Thresholds for 3-SAT.

Josep Díaz

joint work with L. Kirousis, D. Mitsche and X. Pérez

Threshold for the 3-satisfiability problem (3SAT)

Given *n* Boolean variables $X = \{x_1, x_2, ..., x_n\}$ a Boolean formula ϕ is a conjunction of clauses each of which is a disjuction of literals (variables or their negation).

 $\phi = (x_1 \vee \bar{x_2} \vee x_4) \land (\bar{x_1} \vee \bar{x_2} \vee \bar{x_4}) \land (x_1 \vee \bar{x_3} \vee \bar{x_4}) \land (\bar{x_1} \vee x_2 \vee \bar{x_3}).$

A formula ϕ is satisfiable if there exists a *truth assignment A* to the variables so that each clause in ϕ contains at least one "true" literal. $A \models \phi$

 $A = (1, 0, 0, 1) \Rightarrow A \vDash \phi$

The 3-Satisfiability Problem (3SAT): given a formula $\phi = C_1 \wedge \cdots \wedge C_m$, where each C_i contais 3 literals, is it satisfiable?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The ratio $r = \frac{m}{n}$ is the density.

Phase transition for 3SAT

there is a constant r_c such that

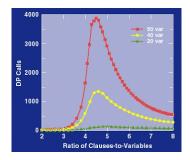
- ▶ if r is away from r_c, then whp the number of calls to Davis-Putnam is small, while if r is close to r_c, the number of calls is large.
- ▶ if $r < r_c$, then whp the formula is satisfiable, while if $r > r_c$, whp the formula is unsatisfiable

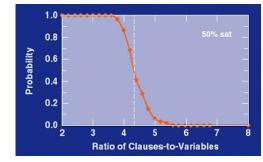
It has been rigorously settled that for 2-SAT: $r_c = 1$. Goerdt (1992), Chvátal-Reed (1992),....

Phase transition for 3-SAT

Experimentally:

Chesman, Kanefsky, Taylor (1991) for k-SAT Mitchell, Selman, Levesque (1991) for 3-SAT





Using techniques from statistical physics: *Replica Symmetry Breaking, Cavity method* on very large instances of 3SAT, physics people where able to give **theoretical non-rigorous evidence** that the threshold for 3SAT occurs at

 $r_c = 4.27$

Mézard, Parisi, Zecchina (2002), Mézard, Zecchina (2002),

Theorem (Friedgut (1997))

There is a sequence $r_c(n)$ such that $\forall \epsilon$: $\Pr\left[\phi_{r_c(n)-\epsilon} \text{ is SAT}\right] \rightarrow 1$ and $\Pr\left[\phi_{r_c(n)+\epsilon} \text{ is SAT}\right] \rightarrow 0$. Friedgut's theorem says that the transition interval can be made arbitrarily thin. But he doesn't give threshold point (the convergence of $\{r_c(n)\}$).

Question: Does $r_c(n)$ converge? If yes, to what value?

Consider a random 3SAT formula ϕ , with m = rn clauses.

Upper bound: $r > r_c = 4.27$ Get a value as low as possible of r (≥ 4.27) such that whp ϕ is not SAT.

Lower bound: $r < r_c = 4.27$ Consider an easy to analyze algorithm. Get a value as large as possible of r ($r \le 4.27$) such that whp the algorithm produces satisfying assignment for ϕ .

Random Formula

Given *n* variables, the set of possible clauses has size $2^{3} \binom{n}{3}$. We have 4 ways to select a random ϕ :

- 1. $G_{n,p}$: Each clause is independently selected with probability p to be included in the formula. Notice in this case the number of clauses is a random variable. Therefore to have a m = rn we need a value of $p = \frac{3r}{4n(n-1)} \sim \frac{3r}{4n^2}$.
- 2. $G_{n,m}$: Exactly m = rn clauses are uniformly, independently and with replacement selected to be included in the formula. Notice in this model, there could be repeated clauses.
- 3. $G_{n,m}^*$: Exactly m = rn clauses are uniformly, independently and without replacement selected to be included in the formula. Notice in this model, every clause is different.
- 4. $C_{n,D}$ the configuration model.

Configuration model

A degree sequence $D = \{d_{ij}\}$ for variables $\{x_1, \ldots, x_n\}$, where each d_{ij} tell us how many variables must appear *i*-times not negated and *j*-times negated in ϕ .

Given a set of *n* and a *D*, a formula ϕ is generated according to $C_{n,D}$ if the appearance of the *n* variables in ϕ follows *D*.

