Thresholds for 3-SAT.

Josep Díaz

joint work with L. Kirousis, D. Mitsche and X. Pérez

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Threshold for the 3-satisfiability problem (3SAT)

Given *n* Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$ a Boolean formula ϕ is a conjunction of clauses each of which is a disjuction of literals (variables or their negation).

 $\phi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_3} \vee \overline{x_4}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3}).$

A formula ϕ is satisfiable if there exists a *truth assignment A* to the variables so that each clause in ϕ contains at least one "true" literal. $A \models \phi$

KORKAR KERKER EL VOLO

 $A = (1, 0, 0, 1) \Rightarrow A \models \phi$

The 3-Satisfiability Problem (3SAT): given a formula $\phi = C_1 \wedge \cdots \wedge C_m$, where each C_i contais 3 literals, is it satisfiable?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The ratio $r = \frac{m}{n}$ $\frac{m}{n}$ is the density.

Phase transition for 3SAT

there is a constant r_c such that

- If r is away from r_c , then whp the number of calls to Davis-Putnam is small, while if r is close to r_c , the number of calls is large.
- If $r < r_c$, then whp the formula is satisfiable, while if $r > r_c$, whp the formula is unsatisfiable

It has been rigorously settled that for 2-SAT: $r_c = 1$. Goerdt (1992), Chvátal-Reed (1992),....

Phase transition for 3-SAT

Experimentally:

Chesman, Kanefsky, Taylor (1991) for k-SAT Mitchell, Selman, Levesque (1991) for 3-SAT

KORK ERKER ER AGA

Using techniques from statistical physics: Replica Symmetry Breaking, Cavity method on very large instances of 3SAT, physics people where able to give **theoretical non-rigorous evidence** that the threshold for 3SAT occurs at

 $r_c = 4.27$

KORKAR KERKER EL VOLO

Mézard, Parisi, Zecchina (2002), Mézard, Zecchina (2002),

Theorem (Friedgut (1997))

There is a sequence $r_c(n)$ such that $\forall \epsilon$: $Pr\left[\phi_{r_c(n)-\epsilon} \text{ is SAT}\right] \rightarrow 1$ and $Pr\left[\phi_{r_c(n)+\epsilon} \text{ is SAT}\right] \rightarrow 0$. Friedgut's theorem says that the transition interval can be made arbitrarily thin. But he doesn't give threshold point (the convergence of $\{r_c(n)\}\)$.

KORKAR KERKER EL VOLO

Question: Does $r_c(n)$ converge? If yes, to what value?

Consider a random 3SAT formula ϕ , with $m = rn$ clauses.

Upper bound: $r > r_c = 4.27$ Get a value as low as possible of r $(≥ 4.27)$ such that whp ϕ is not SAT.

Lower bound: $r < r_c = 4.27$ Consider an easy to analyze algorithm. Get a value as large as possible of $r (r \leq 4.27)$ such that whp the algorithm produces satisfying assignment for ϕ .

KORK ERKER ADE YOUR

Random Formula

Given *n* variables, the set of possible clauses has size $2^3 \binom{n}{3}$ $\binom{n}{3}$. We have 4 ways to select a random ϕ :

- 1. $G_{n,p}$: Each clause is independently selected with probability p to be included in the formula. Notice in this case the number of clauses is a random variable. Therefore to have a $m = rn$ we need a value of $p=\frac{3r}{4n(n-1)}\sim \frac{3r}{4n}$ $rac{3r}{4n^2}$.
- 2. $G_{n,m}$: Exactly $m = rn$ clauses are uniformly, independently and with replacement selected to be included in the formula. Notice in this model, there could be repeated clauses.
- 3. $G_{n,m}^*$: Exactly $m = rn$ clauses are uniformly, independently and without replacement selected to be included in the formula. Notice in this model, every clause is different.

KID KA KERKER E VOOR

4. $C_{n,D}$ the configuration model.

Configuration model

A degree sequence $D = \{d_{ij}\}\$ for variables $\{x_1, \ldots, x_n\}$, where each d_{ii} tell us how many variables must appear *i*-times not negated and *j*-times negated in ϕ .

Given a set of *n* and a D, a formula ϕ is generated according to $\mathcal{C}_{n,D}$ if the appearance of the *n* variables in ϕ follows D.

Given $n = 4$ and D: $d_{12} = 2$, $d_{22} = 1$, $d_{14} = 1$ and remaining $d_{ii} = 0$, then a possible ϕ is $(x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_2 \vee x_3 \vee \bar{x}_4) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_4) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_2 \vee x_4 \vee \bar{x}_3).$

For instance only x_1 and x_4 appear 1 time afirmative and 2 times negated.

