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Threshold for the 3-satisfiability problem (3SAT)

Given n Boolean variables X = {x1, x2, . . . , xn} a Boolean formula
φ is a conjunction of clauses each of which is a disjuction of literals
(variables or their negation).

φ = (x1 ∨ x̄2 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x1 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x̄3).

A formula φ is satisfiable if there exists a truth assignment A to
the variables so that each clause in φ contains at least one “true”
literal. A � φ

A = (1, 0, 0, 1) ⇒ A � φ



The 3-Satisfiability Problem (3SAT): given a formula
φ = C1 ∧ · · · ∧ Cm, where each Ci contais 3 literals, is it
satisfiable?

The ratio r = m
n is the density.



Phase transition for 3SAT

there is a constant rc such that

I if r is away from rc , then whp the number of calls to
Davis-Putnam is small, while if r is close to rc , the number of
calls is large.

I if r < rc , then whp the formula is satisfiable, while if r > rc ,
whp the formula is unsatisfiable

It has been rigorously settled that for 2-SAT: rc = 1.
Goerdt (1992), Chvátal-Reed (1992),....



Phase transition for 3-SAT

Experimentally:
Chesman, Kanefsky, Taylor (1991) for k-SAT
Mitchell, Selman, Levesque (1991) for 3-SAT



Phase transition 3SAT: The physics approach

Using techniques from statistical physics: Replica Symmetry
Breaking, Cavity method on very large instances of 3SAT, physics
people where able to give theoretical non-rigorous evidence that
the threshold for 3SAT occurs at

rc = 4.27

Mézard, Parisi, Zecchina (2002), Mézard, Zecchina (2002), .....



Phase transition 3SAT: The rigorous approach

Theorem (Friedgut (1997))

There is a sequence rc(n) such that ∀ε :
Pr

[
φrc (n)−ε is SAT

]
→ 1 and Pr

[
φrc (n)+ε is SAT

]
→ 0.

Friedgut’s theorem says that the transition interval can be made
arbitrarily thin. But he doesn’t give threshold point (the
convergence of {rc(n)}).

Question: Does rc(n) converge? If yes, to what value?



Rigorous approach

Consider a random 3SAT formula φ, with m = rn clauses.

Upper bound: r > rc = 4.27 Get a value as low as possible of r
(≥ 4.27) such that whp φ is not SAT.

Lower bound: r < rc = 4.27 Consider an easy to analyze
algorithm. Get a value as large as possible of r (r ≤ 4.27) such
that whp the algorithm produces satisfying assignment for φ.



Random Formula

Given n variables, the set of possible clauses has size 23
(n
3

)
.

We have 4 ways to select a random φ:

1. Gn,p: Each clause is independently selected with probability p
to be included in the formula. Notice in this case the number
of clauses is a random variable. Therefore to have a m = rn
we need a value of p = 3r

4n(n−1) ∼
3r
4n2 .

2. Gn,m: Exactly m = rn clauses are uniformly, independently
and with replacement selected to be included in the formula.
Notice in this model, there could be repeated clauses.

3. G ∗
n,m: Exactly m = rn clauses are uniformly, independently

and without replacement selected to be included in the
formula. Notice in this model, every clause is different.

4. Cn,D the configuration model.



Configuration model

A degree sequence D = {dij} for variables {x1, . . . , xn}, where each
dij tell us how many variables must appear i-times not negated and
j-times negated in φ.
Given a set of n and a D, a formula φ is generated according to
Cn,D if the appearance of the n variables in φ follows D.

Given n = 4 and D: d12 = 2, d22 = 1, d14 = 1 and remaining
dij = 0, then a possible φ is
(x1∨x̄2∨x3)∧(x̄2∨x3∨x̄4)∧(x̄1∨x̄2∨x̄4)∧(x̄1∨x2∨x̄3)∧(x̄2∨x4∨x̄3).

For instance only x1 and x4 appear 1 time afirmative and 2 times
negated.



Configuration model
In the setting of SAT, the degree sequence follows a Poisson
distribution, where φ is given by

dij =
e−µ(µ/2)i+j

i !j!
,

with µ = 3r .
Then, m = 3

∑
i ,j(i + j)dij .

Dubois, Boufkhad, Mandler (2000), called typical formula, the
formula with Poisson degree sequence.
They prove that most of the formulae Gn,m are typical:

Set of G(n,m) formulae

Set of formulae which have a Poisson degree sequen ce



Example:
Given {dij}: d12 = 2, d23 = 1, d31 = 1 and X = {x1, x2, x3, x4} to
form a possible 3SAT formula φ:
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φ = (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4).



