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Probabilistic experiment 
 Many experiments do not yield exactly the 

same results when performed repeatedly. 
 Coin tosses. 
 Dice tosses. 

 Experiments of this type are called 
probabilistic experiments. 

 When we talk about probabilities, we focus 
on probabilistic experiments. 
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Sample spaces 
 A set A containing all the outcomes of an 

experiment is called a sample space. 
 Suppose a one dollar coin and a two dollar 

coin are tossed. 
 When the sequence of heads (H) and tails (T) 

is considered, the sample space is A = {HH, 
HT, TH, TT}. 

 When the number of heads is considered, the 
sample space is A = {0, 1, 2}. 
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Events 
 A statement about the outcome of an 

experiment, which for a particular 
outcome will be either true or false, is said 
to describe an event. 

 The event described by a statement is 
taken to be the set of all outcomes for 
which the statement is true. 

 With this interpretation, any event can be 
considered a subset of the sample space. 
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Events 
 Suppose a coin is tossed 3 times in order. 

 Then the sample space is: {HHH, HHT, HTH, 
HTT, THH, THT, TTH, TTT} 

 The event described by “at least two tails are 
recorded” = {HTT, THT, TTH, TTT}. 

 The event described by “the first two tosses 
are heads” = {HHH, HHT}. 
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Event probability 
 We denote the probability of any event E 

by p(E). 
 Intuitively, the number p(E) reflects our 

assessment of the likelihood that the 
event E will occur. 

 Denote n as the number of trials in the 
experiment and nE as the number of 
occurrences of event E. 

 When n becomes large, nE /n tends to 
p(E). 
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Event probability 
 Formally speaking, an event should be a 

set. 
 If event E is the sample space A of the 

experiment, E is called the certain event 
and p(E)=1. 
 Note that when considering the events as sets, 

sample space A is the universal set. 

 If event E is an empty set, E is called the 
impossible event, and p(E)=0. 
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Mutually exclusive events 
 Events X and Y are said to be mutually 

exclusive or disjoint, if X∩Y=  . 
 For a particular outcome, it is impossible that 

both the events X and Y are true. 

 When events X and Y are mutually 
exclusive, p(X∪Y)=p(X)+p(Y). 
 In the experiments, nX∪Y=nX+nY. 
 Therefore, nX∪Y /n=nX /n+nY /n. 
 When n becomes large, each fraction turns to 

probability, and we have p(X∪Y)=p(X)+p(Y). 

 

φ
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Equally likely outcomes 
 Given a finite sample space A={x1, x2, …, 

xn}. 
 In some situation each outcome in A is 

equally likely to occur. 
 Then, the probability of an event E is 

 
 

 For example, if E={x1, x2, …, xk}, then 
p(E)=k/n. 
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Example of mutually exclusive events 
 Suppose a fair six-faced dice is tossed. 
 Let X be the number that faces up. 

 p(X is even or X is odd) 
= p({X: X is even} ∪ {X: X is odd}) 
= p({X: X is even}) + p({X: X is odd}) 
= 3/6 + 3/6 = 1. 
 {X: X is even} and {X: X is odd} are mutually 

exclusive, so we can go from step 2 to step 3. 
 There are 3 outcomes for each of these 2 

events and 6 total possible outcomes, so the 
probability for these two events is 3/6. 
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Example of events that are not mutually 
exclusive 
 Suppose a fair six-faced dice is tossed. 
 Let X be the number that faces up. 

 p(X is even or X>3) 
= p({X: X is even} ∪ {X: X>3}) 
= p({X=2, X=4, X=6} ∪ {X=4, X=5, X=6}) 
= p({X=2, X=4, X=5, X=6})=4/6=2/3. 
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Example of events that are not mutually 
exclusive 
 {X: X is even} and {X: X>3} are NOT 

mutually exclusive. 
 Note that: 

p({X: X is even} ∪ {X: X>3})=2/3, while 
p(X: X is even) + p({X: X>3})=1. 

 The problem occurs because we “count” 
some events twice (double-counting). 

1 
3 
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Handling events that are not mutually 
exclusive 
 We have to “remove” the double-counted 

events by deducting the probability of the 
overlapping events once: 
 p(X is even or X>3) 
= p({X: X is even} ∪ {X: X>3}) 
= p({X: X is even}) + p({X: X>3})  
 - p({X: X is even} ∩ {X: X>3}) 
= p({X=2, X=4, X=6}) + p({X=4, X=5, X=6}) 
 - p({X=4, X=6}) 
= 3/6 + 3/6 – 2/6 =4/6=2/3. 
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Statistical independence  
 Two events are independent intuitively 

means that knowing whether or not one of 
them occurs does not affect how likely it is 
that the other occurs. 

 Assume a dice is tossed twice. 
 Let X1 and X2 be the numbers that face up in 

the two trials respectively. 
 The event described by “X1=1” and the event 

described by “X2=1” are independent. 
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Statistical independence 
 Two events X and Y are independent if 

and only if p(X∩Y)=p(X)p(Y). 
 

 Assume a dice is tossed twice. Let X1 and 
X2 be the numbers that face up in the two 
trials respectively. 

 Suppose we want to compute p(X1=1 and 
X2=1). 

 Clearly, the events {X1=1} and {X2=2} 
are statistically independent. 
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Statistical independence 
 Therefore, 
 p(X1=1 and X2=1) 
 = p({X1=1} ∩ {X2=1}) 
 = p({X1=1}) × p({X2=1} 
 = 1/6 × 1/6 = 1/36. 

 
 Question: Are the events {X1+X2 is even} 

and {X2 is even} statistically independent? 
(hint: check to see if p(X∩Y)=p(X)p(Y)) 
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Example for statistical independence 
 Question: What is the probability of 

getting an odd number when tossing a 6-
faced fair dice, and then getting an ace 
when selecting a card from a pack of 52 
cards randomly? 
 Answer: 3/6×4/52=1/26. 
 

 Exercise: A card C is selected from a pack 
of 52 cards randomly, find p({card C is 
black}∩{card C is a diamond}). 
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Conditional probability 
 Conditional probability is the probability 

of some event E, assuming event F. 
Conditional probability is written p(E|F), 
and is read "the probability of E, given F". 

 Let E and F be events with p(F)>0. The 
conditional Probability of E given F, is 
given by   

.
p(F)

F)p(EF)|p(E 
=
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Examples for conditional probability 
 Question: Suppose that we flip a coin 

three times, and all eight possibilities are 
equally likely. 
 Let F be the event that the first flip comes up 

tail. 
 Let E be the event that an odd number of tails 

appears.  
 Given F, what is the probability of event E? 

 Answer:  
.2/1

8/4
8/2

p(F)
F)p(EF)|p(E ===


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Examples for conditional probability 
 Exercise: There is a sequence of four 

binary digits, assume that the probability 
of each binary digit to be 0 or 1 are 
equally likely. What is the probability that 
the sequence contains at least two 
consecutive 0s, given that its first digit is 
0? 
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Review for Discrete Math 



HKUST CSE Summer Math Course 22 

Practical use of Probability 
 Allows one to analyze and estimate 

running time of a particular algorithm with 
respect to input size. 
 E.g. Quicksort (a popular sorting algorithm) 

can be proved to have an average running 
time of O(nlogn) using probability 
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