KORKAR KERKER EL VOLO

Configuration model

In the setting of SAT, the degree sequence follows a Poisson distribution, where ϕ is given by

$$
d_{ij}=\frac{e^{-\mu}(\mu/2)^{i+j}}{i!j!},
$$

with $\mu = 3r$. Then, $m = 3\sum_{i,j}(i+j)d_{ij}$.

Dubois, Boufkhad, Mandler (2000), called typical formula, the formula with Poisson degree sequence.

They prove that most of the formulae $G_{n,m}$ are typical:

Example:

Given $\{d_{ij}\}\colon d_{12} = 2, d_{23} = 1, d_{31} = 1$ and $X = \{x_1, x_2, x_3, x_4\}$ to form a possible 3SAT formula ϕ :

 $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$ $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$ $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$ $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$ $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$ $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$ $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$ $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$ $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$ $\phi = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee x_4).$

Let C be the set of configurations on set X of variables and degree sequence D.

Let M be the set of multiformulae on set X of variables with m

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Consider $\mathcal{F} \subset \mathcal{M}$ the set of $G_{n,m}$ formulas. Let $\mathcal{H} \subset \mathcal{C}$ the set of anti-images of $\mathcal{F} \ (\mathcal{H} = f^{-1}(\mathcal{F}))$

A property which happens aas in C also happens aas in H Which can de transfered to \mathcal{F} : For given assignment A, the probability that a ϕ is SAT in H is the same that ϕ is SAT in F. So probability that a ϕ is SAT in C is the same that ϕ is SAT in F. Let E ad F be events. It is well known:

 $Pr_m[E] \times Pr_{m*}[E] \le Pr_p[E]$

 $Pr_m[E] \to 1 \Leftrightarrow Pr_{m*}[E] \to 1 \Leftrightarrow Pr_p[E] \to 1 \Leftrightarrow Pr_C[E] \to 1$

Status Upper bound to 3-SAT:

- $r = 5.1909$ (1983) Franco, Paull (and others)
- $r=5.19-10^{-7}\;(1992)$ Frieze and Suen
- $r = 4.758$ (1994) Kamath, Motwani, Palem, Spirakis
- $r = 4.667$ (1996) Kirousis, Kranakis, Krizanc.
- $r = 4.642$ (1996) Dubois, Boufkhad
- $r = 4.602$ (1998) Kirousis, Kranakis, Krizac, Stamatiou
- $r = 4.596$ (1999) Janson, Stamatiou, Vamvakari (1999)
- $r = 4.571$ (2007) Kaporis, Kirousis, Stamatiou, Vamvakari

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 PM

- $r = 4.506$ (1999) Dubois, Boukhand, Mandler
- $r = 4.49(2008)$ Díaz, Kirousis, Mitsche, Pérez
- $r_c = 4.27$ Experimental threshold (Replica Method)

Let ϕ be a random formula and $S(\phi)$ the set of its satisfying truth assignments. Using Markov inequality

 $Pr_{m*} [\phi \text{ is sat}] = Pr_{m*} [|S(\phi)| \geq 1] \leq E [|S(\phi)|].$

Must compute $\mathsf{E} \left[|S(\phi)| \right]$

Notice that given a truth assignment A and 3 variables $\mathsf{x}_i,\mathsf{x}_j,\mathsf{x}_k$ then *there is only one clause on* x_i, x_j, x_k *which is not SAT by A*. Therefore, in the $G_{n,m}^*$ model, out of the $8\binom{n}{3}$ $\binom{n}{3}$ clauses only $\binom{n}{3}$ $\binom{n}{3}$ evaluate to 0 under any given A.

KORKAR KERKER EL VOLO

 $\textsf{\textbf{E}} \left[| \mathcal{S} (\phi) | \right] = \sum_{A \in \mathcal{S} (A)} \textsf{\textbf{Pr}} \left[A \vDash \phi \right] = \frac{ | \{ |A \vDash \phi \} |}{ | \{ \phi \} |}$ $\mathsf{E}\left[|S(\phi)|\right] = (2(7/8)^r)^n$ to make it < 1 we need

$r > 5.1909$

5.2 is far above the experimental 4.27, because there could be a few formulas with many sat. truth assignment which contribute too much to $\mathbf{E} \left[|S(\phi)| \right]$.