Let C be the set of configurations on set X of variables and degree
sequence D.
Let M be the set of multiformulae on set X of variables with m

MC
$f$



Consider F ⊂M the set of Gn,m formulas.
Let H ⊂ C the set of anti-images of F (H = f −1(F))

M
S

F

C

f

A property which happens aas in C also happens aas in H
Which can de transfered to F : For given assignment A, the
probability that a φ is SAT in H is the same that φ is SAT in F .
So probability that a φ is SAT in C is the same that φ is SAT in F .



Relation between models

Let E ad F be events. It is well known:

Prm [E ] � Prm∗ [E ] ≤ Prp [E ]

Prm [E ] → 1 ⇔ Prm∗ [E ] → 1 ⇔ Prp [E ] → 1 ⇔ PrC [E ] → 1



Status Upper bound to 3-SAT:

r = 5.1909 (1983) Franco, Paull (and others)
r = 5.19− 10−7 (1992) Frieze and Suen
r = 4.758 (1994) Kamath, Motwani, Palem, Spirakis
r = 4.667 (1996) Kirousis, Kranakis, Krizanc.
r = 4.642 (1996) Dubois, Boufkhad
r = 4.602 (1998) Kirousis, Kranakis, Krizac, Stamatiou
r = 4.596 (1999) Janson, Stamatiou, Vamvakari (1999)
r = 4.571 (2007) Kaporis, Kirousis, Stamatiou, Vamvakari
r = 4.506 (1999) Dubois, Boukhand, Mandler
r = 4.49(2008) D́ıaz, Kirousis, Mitsche, Pérez
rc = 4.27 Experimental threshold (Replica Method)



First moment: Basic technique for upper bounds

Let φ be a random formula and S(φ) the set of its satisfying truth
assignments. Using Markov inequality

Prm∗ [φ is sat] =Prm∗ [|S(φ)| ≥ 1] ≤ E [|S(φ)|] .

Must compute E [|S(φ)|]

Notice that given a truth assignment A and 3 variables xi , xj , xk

then there is only one clause on xi , xj , xk which is not SAT by A.
Therefore, in the G ∗

n,m model, out of the 8
(n
3

)
clauses only

(n
3

)
evaluate to 0 under any given A.



E [|S(φ)|] =
∑

A∈S(A) Pr [A � φ] = |{<A,φ> |A�φ}|
|{φ}|

E [|S(φ)|] = (2(7/8)r )n to make it < 1 we need

r ≥ 5.1909

5.2 is far above the experimental 4.27, because there could be a
few formulas with many sat. truth assignment which contribute
too much to E [|S(φ)|].



Single Flips

We wish to find r s.t. Prm∗ [φ is SAT] → 0 and r < 5.2

Kirousis, Kranakis, Krizanc (1996), Dubois, Boufkhad (1996)
Instead of using S(φ), we restrict to the class S1(φ):

Let S1(φ) be the set of assignments {A |A ∈ S(φ)} such that if we
modify A to A′ by changing a single 0 assignment to 1 then A′ 2 φ
If A � φ in the single flip sense, we denote A �sf φ.



Single Flips

φ = (x1 ∨ x̄2 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x1 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x̄3):
S(φ) = {(1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 1),
(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 0, 0)}.
Take, A = (1, 0, 0, 1). Flipping the second 0 yields A′ = (1, 1, 0, 1)
and A′ 2 φ, due to (x̄1 ∨ x̄2 ∨ x̄4). Such a clause is called a
blocking clause for the flip.

So a blocking clause for an assignment A is a clause which
contains a negated variable, which if we change only the value of
that variable from 0 to 1, the clause if not satisfied.

S1(φ) = {(0010), (0101), (1000), (1001), (1110)}



If φ is satisfiable then S1(φ) 6= ∅.
Moreover, S1(φ) ⊆ S(φ) and, thus, |S1(φ)| ≤ |S(φ)|. In fact,
|S1(φ)| << |S(φ)| and convergence to 0 is faster and therefore we
get a smaller r .

E
[
|S1(φ)|

]
≤

[(
7
8

)r
(1− e−

3
7
r )

]n

Therefore, r = 4.667
Kirousis, Kranakis, Krizanc (1996)



Double flips

Kirousis, Kranakis, Krizanc, Stamatiou (1998)
Given a random φ and a A �sf φ, we say A satisfies φ in the
double flip sense A �df φ if for variables xi , xj with i < j and s.t.
A(xi ) = 0 and A(xj) = 1, when we modify A to A′ by changing
only A′(xi ) = 1 and A′(xj) = 0 then A′ 2 φ.
Let S2(φ) = |{A| �df φ}.

