .

4The edge, of which the source or target is removed, is also removed.



That means, the atomic block placed in the scope of Boundi

inevitably affects the execution in the scope of Boundj . In

that case, we simply set the unique method as Boundi.

In Figure 2, suppose B and C are both the specified bound-

ing methods. unique(B) = {B,D,E} − {C,D,E} = {B}.

By placing the atomic block in the unique method B, the

synchronization for the atomic block does not take effect in

the other scope C.

To conclude, in order to ensure the correctness and the

independence, we need to place the atomic block in a bound-

aware dominator which is meanwhile the unique method.

We may have to discard the independence property occa-

sionally. Besides, the identification analysis in Section III

and Section IV can be viewed as the optimization technique

that refines the initial coarse atomic blocks specified as the

bounding methods.

V. IDENTIFYING THE ACCESSES THAT REQUIRE

ATOMICITY

As mentioned in Section III, the input of the atomic block

identification is the accesses that require the atomicity. We

compute such accesses in this section. The accesses are those

accessing the inherently correlated fields in the heap. As

explained in Section I, it is crucially important to support

the multi-field (or multi-variable) atomicity because otherwise

the inherent consistency among the fields would be violated.

Existing static analyses [25], [27] cannot support the multi-

field atomicity correctly because they cannot maintain the

multi-field correlation throughout the program. For example,

the static analysis [27] maintains the correlation within a local

scope based on the ownership, which does not apply to the

whole program.

We support the multi-field atomicity based on the notion

of atomic set, proposed by Vaziri et al. [27]. We support the

(a) (b)

Fig. 3: (a) atomic set declaration (b) heap-related functions.

multi-variable atomicity throughout the program by maintain-

ing the multi-variable correlation based on the whole-program

reasoning of the heap.

Atomicity declaration. The atomic set consists of the

correlated fields, which are referenced transitively by the same

root object, e.g., the highlighted fields (Figure 4) referenced

transitively by the root List object O1. Abstracting the dec-

laration syntax details [27] away, we represent (Figure 3(a))

each declared atomic set decl succinctly as a set of syntactical

items type.sel.f , where type tells the type of the root object,

sel is a field reference chain from the root object to the owner

object of the field f . Here, type is a free variable, once bound

to a root object oroot, the syntactical item type.sel.f refers to

a concrete field oroot.sel.f and the declaration decl refers to

a concrete atomic set.

We explain the binding in terms of runtime heap. As shown

in Figure 3(b), the heap records the field reference relation-

ships among objects. The semantic δ of the heap is standard,

e.g., δ(o1, f1) = o2. The derived semantic δ2 of the heap

records the transitive field reference, e.g., δ2(o1, f1.f2...fn) =

δ2(δ(o1, f1), f2...fn) = δ2(o2, f2...fn) = ... = on+1. The

function bind, which accepts the argument of a root object

oroot, maps each syntactical item type.sel.f in the declaration

decl to the instance field oroot.sel.f , or equivalently, o.f ,

where δ2(oroot, sel) = o.



Fig. 4: Object graph rooted at leanerPtr. Circles represent
instances, edges represent fields.

Consider the declaration {List.size, List.head,

List.head.next+}, by binding List to a shared list object

o1 in Figure 4, we get {o1.size, o1.head, o1.head.next,

o1.head.next.next}. After looking up the heap, we get the

atomic set of concrete fields {o1.size, o1.head, o2.next,

o3.next}.

However, the runtime heap is not available in the static

analysis. Instead, we approximate the heap with the abstract

heap (Aheap) and bind the free type variable to a repre-

sentation in Aheap. As shown in Figure 3(b), the point-to

set pts1, computed by the pointer analysis [17], consists of

the allocation sites Alloc, each alloc ∈ Alloc approximating

the object or objects created at the site. The Aheap, also

computed by the pointer analysis, records the one-to-one field

reference between point-to sets, e.g., δ′(pts1, f1) = pts2.

