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Indefinite Integral 

 Intuitively, the indefinite integration is 
the reverse process of differentiation. 

 For a continuous function f(x), F(x) is 
called a primitive function of f(x) if 

 

 

 The indefinite integral of a function f(x) 
 

 denoted by           , is defined to 
 

 be the collection (i.e. it’s not unique) of all 
primitive functions of f(x). 
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Indefinite Integral 

 Mathematically, 

 

 

 

 where f(x) is called the integrand, x the 
variable of integration, and C the 
constant of integration. 

 Note: An indefinite integral is NOT a 
function, but a set of functions which 
differ by only an arbitrary constant C. 
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Example 

 Let f(x)=2x. 
 

 We know that: 
 

 Therefore, x
2
 is a primitive function of 

f(x). 
 

 Moreover, for any constant C, 
 

 Therefore, for any constant C, x
2
+C is a 

primitive function of f(x). 
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Example 

 A “family” of primitive 
functions of f(x)=2x. 
 

 All gives the same slope,  
 
hence same     , at any 
given point. 

y = x2 + C 
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Examples 

 Using the notation of indefinite 
integration: 

 

 

 Another example: 

 

 

 where C is a constant. 
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Rules of indefinite integration 

 Two rules of indefinite integration: 
 

                                                          . 
 

                                                     . 
 

 Proof of the first rule: 

 Let F(x) be a primitive function of f(x). 
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Rules of indefinite integration 
 

 

 Note that C1, C2 and C3 are constants. 

 Neglecting the arbitrary constants C1 and 
 

 C3, we have, 

 

 Exercise: Prove the second rule, that is: 
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Some standard integration formulae 

 Here are some standard integration 
formulae (where C is an constant): 

 

 (1) 
 

 (2)  
 

 (3) 
 

 (4) 
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Proof of formulae 1 

 We now give proofs for formulae 1 and 
formulae 2. The proofs of formulae 3 and 
4 are left as exercises. 

 

 Proof of formulae 1: 
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Proof of formulae 2 

 Proof of formulae 2: 

 For x>0, 

 

 
 

 For x<0, 

 

 

 

 Therefore, 
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Exercises 

 Exercise: Evaluate the following integrals: 
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Method of substitution 

 The method of substitution: 

 If u=g(x) then 
 

 Proof: 

 Let F(u) be the primitive function of f(u). 
 

 Then,  
 

 By chain rule,  
 

 So, 
 

 Neglecting the arbitrary constants gives the 
proof. 
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Method of substitution 

 In the intermediate step, we can write: 

 If u=g(x) then du=g’(x)dx. 

 Then, we have: 

 
 

 with substitution g’(x)dx by du. 

 The variable of integration is changed 
form x to u. So, this method is also known 
as integration by change of variable. 
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Example 

 Example: Suppose we want to find 

 

 Let u=2x+3, then du=2dx. 
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Example 
 

 Example: Suppose we want to find 

 

 Let u=3+x
4
, then du=4x

3
dx. 
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Exercise 

 Exercise: Find the following integrals: 
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Integration of rational function 

 The technique of partial fraction rule to 
resolve the rational function P(x)/Q(x) into 
fractions is useful for integration. 

 It states that we can always decompose 
such a rational function into partial 
fractions if: 

 P(x) and Q(x) are polynomials of x only, and 

 Degree of P(x) is smaller than Q(x) (if not, we 
can achieve that by polynomial division). 
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Integration of rational function 

 Example: 

 

 

 

 

 Substituting x=1,-1 we get A=2 and B=-2. So, 
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Integration of rational function 

 The technique of partial fraction rule to 
resolve the rational function P(x)/Q(x) into 
fractions is useful for integration. 
 

 Example: Suppose we want to find 
 

 Let 
 

 Solving for A, B and C, we can easily 
obtain A=1, B=-2 and C=3. Thus 
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Integration of rational function 

 

 

 

 

 

 Example: To find 
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Integration of rational function 

 Solving for A and B we can easily obtain 
A=2, B=-3. Therefore 
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