φ = (x1 ∨ x̄2 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x1 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x̄3).
S(φ) =
{(0000), (0001), (0010), (0101), (1000), (1001), (1100), (1110)}
S1(φ) = {(0010), (0101), (1000), (1001), (1110)}
S2(φ) = {(0010), (1001)}



Double flips

Kaporis, Kirousis, Stamatiou, Vamkari, Zito (07)
For φ in G ∗

n,m,

Pr [φ is SAT] ≤ E
[
S2(φ)

]
=

=
∑
A

Pr [A � φ]Pr
[
A ∈ S1(φ)|A � φ

]
Pr

[
A ∈ S2(φ)|A ∈ S1(φ)

]
They obtained r = 4.571, by more accurate computations.



Balanced literals

Dubois, Boufkhad, Mandler (2000)
For each variable xi in a given a random φ:

I if number occurrences of xi ≥ number of occurrences of x̄i ,
leave all appearances of xi as they are.

I if number occurrences of xi < number of occurrences of x̄i ,
swap all appearances of xi and x̄i in φ.
φ = (x1∨ x̄2∨x4)∧ (x̄1∨ x̄2∨ x̄4)∧ (x1∨ x̄3∨ x̄4)∧ (x̄1∨x2∨ x̄3).
S(φ) =
{(0000), (0001), (0010), (0101), (1000), (1001), (1100), (1110)}
after balancing it:
φ′ = (x1∨x2∨ x̄4)∧(x̄1∨x2∨x4)∧(x1∨x3∨x4)∧(x̄1∨ x̄2∨x3).
S(φ′) =
{(0010), (0101), (0110), (0111), (1001), (1011), (1110), (1111)}

Notice |S(φ)| = |S(φ′)| ⇒ E [|S(φ)] | = E [|S(φ′)|]



Single flips + balancing

However, if φ = (x̄1 ∨ x̄2 ∨ x̄4). Then

S1(φ) = {(011), (101), (110)} but

S1(φ′) = {(111)}

So E
[
|S1(φ′)|

]
<< E

[
|S1(φ)|

]
(exponentially small)



Dubois, Boufkhad, Mandler (2000) starting from a random φ in
Gn,m, and modifying φ and S(A) according to:

Formula typicallity + balancing + single flips:

r = 4.506



Pure literal elimination

Given a random φ a literal is said to be pure if its completement
does not appear in φ.
Pure literal rule: As long as there is a pure literal in φ assign value
1 and remove all clauses where it appears.
Broder, Frieze, Upfal (1996), proved that whp, the pure literal rule
finds SAT assignments for φ in Gn,m up to r = 1.63, but no further.



Clause typicality

Given any 3SAT formula there are 4 types of clauses

I Type 0: (x̄ , ȳ , z̄)

I Type 1: (x , ȳ , z̄)

I Type 2: (x , y , z̄)

I Type 3: (x , y , z)

A φ with n variables and m clauses is said to be clause typical if
# clauses type 0 = # clauses type 3= m

8 and
# clauses type 1 = # clauses type 2= 3m

8



D́ıaz, Kirousis, Mitsche, Pérez (2008)

1. Use random φ with typical degree sequence (Poisson)

2. Define a process over time for the elimination pure literals.
This yield a system of ODE, which can be solved by the
differential equation method. The result will be a set of
formulae which will have almost typical degree sequence.

3. Use positive balancing.

4. Use clause typicality to thin the space of formulae resulting
from the previous step to formulae with typical clause.

5. Apply single-flips to the obtained space.

r = 4.4898



A new approach to upper-bound

Key fact emerging from Replica method: For φ with r > 3.92 S(φ)
is split into clusters. Within the same cluster we can change from
one assignment to the other by flipping a single variable.
To move between assignments in two different clusters, we need to
flip several variables at the same time.

Give a φ consider the set V (φ) of partial valid assignments where
each variable can be assigned a value {0, 1, ∗}, and such that each
clause gets no (0, 0, 0) or (0, 0, ∗).
Notice S(φ) ⊆ V (φ).
Given any partial or total assignment of φ, a literal is constrained
in Ci it has value 1 and the remaining literals in the clause have
value 0.
If Ci = (x , ȳ , z) and (0, 1, 0) ⇒ ȳ is constrained.
If (0, 1, ∗) then ȳ is not constrained.



Lattice structure for V (φ)

Braunstein, Zecchina (2004); Maneva, Mossel, Wainwright (2005).

Partial valid assignments A∗
1 and A∗

2, A∗
1 → A∗

2 if A∗
2 has one ∗

more than A∗
1

(01001010 ∗ 0 ∗ 1) → (010 ∗ 1010 ∗ 0 ∗ 1)

This create a set of lattices of V (φ) ( a lattice for cluster)
The lattices have layers: layer 0 contains S(A).
Layer i contains the p. assignments with i ∗
The minimal elements of each lattice is unique and is called the
core.