Comparatively, because the Aheap summarizes all possible

runtime heaps conservatively, the field reference between the

Alloc abstractions is one-to-many, i.e., one Alloc abstraction

may reference via a field many Alloc abstractions. In our

analysis, we choose to reason using the point-to set because

of the simplicity of the one-to-one field reference between

point-to sets.

We compute the atomic set as follows. Given each syntacti-

cal item type.sel.f in the declaration, we first bind (Function

bind′ in Figure 3(b)) the free type variable to a root point-to

set ptsroot and produce ptsroot.sel.f , or equivalently, pts.f ,

where pts is the point-to set reachable from ptsroot along the

reference chain sel. For simplicity, we refer to the item pts.f

as the abstract instance field, therefore, the computed atomic

set atomS is a set of abstract instance fields.

In the above computation, we need to know the root point-to

set ptsroot, i.e., what point-to set we bind the type variable to.

The point-to set ptsroot must be (1) in the shared heap because

the atomicity is a concurrency-related property and (2) type-

compatible with the type variable. Therefore, we find it by

traversing the shared heap and checking the types involved

in each traversed point-to set. According to the studies [22],

[26], the shared heap consists of the point-to sets referenced

transitively by the arguments at a thread-spawning call site or

the static fields because only the objects referenced by such

variables can be shared among threads.

Now, we proceed to identify the accesses of the fields in

an atomic set atomS = {pts1.f1, ..., ptsn.fn}. We traverse

every field access x.f in the program and compute its effect

pts(x).f . If the effect intersects with the atomic set atomS,

i.e.,
∨

i(f == fi&&pts(x) ∩ ptsi 6= ∅) = true, we put the

field access into the access set ACCatomS of the atomic set

atomS.

VI. THREATS TO VALIDITY

Due to the conservativeness of the static pointer analysis,

our access identification (Section V) may treat the irrelevant

objects as the same abstract object representation, and there-

fore, determine the accesses of the irrelevant objects as the

accesses of the same atomic set conservatively.

We put the identified accesses in an atomic block without

distinguishing the write accesses and the read accesses. Such

treatment may introduce unnecessary atomic blocks, e.g., the

atomic block that protects the accesses to a shared variable

which is read only by all threads.



Our atomic block identification (Section III) always finds

the minimal atomic block to contain the accesses. In case

that the accesses are inside the body of a loop, we find the

minimal atomic block inside the loop body to contain them,

which guarantees the atomicity only within each iteration.

However, the atomicity may be required throughout the loop.

This is an open problem faced by all region identification

approaches [12], [18], [25]. We mitigate the problem by

producing programmers the warnings.

In order to preserve the high performance of the program,

we identify the minimal atomic blocks. Minimizing the atomic

regions is a common practice that can usually improves the

performance. Of course, there is no theoretical guarantee of

performance improvement. Besides, the minimal atomic region

is widely adopted as the oracle in the region identification

researches [12], [18], [25].

VII. IMPLEMENTATION

Most program analyses used in our technique are standard,

e.g., the pointer analysis in Section V, the program structure

tree in Section III-A, the immediate dominator and closure in

Section III-B. We reuse the implementation of these standard

analysis provided by the Soot compiler framework.

We implement each atomic block, (na,nb) as the Java

synchronization block at the source code level, by injecting

the block start, synchronized(lock){, before line(a) and

injecting the block end, }, after line(b). The line number

information is extracted from the bytecode, upon which our

program analysis is carried out. During the injection at the

source code level, we leverage the abstract syntax tree (AST)

to account for the syntactical details, e.g., two statements may

be co-located in the same line. The lock is allocated for each

concrete atomic set (Section V) and initialized as a static field.

The synchronization blocks that are identified to protect

the accesses of different atomic sets may overlap or nest,

which raises problems. Two synchronization blocks malfunc-

tion when they overlap. According to Algorithm 1, they must

be two sequential compositions of the blocks with the same

parent block. Therefore, we adopt a simple strategy which

finds the union of the two sequences and places the two

synchronization blocks around it. As a consequence, both

synchronization blocks are lengthened but no longer overlap

or malfunction.