Single Flips

We wish to find r s.t. $Pr_{m*} [\phi]$ is SAT] $\rightarrow 0$ and $r < 5.2$

Kirousis, Kranakis, Krizanc (1996), Dubois, Boufkhad (1996) Instead of using $S(\phi)$, we restrict to the class $S^1(\phi)$:

Let $S^1(\phi)$ be the set of assignments $\{A\,|\, A\in S(\phi)\}$ such that if we modify \overline{A} to A' by changing a single 0 assignment to 1 then $A'\nvDash\phi$ If $A \vDash \phi$ in the *single flip* sense, we denote $A \vDash^{sf} \phi$.

KORKAR KERKER EL VOLO

Single Flips

 $\phi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_3} \vee \overline{x_4}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3})$ $S(\phi) = \{(1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 1),$ $(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 0, 0)\}.$ Take, $A = (1, 0, 0, 1)$. Flipping the second 0 yields $A' = (1, 1, 0, 1)$

and $A' \nvDash \phi$, due to $(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{4})$. Such a clause is called a blocking clause for the flip.

So a blocking clause for an assignment A is a clause which contains a negated variable, which if we change only the value of that variable from 0 to 1, the clause if not satisfied.

KORKAR KERKER EL VOLO

 $S^1(\phi) = \{(0010), (0101), (1000), (1001), (1110)\}\$

If ϕ is satisfiable then $S^1(\phi) \neq \emptyset$. Moreover, $S^1(\phi)\subseteq S(\phi)$ and, thus, $|S^1(\phi)|\leq |S(\phi)|.$ In fact, $|S^1(\phi)| << |S(\phi)|$ and convergence to 0 is faster and therefore we get a smaller r.

KORKAR KERKER EL VOLO

$$
\mathbf{E}\left[|S^1(\phi)|\right] \leq \left[\left(\frac{7}{8}\right)^r \left(1 - e^{-\frac{3}{7}r}\right)\right]^n
$$
\nTherefore, $r = 4.667$

\nKirousis, Kranakis, Krizanc (1996)

Double flips

Kirousis, Kranakis, Krizanc, Stamatiou (1998) Given a random ϕ and a $A \vDash^{sf} \phi$, we say A satisfies ϕ in the *double flip sense A* $\models^{df} \phi$ if for variables x_i, x_j with $i < j$ and s.t. $A(x_i) = 0$ and $A(x_j) = 1$, when we modify A to A' by changing only $A'(x_i) = 1$ and $A'(x_j) = 0$ then $A' \nvDash \phi$. Let $S^2(\phi) = |\{A| \models^{df} \phi\}.$ $\phi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_3} \vee \overline{x_4}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3}).$ $S(\phi) =$

 $\{(0000), (0001), (0010), (0101), (1000), (1001), (1100), (1110)\}$ $S^1(\phi) = \{(0010), (0101), (1000), (1001), (1110)\}\$ $S^2(\phi) = \{(0010), (1001)\}\;$

KORKAR KERKER EL VOLO

Double flips

Kaporis, Kirousis, Stamatiou, Vamkari, Zito (07) For ϕ in $G^*_{n,m}$,

$$
\begin{aligned} \mathsf{Pr}\left[\phi \text{ is SAT}\right] &\leq \mathsf{E}\left[S^2(\phi)\right] = \\ &= \sum_{A} \mathsf{Pr}\left[A \vDash \phi\right] \mathsf{Pr}\left[A \in S^1(\phi) | A \vDash \phi\right] \mathsf{Pr}\left[A \in S^2(\phi) | A \in S^1(\phi)\right] \end{aligned}
$$

They obtained $r = 4.571$, by more accurate computations.

Balanced literals

Dubois, Boufkhad, Mandler (2000)

For each variable x_i in a given a random ϕ :

- if number occurrences of $x_i \ge$ number of occurrences of \bar{x}_i , leave all appearances of x_i as they are.
- if number occurrences of x_i < number of occurrences of \bar{x}_i , swap all appearances of x_i and \bar{x}_i in ϕ . $\phi = (x_1 \vee \overline{x}_2 \vee x_4) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_4) \wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_4) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3).$ $S(\phi) =$ $\{(0000), (0001), (0010), (0101), (1000), (1001), (1100), (1110)\}$ after balancing it: $\phi' = (x_1 \vee x_2 \vee \overline{x_4}) \wedge (\overline{x_1} \vee x_2 \vee x_4) \wedge (x_1 \vee x_3 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3).$

 $S(\phi') =$ $\{(0010), (0101), (0110), (0111), (1001), (1011), (1110), (1111)\}$

