L11. Indefinite Integrals

Summer Math Course for Direct Entry Students, CSE Department, HKUST.

Indefinite Integral

\square Intuitively, the indefinite integration is the reverse process of differentiation.

- For a continuous function $f(x), F(x)$ is called a primitive function of $f(x)$ if $\frac{d}{d x} F(x)=f(x)$.
\square The indefinite integral of a function $f(x)$ denoted by $\int f(x) d x$, is defined to be the collection (i.e. it's not unique) of all primitive functions of $f(x)$.

Indefinite Integral

- Mathematically,
if $\frac{d}{d x} F(x)=f(x)$, then
$\int f(x) d x=F(x)+C$,
where $f(x)$ is called the integrand, x the variable of integration, and C the constant of integration.
- Note: An indefinite integral is NOT a function, but a set of functions which differ by only an arbitrary constant C.

Example

- Let $f(x)=2 x$.
- We know that: $\frac{d}{d x} x^{2}=2 x$.
\square Therefore, x^{2} is a primitive function of $f(x)$.
\square Moreover, for any constant $C, \frac{d}{d x}\left(x^{2}+C\right)=2 x$.
\square Therefore, for any constant $C, x^{2}+C$ is a primitive function of $f(x)$.

Example

- A "family" of primitive functions of $f(x)=2 x$.
\square All gives the same slope, hence same $\frac{d y}{d x}$, at any
given point.

Examples

\square Using the notation of indefinite integration:
$\int 2 x d x=x^{2}+C$.

- Another example:
$\frac{d}{d x}\left(\frac{x^{4}}{4}\right)=\frac{4 x^{3}}{4}=x^{3} \Rightarrow \int x^{3} d x=\frac{x^{4}}{4}+C$
where C is a constant.

Rules of indefinite integration

- Two rules of indefinite integration:
- $\int k f(x) d x=k \int f(x) d x \quad$ where k is a constant.
- $\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$.
- Proof of the first rule:
- Let $F(x)$ be a primitive function of $f(x)$.

$$
\begin{aligned}
& \frac{d}{d x}[k F(x)]=k \frac{d}{d x} F(x)=k f(x) \\
& \Rightarrow \int k f(x) d x=k F(x)+C_{1} .
\end{aligned}
$$

Rules of indefinite integration

And $k \int f(x) d x=k\left(F(x)+C_{2}\right)=k F(x)+C_{3}$.
\square Note that C_{1}, C_{2} and C_{3} are constants.
\square Neglecting the arbitrary constants C_{1} and C_{3}, we have, $\int k f(x) d x=k \int f(x) d x$.

- Exercise: Prove the second rule, that is: $\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$.

Some standard integration formulae

- Here are some standard integration formulae (where C is an constant):
- (1) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ for all $n \neq-1$.
- (2) $\int \frac{1}{x} d x=\ln (|x|)+C$.
- (3) $\int e^{x} d x=e^{x}+C$.
- (4) $\int a^{x} d x=\frac{a^{x}}{\ln a}+C$.

Proof of formulae 1

- We now give proofs for formulae 1 and formulae 2. The proofs of formulae 3 and 4 are left as exercises.
- Proof of formulae 1:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=\frac{(n+1) x^{n}}{n+1}=x^{n} \text { if } n \neq-1 \\
& \Rightarrow \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad \text { for all } n \neq-1
\end{aligned}
$$

Proof of formulae 2

- Proof of formulae 2:
- For $x>0$,

$$
\frac{d}{d x} \ln (|x|)=\frac{d}{d x} \ln (x)=\frac{1}{x} .
$$

- For $x<0$,

$$
\frac{d}{d x} \ln (|x|)=\frac{d}{d x} \ln (-x)=\frac{1}{-x}(-1)=\frac{1}{x} .
$$

- Therefore, $\int \frac{1}{x} d x=\ln (|x|)+C$.

Exercises

- Exercise: Evaluate the following integrals:
$\int(x+1)^{2} d x$,
$\int \frac{1-x^{2}}{1-x} d x$,
$\int\left[2 e^{x}-\frac{3}{x}\right] d x$.

Method of substitution

ㅁ The method of substitution:
If $u=g(x)$ then $\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u$.