Two synchronization blocks may introduce the circular-

mutex-wait deadlocks when they nest, e.g., the locks la and

lb are acquired by the nested synchronization blocks in an

order la → lb, and also acquired in another method by the

nested synchronization blocks in an order lb → la. Given such

a deadlock, we adopt a commonly used strategy [7], which

substitutes all the occurrences of la and lb to a new lock lab.

VIII. EVALUATION

In our evaluation, we are interested in the following ques-

tions.

1) Static metrics. In terms of lexical scope, how conservative

are the atomic blocks produced by the whole-program

analysis?

2) Correctness. Do the atomic blocks support the general

atomicity correctly?

3) Runtime performance. How efficient are the programs

with the atomic blocks that are identified automatically?

We study them by comparing three program versions: orig,

inf and inf-dis, which correspond to the original version, the

version carrying the atomic blocks inferred automatically with

the bounded identification (Section IV), the version without

the bounded identification. We conduct the evaluation on nine

subjects (Table I) from Java Stamp benchmark suite [3],



which were written5 in a dialect of Java and then ported to Java

with the minor effort. These benchmarks are widely used [30],

[1], [25] in the atomicity research, and run stably. Besides,

they are not too big for manual inspection (Section VIII-A).

The evaluation is conducted on a x86 64 Dell workstation

with 3.0GHz quad-core Intel Xeon X5450 processors based

on Core 2 micro-architecture (8 cores total). The server has

16GB RAM and 6M L2 caches, runs Ubuntu 8.04 with a Linux

2.6.22 kernel, and uses Sun’s 64-Bit 1.6.0 JVM.

Declaration of atomic sets and bounding scopes The

atomic sets are needed to compute the inf version and the

inf-dis version, and the bounding scopes are needed in the

computation of the inf version. We extract the atomic set dec-

larations through observing the atomicity originally specified

as the atomic blocks in the orig version. To help understanding

the atomicity, we compute the shared fields accessed in each

atomic block and map them to the object graph. We find the

atomicity is often required by the popular data structures such

as List and Vector. Our atomic set declarations for these

data structures are almost identical to these written by Dolby

et al. [4]. Plus, the fields in a declared atomic set (DAS) are

often weakly connected in the object graph (Figure 4). As for

the bounding scope, some of the original programs contain the

annotations that specify independent phases explicitly. If such

annotations exist, we treat the entry method of each phase as

the bounding method (Section IV).

A. The static metrics of inferred atomic regions

In this section, we measure the lexical scopes of the

identified atomic blocks by comparing them with the orig-

inal atomic blocks in the orig version. The whole-program

identification takes around 30 seconds for each benchmark,

which is dominated by the pointer analysis. The comparison

5URL: http://demsky.eecs.uci.edu/software.php

results are shown in Table I. The first columns report the

total number of classes, fields, methods and source lines in

the whole program. In the rest columns, we show the details

about the atomic blocks. As seen, each benchmark corresponds

to multiple rows, each corresponding to a declared atomic set

(DAS). For each DAS, we show its root class (RootClass),

the number (F )6 of field declarations involved, the number

(IAS) of identified atomic sets (IAS) and the number (AIF )

of abstract instance fields (Section V). Also, we show the

number (Bound) of bounding scopes, the number (AB) of

atomic blocks (AB), the total lines of code (LOC) in the

atomic blocks. Specially, for Columns AB and LOC, we

use the “x/y/z” form to refer to the values of the versions

(inf/inf-dis/orig) respectively. The symbol “-” in Col-

umn LOC denotes that the inferred atomic regions are not in

the same method as the original atomic regions, and therefore,

the absolute value is not meaningful.