KORK ERKER ADE YOUR

Notice $|S(\phi)| = |S(\phi')| \Rightarrow E[|S(\phi)]| = E[|S(\phi')|]$

Single flips $+$ balancing

However, if
$$
\phi = (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_4)
$$
. Then
\n
$$
S^1(\phi) = \{(011), (101), (110)\} \text{ but}
$$
\n
$$
S^1(\phi') = \{(111)\}
$$
\nSo $\mathbf{E} [|S^1(\phi')|] << \mathbf{E} [|S^1(\phi)]|$ (exponentially small)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Dubois, Boufkhad, Mandler (2000) starting from a random ϕ in $G_{n,m}$, and modifying ϕ and $S(A)$ according to:

Formula typicallity $+$ balancing $+$ single flips:

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 $r = 4.506$

Given a random ϕ a literal is said to be pure if its completement does not appear in ϕ .

Pure literal rule: As long as there is a pure literal in ϕ assign value 1 and remove all clauses where it appears.

Broder, Frieze, Upfal (1996), proved that whp, the pure literal rule finds SAT assignments for ϕ in $G_{n,m}$ up to $r = 1.63$, but no further.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Clause typicality

Given any 3SAT formula there are 4 types of clauses

- \blacktriangleright Type 0: $(\bar{x}, \bar{y}, \bar{z})$
- \blacktriangleright Type 1: (x, \bar{y}, \bar{z})
- \blacktriangleright Type 2: (x, y, \overline{z})
- \blacktriangleright Type 3: (x, y, z)

A ϕ with *n* variables and *m* clauses is said to be *clause typical* if $\#$ clauses type $0 = \#$ clauses type 3 $= \frac{m}{8}$ and $\#$ clauses type $1=\#$ clauses type 2 $=\frac{3m}{8}$

KORK ERKER ADE YOUR

Díaz, Kirousis, Mitsche, Pérez (2008)

- 1. Use random ϕ with typical degree sequence (Poisson)
- 2. Define a process over time for the elimination pure literals. This yield a system of ODE, which can be solved by the differential equation method. The result will be a set of formulae which will have *almost* typical degree sequence.
- 3. Use positive balancing.
- 4. Use clause typicality to thin the space of formulae resulting from the previous step to formulae with typical clause.

KORKAR KERKER EL VOLO

5. Apply single-flips to the obtained space.

 $r = 4.4898$

A new approach to upper-bound

Key fact emerging from *Replica method*: For ϕ with $r > 3.92$ $S(\phi)$ is split into clusters. Within the same cluster we can change from one assignment to the other by flipping a single variable. To move between assignments in two different clusters, we need to flip several variables at the same time.

Give a ϕ consider the set $V(\phi)$ of partial valid assignments where each variable can be assigned a value $\{0, 1, *\}$, and such that each clause gets no $(0, 0, 0)$ or $(0, 0, *)$. Notice $S(\phi) \subset V(\phi)$.

Given any partial or total assignment of ϕ , a literal is constrained in \mathcal{C}_i it has value 1 and the remaining literals in the clause have value 0.

KORKAR KERKER EL VOLO

If $C_i = (x, \overline{y}, z)$ and $(0, 1, 0) \Rightarrow \overline{y}$ is constrained. If $(0, 1, *)$ then \bar{v} is not constrained.

Lattice structure for $V(\phi)$

Braunstein, Zecchina (2004); Maneva, Mossel, Wainwright (2005).

Partial valid assignments A_1^* and $A_2^*,\,A_1^*\rightarrow A_2^*$ if A_2^* has one $*$ more than A_1^* $(01001010 * 0 * 1) \rightarrow (010 * 1010 * 0 * 1)$

This create a set of lattices of $V(\phi)$ (a lattice for cluster) The lattices have layers: layer 0 contains $S(A)$.

Layer *i* contains the p. assignments with $i *$

The minimal elements of each lattice is *unique* and is called the core.

From any $A \in S(\phi)$, choose an unconstrained variable in ϕ and substitute its value by ∗, and continue until it is not possible.

Example of lattices with the core

Let $\Phi = (x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee x_3 \vee \overline{x}_3).$ The lattices of partial assignments for assignments: $A_1 = (1, 1, 1); A_2 = (0, 1, 0); A_3 = (1, 1, 0).$ In boxed red, the core for each lattice.

KORK ERKER ER AGA

The world of partial assignments

The world of partial assignments for a 3-SAT formu la (Maneva et all)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

A core is non-trivial if the core is different from $*^n$.