From any A ∈ S(φ), choose an unconstrained variable in φ and
substitute its value by ∗, and continue until it is not possible.



Example of lattices with the core

Let Φ = (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x3 ∨ x̄3).
The lattices of partial assignments for assignments:
A1 = (1, 1, 1);A2 = (0, 1, 0);A3 = (1, 1, 0).
In boxed red, the core for each lattice.

***

111 010 101 110

01* *01 1*1 10* *10 1*0 11*

0** *1* **1 *0* 1** *1* **0 1**

*** ***



The world of partial assignments

The world of partial assignments for a 3-SAT formu la (Maneva et all)

Clusters of SAT Assignments

level0 Total Assignm.

level1 1 *
level2  2 *

level n {*} n

cores

Non SAT assignments

Lattice of partial assignments



Non-trivial core

A core is non-trivial if the core is different from ∗n.

Achlioptas, Ricci-Tersenghi (2006) have proved that for a random
k-SAT φ (k ≥ 8), and densities r near the threshold, whp every
SAT assignment has a non-trivial core.
This result is open for k < 8.

The explanation of the success of message passing techniques
(SP,BP) to find the threshold density of SAT problems, is based on
the existence of those non-trivial cores near rc .



New result and new technique.

Maneva, Sinclair (2008).
For 3-SAT one of the two statements holds for random 3-SAT:

I r ≤ 4.453 or

I there is a range of densities immediately below the 3-SAT
threshold, for which whp there are no non-trivial cores.

Instead of bounding the probability of a random φ to be SAT by
the expectance of a thinned subspace of S(φ), they bounded by
the expected number of non-trivial cores.
They use a weighted version of the first moment method.
It opens a new and interesting line of research.



Status of the lower bounds to 3SAT threshold

rc = 4.27 Experimental threshold (Replica Method)
r > 3.52 Kaporis, Kirousis, Lalas (2003)
r > 3.52 Hajiaghayi-Sorkin (2003)
r > 3.42 Kaporis, Kirousis, Lalas (2002).
r > 3.26 Achlioptas and Sorkin (2001).
r > 3.145, Achlioptas (2000).
r > 3.003, Frieze, Suen (1992).
r > 2.99 Chao, Franco (1986).
r > 2.66 Chao, Franco (1986).



General methods for lower bounds to 3SAT threshold

Given a random φ in Gn,m, m = rn consider an easy to analyze
heuristic, to find a A � φ,

Let rl denote the lower bound for the density that we try to
compute. Prove that for r < rl , the heuristic succeeds whp.

The heuristic succeeds if no empty clause is ever generated, (x and
x̄ are not at the same time in the same clause).

Let Ci (t) be the number of clauses with i literals, at i = 1, 2, 3,
At step t + 1 and empty clause can be generated only if
∆(C1(t))/∆(t) > 1.
At every step, the algorithm should strive to keep the expected
number of new unit clauses less than 1.



The Differential Equation Method (DEM)

T. Kurtz (1970); Karp-Sipser (1981); Wormald (1995).
Given a sequence of random processes, we wish to find properties
in the limit:

1. Compute the expected changes in random variables per unit
of time,

2. regard the variables as continuous,

3. writte down the ODE suggested by the expected changes

4. use large deviations theorems (Wormald) to show that a.s.
the solution to the ODE is close to the values of the variables



The Unit Clause algorithm

Chao, Franco (1986)

UC φ
if there is a 1- clause then

select u.a.r. one 1-clause and satisfy it (forced step)
else select u.a.r a xi and assign u.a.r. T or F (free step)



Analyzing the UC algorithm

The expected number of 1-clauses generated at t is C2(t)
n−t

If ∃t s.t. C2(t)
n−t > (1 + ε), a.s. UC will fail

If ∀t C2(t)
n−t < (1− ε) UC will succeed with positive probability.

We have to find a value rl s.t. ∀t C2(t)
n−t < (1− ε)



Analyzing the UC algorithm

Let ∆Ci (t) = Ci (t + 1)− Ci (t), scaling down x = t/n

E [∆C3(t)] = −3C3(t)
n−t ⇒ c ′3(x) = −3c3(x)

1−x
C3(0) = rn ⇒ c3(0) = r

E [∆C2(t)] = 3C3(t)
2(n−t) −

2C2(t)
(n−t) ⇒ c ′2(x) = 3c2(x)

2(1−x) −
2c2(x)
1−x

C2(0) = 0 ⇒ c2(0) = 0
Solving and using Wormald’s theorem we get rl = 8/3 = 2.6