- Proof:
- Let $F(u)$ be the primitive function of $f(u)$.
- Then, $\int f(u) d u=F(u)+C_{1}$.
- By chain rule, $\frac{d}{d x} F(u)=\frac{d}{d u} F(u) \times \frac{d u}{d x}=f(u) g^{\prime}(x)$.
- So, $\int f(u) g^{\prime}(x) d x=F(u)+C_{2}=\int f(u) d u-C_{1}+C_{2}$.
- Neglecting the arbitrary constants gives the proof.

Method of substitution

\square In the intermediate step, we can write: If $u=g(x)$ then $d u=g^{\prime}(x) d x$.

- Then, we have:
$\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u$.
with substitution $g^{\prime}(x) d x$ by $d u$.
\square The variable of integration is changed form x to u. So, this method is also known as integration by change of variable.

Example

- Example: Suppose we want to find $\int e^{2 x+3} d x$.
- Let $u=2 x+3$, then $d u=2 d x$.

$$
\begin{aligned}
& \therefore \int e^{2 x+3} d x=\int e^{u} \frac{1}{2} d u \\
& =\frac{e^{u}}{2}+C=\frac{e^{2 x+3}}{2}+C .
\end{aligned}
$$

Example

- Example: Suppose we want to find $\int \frac{x^{3}}{3+x^{4}} d x$.
- Let $u=3+x^{4}$, then $d u=4 x^{3} d x$.

$$
\begin{aligned}
& \therefore \int \frac{x^{3}}{3+x^{4}} d x=\frac{1}{4} \int \frac{1}{3+x^{4}} 4 x^{3} d x=\frac{1}{4} \int \frac{1}{u} d u \\
& =\frac{1}{4} \ln |u|+C=\frac{1}{4} \ln \left|3+x^{4}\right|+C .
\end{aligned}
$$

Exercise

\square Exercise: Find the following integrals:
$\int \frac{x-1}{\left(3 x^{2}-6 x+5\right)^{2}} d x$ and
$\int \frac{\ln x}{x} d x$.

Integration of rational function

- The technique of partial fraction rule to resolve the rational function $P(x) / Q(x)$ into fractions is useful for integration.
- It states that we can always decompose such a rational function into partial fractions if:
- $P(x)$ and $Q(x)$ are polynomials of x only, and
- Degree of $P(x)$ is smaller than $Q(x)$ (if not, we can achieve that by polynomial division).

Integration of rational function

- Example:

$$
\text { let } \begin{aligned}
\frac{4}{x^{2}-1} & =\frac{A}{x-1}+\frac{B}{x+1} \\
4 & =A(x+1)+B(x-1)
\end{aligned}
$$

- Substituting $x=1,-1$ we get $A=2$ and $B=-2$. So,

$$
\frac{4}{x^{2}-1}=\frac{2}{x-1}-\frac{2}{x+1}
$$

Integration of rational function

- The technique of partial fraction rule to resolve the rational function $P(x) / Q(x)$ into fractions is useful for integration.
\square Example: Suppose we want to find $\int \frac{x^{2}-1}{x+2} d x$.
- Let $\frac{x^{2}-1}{x+2}=A x+B+\frac{C}{x+2}$.
\square Solving for A, B and C, we can easily obtain $A=1, B=-2$ and $C=3$. Thus $\frac{x^{2}-1}{x+2}=x-2+\frac{3}{x+2}$.

Integration of rational function

$\therefore \int \frac{x^{2}-1}{x+2} d x=\int\left[\mathrm{x}-2+\frac{3}{x+2}\right] d x$
$=\frac{x^{2}}{2}-2 x+3 \ln |x+2|+C$.

- Example: To find $\int \frac{18-x}{12 x^{2}-7 x-12} d x$.
- Let $\frac{18-x}{12 x^{2}-7 x-12}=\frac{18-x}{(3 x-4)(4 x+3)}=\frac{A}{3 x-4}+\frac{B}{4 x+3}$.

Integration of rational function

\square Solving for A and B we can easily obtain $A=2, B=-3$. Therefore

$$
\begin{aligned}
& \frac{18-x}{12 x^{2}-7 x-12}=\frac{18-x}{(3 x-4)(4 x+3)}=\frac{2}{3 x-4}-\frac{3}{4 x+3} . \\
& \therefore \int \frac{18-x}{12 x^{2}-7 x-12} d x=\int\left[\frac{2}{3 x-4}-\frac{3}{4 x+3}\right] d x \\
& \quad=\frac{2}{3} \ln |3 x-4|-\frac{3}{4} \ln |4 x+3|+C .
\end{aligned}
$$