From Column F , we see that 1-5 fields are typically

involved in a DAS. In entries with “-”, we specify the atomic

set with the wild card (*)7, meaning that all fields transitively

referenced by the root class form a DAS. Specifying the

atomicity using the atomic set notion incurs low cost because

each atomic set declaration involves very few fields and

requires only the modular reasoning, e.g., programmers only

need to inspect the field declarations and do not need to inspect

the field accesses. In Column IAS, one IAS is typically

constructed for each DAS. Multiple IASes (e.g., the entry with

“2”) may be constructed for a DAS, which come from different

bindings of the DAS (Section V).

Compared to the original atomic blocks in the orig version,

the identified atomic blocks may be finer, identical, or coarser.

Take the inf version for example, it contains 2 finer ABs, 18

6When counting the fields, we treat the array element as one special field.
7It is a grammar sugar. We translate the wild card into fields internally by

looking up the type hierarchy.



identical ABs, 17 coarser ABs. As for the 2 finer ABs, they are

finer because the ABs in the orig version include some local

accesses unnecessarily. As for the 17 coarser ABs, they are

coarser for two reasons: (1) the static analysis judges some safe

accesses as unsafe conservatively and protect them in the ABs

unnecessarily. 10 out of 17 coarser ABs fall into this category.

For example, a field is initialized in the constructor by the

main method and afterwards read only by threads. The field

accesses are safe but the static analysis conservatively judges

the them as unsafe. (2) All accesses (in the same bounding

scope) of the same atomic set are protected by one AB. 7 of

17 coarser ABs fall into this category. It is due to the natural

limit of the data-centric atomicity (DCA, i.e., atomic set) [27]

that DCA treats the accesses at different sites homogeneously.

As for the identified ABs in the inf-dis version, there are 1

finer AB, 10 identical ABs, 16 coarser ABs.

We present the details for the inf version of each benchmark.

Bayes. It has 4 atomic set declarations, which describe the

atomicity in classes Vector, List, Query, and Learner

respectively. Each DAS involves 1-4 fields. We have 2 bound-

ing scopes for all the DASs as the thread code is separated into

two independent phases. Interestingly, the inf version contains

an AB finer than the corresponding AB in the orig version,

which contains some local computations unnecessarily.

On the other hand, the inf version contains coarser ABs as

compared with the orig version: some protect the safe accesses

which are conservatively judged as unsafe by the static anal-

ysis, some protect the accesses distributed in different ABs

in the orig version due to the natural limit of DCA. For the

former case, a more precise static analysis can mitigate the

problem. For the latter case, interestingly, the coarser ABs

in the Bayes benchmark do not introduce high performance

penalty (around 1%, as shown in Section VIII-C). Inspecting

the code, we find the AB in the inf version encloses the whole

branch structure, while the ABs in the orig version enclose the

branch bodies for each. The inf version, although contains the

lexically coarser AB, executes only one branch body each time

and performs similarly to the orig version.

Genome. It is a gene sequencing application. It contains

three DASes. The inf version contains coarser ABs which

protect the safe accesses unnecessarily. The rest ABs in the inf

version are identical to the ones in the orig version. Intruder

is an application for the network intrusion detection. The ABs

in the inf version are identical to the ones in the orig version.

KMeans, Laby, Matrix. For the three benchmarks, no

bounding scopes are present, therefore, the inf version is

identical to the inf-dis version. In Laby, one inf AB spans over

two orig ABs. Other inf ABs are identical to the corresponding

orig ABs. In the entry with “-”, we declare a DAS with the

wild card representing all the fields transitively referenced by

the class Solve_Arg.

SSCA2 The first three rows declare the DASes in a class

and the second three rows declare the DASes in another class.

In the first three rows, the ABs in the inf version are coarser

than those in the orig version because they include the safe

accesses unnecessarily. In the rest three rows, the ABs in the

inf version are identical to those in the orig version.

Vacation, Yada. As no bounding scopes are present, the

inf version and the inf-dis version are identical. The identified

ABs are coarser than the original ABs mostly due to the the

natural limit of the DCA. Consider the example from Yada

, the push and pop operations access the same atomic set,

therefore, our identification analysis places them in the an AB,

however, in the orig version, the operations are placed in two

independent ABs based on the specific domain knowledge.