Achlioptas, Ricci-Tersenghi (2006) have proved that for a random k-SAT ϕ ($k \ge 8$), and densities r near the threshold, whp every SAT assignment has a non-trivial core. This result is open for $k < 8$.

The explanation of the success of message passing techniques (SP,BP) to find the threshold density of SAT problems, is based on the existence of those non-trivial cores near r_c .

4 D > 4 P + 4 B + 4 B + B + 9 Q O

New result and new technique.

Maneva, Sinclair (2008).

For 3-SAT one of the two statements holds for random 3-SAT:

 \blacktriangleright r \lt 4.453 or

 \triangleright there is a range of densities immediately below the 3-SAT threshold, for which whp there are no non-trivial cores.

Instead of bounding the probability of a random ϕ to be SAT by the expectance of a thinned subspace of $S(\phi)$, they bounded by the expected number of non-trivial cores. They use a weighted version of the first moment method.

KORKAR KERKER EL VOLO

It opens a new and interesting line of research.

Status of the lower bounds to 3SAT threshold

 $r_c = 4.27$ Experimental threshold (Replica Method)

KORK ERKER ADE YOUR

- $r > 3.52$ Kaporis, Kirousis, Lalas (2003)
- $r > 3.52$ Hajiaghayi-Sorkin (2003)
- $r > 3.42$ Kaporis, Kirousis, Lalas (2002).
- $r > 3.26$ Achlioptas and Sorkin (2001).
- $r > 3.145$, Achlioptas (2000).
- $r > 3.003$, Frieze, Suen (1992).
- $r > 2.99$ Chao, Franco (1986).
- $r > 2.66$ Chao, Franco (1986).

General methods for lower bounds to 3SAT threshold

Given a random ϕ in $G_{n,m}$, $m = rn$ consider an easy to analyze heuristic, to find a $A \vDash \phi$,

Let r_l denote the lower bound for the density that we try to compute. Prove that for $r < r_l$, the heuristic succeeds whp.

The heuristic *succeeds* if no empty clause is ever generated, (x and \bar{x} are not at the same time in the same clause).

Let $C_i(t)$ be the number of clauses with *i* literals, at $i = 1, 2, 3$, At step $t + 1$ and empty clause can be generated only if $\Delta(C_1(t))/\Delta(t) > 1.$

At every step, the algorithm should strive to keep the expected number of new unit clauses less than 1.

KORKAR KERKER EL VOLO

The Differential Equation Method (DEM)

T. Kurtz (1970); Karp-Sipser (1981); Wormald (1995). Given a sequence of random processes, we wish to find properties in the limit:

- 1. Compute the expected changes in random variables per unit of time,
- 2. regard the variables as continuous,
- 3. writte down the ODE suggested by the expected changes
- 4. use large deviations theorems (Wormald) to show that a.s. the solution to the ODE is close to the values of the variables

4 D > 4 P + 4 B + 4 B + B + 9 Q O

The Unit Clause algorithm

Chao, Franco (1986)

UC ϕ if there is a 1- clause then select u.a.r. one 1-clause and satisfy it (forced step) else select u.a.r a x_i and assign u.a.r. T or F (free step)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Analyzing the UC algorithm

The expected number of 1-clauses generated at t is $\frac{C_2(t)}{n-t}$ If $\exists t$ s.t. $\frac{C_2(t)}{n-t} > (1+\epsilon)$, a.s. UC will fail If $\forall t \frac{C_2(t)}{n-t} < (1 - \epsilon)$ UC will succeed with positive probability. We have to find a value r_1 s.t. $\forall t \frac{C_2(t)}{n-t} < (1-\epsilon)$

Analyzing the UC algorithm

Let
$$
\Delta C_i(t) = C_i(t+1) - C_i(t)
$$
, scaling down $x = t/n$
\n $\mathbf{E} [\Delta C_3(t)] = -\frac{3C_3(t)}{n-t} \Rightarrow c'_3(x) = -\frac{3c_3(x)}{1-x}$
\n $C_3(0) = rn \Rightarrow c_3(0) = r$
\n $\mathbf{E} [\Delta C_2(t)] = \frac{3C_3(t)}{2(n-t)} - \frac{2C_2(t)}{(n-t)} \Rightarrow c'_2(x) = \frac{3c_2(x)}{2(1-x)} - \frac{2c_2(x)}{1-x}$
\n $C_2(0) = 0 \Rightarrow c_2(0) = 0$
\nSolving and using Wormald's theorem we get $r_1 = 8/3 = 2.6$

イロト イ御 トイミト イミト ニミー りんぴ