Programs Class F ield Method Line RootClass F IAS AIF BoundAB LOC
Bayes 33 156 181 2844 Leaner 1 1 1 2 2/1/2 4/-/7

List 3 1 4 2 2/1/4 97/-/20
Vector 4 1 5 2 2/1/2 132/-/2
Query 1 1 6 2 1/1/2 66/66/6

Genome 21 82 87 1332 Sequencer 1 1 1 3 3/1/1 20/100/5
List 5 1 6 3 2/1/1 43/59/12
constructEntry 7 1 54 3 1/1/1 11/11/11

Intruder 18 83 74 1352 Queue 3 1 4 0 1/1/2 15/15/10
RBTree 10 2 14 1 1/1/1 44/44/75

KMeans 7 36 25 599 GlobalArgs 1 1 6 0 1/1/1 4/4/4
GlobalArgs 1 1 1 0 1/1/1 2/2/2
GlobalArgs 1 1 1 0 1/1/1 1/1/1

Laby 15 74 82 1250 Queue 3 1 4 0 1/1/1 5/5/5
List 3 1 4 0 1/1/1 1/1/1
Solve Arg - 1 14 0 1/1/2 22/22/11

Matrix 2 12 4 121 Matrix 5 1 9 0 1/1/1 12/12/12
SSCA2 23 129 73 2440 ComputeGraph 1 1 1 10 1/1/1 6/6/5

ComputeGraph 1 1 1 10 1/1/1 4/4/3
ComputeGraph 2 1 2 10 3/1/1 29/53/15
GenScalData 1 1 1 10 2/1/2 4/160/4
GenScalData 1 1 1 10 2/1/2 6/378/6
GenScalData 1 1 1 10 1/1/1 2/2/2

Vacation 19 87 133 1812 Manager - 1 16 0 1/1/3 99/99/67
Yada 21 87 134 2144 Global arg 2 1 2 0 1/1/1 3/3/3

Heap - 1 63 0 1/1/2 26/26/4
Element - 1 48 0 1/1/1 14/14/8
Mesh - 1 57 0 1/1/1 3/3/3

TABLE I: Metrics of the atomic block identification.

B. Correctness

First, the correctness of the inf and inf-dis versions cannot

be proved through experiments. The experiments in this sec-

tion are designed to show that the versions are likely correct.

We run the inf, inf-dis and orig versions for 50 times with

the same inputs. We find each version runs deterministically,

producing the same output each time. Determinism of the

outputs is often taken as the symptom of the correct runs [15],

[2]. Besides, the inf version and the inf-dis version have the

outputs that are identical to the output of the orig version,

which indicates their functional correctness.

Finally, from the conceptual view, the inf and inf-dis

versions contain the coarser ABs as compared to the orig

version (The only exception is when the orig version includes

some local computations unnecessarily.), leading to fewer run-

time interleavings and accordingly fewer buggy interleavings.

Therefore, they are safer, if not completely safe.

C. Performance of the program with the inferred regions

In this section, we study the impact of the identified ABs

on the performance. We run the three versions with the inputs

shipped with the benchmarks. For each version, we run it

with different thread configurations (threads=1,2,4,8,12,16)

and collect the running time. Specially, the number of threads

is required to be a power of 2 for the benchmark SSCA2. To

collect the running time, we run the program with each thread

configuration for 10 times and compute the average value. 10

runs are sufficient in our experiment as the 10 runs exhibit

very similar running time. For each run, we start the timer

before the running threads are started and stop the timer after

the running threads are joined.

The performance comparison is shown in Figure 5. We

also compute the slowdown of the inf version as compared to

the orig version, e.g., (time(inf)− time(orig))/time(orig),

as shown in Column inf of Table II. We show the average



TABLE II: Performance slowdown. Minus value means that
the orig version is slower.

Program inf inf-dis
avg (%) max (%) avg (%) max (%)

Bayes 1.0 10.3 4.8 12.7
Genome 7.4 11.3 7.9 13.6
Intruder 6.8 13.0 3.1 9.0
KMeans 0.1 0.6 0.1 0.5

Laby -2.5 0.1 1.0 1.5
Matrix -0.1 0.0 0.0 0.0
SSCA2 1.6 5.1 29.1 42.8
Vacation 5.8 12.7 5.9 13.1

Yada 0.1 5.0 0.1 4.6

slowdown (avg: %) and the maximal slowdown (max:%)

among the thread configurations. We show the slowdown of

the inf-dis version in Column inf-dis of Table II.

As seen, the inf version slows down the runtime by 0%-7%

on average, and slows down the runtime by 13% maximally,

which suggests our approach is a reasonable candidate for

replacing the manual atomic block specification. The inf-dis

version behaves similarly except for the benchmark SSCA2

where the inf-dis version incurs 29% slowdown on average

and 43% slowdown maximally. Inspecting the code, we find

inf-dis version contains the overly coarse ABs as compared

to the inf version, which highlights the power of the bounded

identification (Section IV).

IX. RELATED WORK

Atomic region inference Besides the inference work built

upon the static analysis, several work infers the atomic regions

relying on the dynamic analysis or the trace analysis. Lu et

al. [20] detect the atomic regions dynamically based on an

assumption of correct runs: the code from the same atomic

region is frequently accessed without being non-serializably

interleaved. Sharing the same spirit, Muzahid et al. [21] and

Weeratunge et al. [28] analyze the traces of the correct runs

to infer the atomic regions.

Automatic fixing of atomicity violations Automatic fixing

of the atomicity violations is recently proposed [12], [28].

The input is often the dynamically detected atomicity vio-

lations, and the output is the atomic regions that remove

these atomicity violations. The atomic block identification

proposed in Section III can be used to fix the atomicity

violations too. Different from the existing approaches, our

identification produces the minimal structured atomic regions,

which preserve the maintainability or code readability well.

Atomic set serializability It is a correctness criterion

proposed by Vaziri et al. [27]. Different from the traditional se-

rializability which describes the correct behaviors with respect

to the whole heap, atomic set serializability is finer-granular

as it describes the correct behaviors with respect to a subset

of memory locations. This criterion is adopted commonly for

detecting concurrency bugs [14], [8], [16].

Atomicity specified on data Besides Vaziri et al. [27], other

researchers also observe and utilize the benefit of specifying

the atomicity on data. In the area of distributed system, con-

sistency of data is a commonly desired property. To preserve

it, Weihl et al. [29] and Herlihy et al. [11] suggest to use

the the atomic object, a type of objects created with their own

synchronization and recovery functionality. With such objects,

they achieve the serializable and recoverable executions. In

the area of database, Härder et al. [9] [6] design a prototype

PRIMA to support the engineering applications. In PRIMA,

the molecular object, consisting of attributes, is treated as an

atomic unit of data and manipulated atomically. In the software

transactional memory research, DSTM2 [10] and XSTM [23]

allow specifying the atomic objects by annotating the types

with the keyword @atomic.

X. CONCLUSIONS

We present a whole-program analysis that identifies the

accesses that require the atomicity and identifies the mini-



(a) Bayes (b) Genome (c) Intruder

(d) KMeans (e) Laby (f) Matrix

(g) SSCA2 (h) Vacation (i) Yada

Fig. 5: Performance comparison.

mal atomic block (structured atomic region) to protect them

from buggy interleavings. Our analysis is automatic, and it

preserves the maintainability, the code readability, the high

performance and supports the general atomicity throughout

the program. We also allow programmers to bound the atomic

block identification, which improves the quality of the pro-

duced atomic blocks. The evaluation shows, the inf version

slows down the program by around 5%, which represents a

reasonable alternative to manual atomic block specification.

The inf version outperforms the inf-dis version, especially in

the SSCA2 benchmark where the inf version is 25% faster,

which highlights the advantage of the bounded identification.
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