Given n = 4 and D: $d_{12} = 2$, $d_{22} = 1$, $d_{14} = 1$ and remaining $d_{ij} = 0$, then a possible ϕ is $(x_1 \lor \bar{x_2} \lor x_3) \land (\bar{x_2} \lor x_3 \lor \bar{x_4}) \land (\bar{x_1} \lor \bar{x_2} \lor \bar{x_3}) \land (\bar{x_2} \lor x_4 \lor \bar{x_3})$.

For instance only x_1 and x_4 appear 1 time afirmative and 2 times negated.

Configuration model

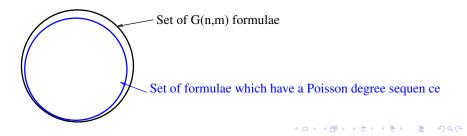
In the setting of SAT, the degree sequence follows a Poisson distribution, where ϕ is given by

$$d_{ij}=\frac{e^{-\mu}(\mu/2)^{i+j}}{i!j!},$$

with $\mu = 3r$. Then, $m = 3 \sum_{i,j} (i+j)d_{ij}$.

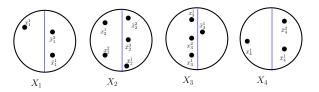
Dubois, Boufkhad, Mandler (2000), called *typical formula*, the formula with Poisson degree sequence.

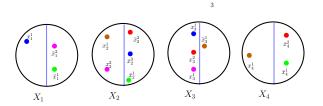
They prove that most of the formulae $G_{n,m}$ are typical:



Example:

Given $\{d_{ij}\}$: $d_{12} = 2, d_{23} = 1, d_{31} = 1$ and $X = \{x_1, x_2, x_3, x_4\}$ to form a possible 3SAT formula ϕ :

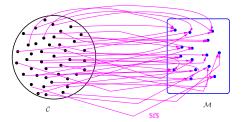




 $\phi = (\bar{x_1} \lor \bar{x_2} \lor \bar{x_4}) \land (\bar{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor_{\scriptscriptstyle \Box} x_3) \land (x_2 \lor \bar{x_3} \lor x_4).$

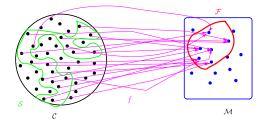
Let C be the set of configurations on set X of variables and degree sequence D.

Let \mathcal{M} be the set of multiformulae on set X of variables with m



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider $\mathcal{F} \subset \mathcal{M}$ the set of $G_{n,m}$ formulas. Let $\mathcal{H} \subset \mathcal{C}$ the set of anti-images of \mathcal{F} $(\mathcal{H} = f^{-1}(\mathcal{F}))$



A property which happens aas in C also happens aas in \mathcal{H} Which can de transfered to \mathcal{F} : For given assignment A, the probability that a ϕ is SAT in \mathcal{H} is the same that ϕ is SAT in \mathcal{F} . So probability that a ϕ is SAT in C is the same that ϕ is SAT in \mathcal{F} . Let E ad F be events. It is well known:

 $\mathbf{Pr}_{m}[E] \asymp \mathbf{Pr}_{m*}[E] \leq \mathbf{Pr}_{p}[E]$

 $\mathbf{Pr}_{m}[E] \to 1 \Leftrightarrow \mathbf{Pr}_{m*}[E] \to 1 \Leftrightarrow \mathbf{Pr}_{p}[E] \to 1 \Leftrightarrow \mathbf{Pr}_{C}[E] \to 1$

Status Upper bound to 3-SAT:

- r = 5.1909 (1983) Franco, Paull (and others)
- $r = 5.19 10^{-7}$ (1992) Frieze and Suen
- r = 4.758 (1994) Kamath, Motwani, Palem, Spirakis
- r = 4.667 (1996) Kirousis, Kranakis, Krizanc.
- r = 4.642 (1996) Dubois, Boufkhad
- r = 4.602 (1998) Kirousis, Kranakis, Krizac, Stamatiou
- r = 4.596 (1999) Janson, Stamatiou, Vamvakari (1999)
- r = 4.571 (2007) Kaporis, Kirousis, Stamatiou, Vamvakari

- r = 4.506 (1999) Dubois, Boukhand, Mandler
- r = 4.49(2008) Díaz, Kirousis, Mitsche, Pérez
- $r_c = 4.27$ Experimental threshold (Replica Method)

Let ϕ be a random formula and $S(\phi)$ the set of its satisfying truth assignments. Using Markov inequality

 $\mathbf{Pr}_{m*}\left[\phi \text{ is sat}\right] = \mathbf{Pr}_{m*}\left[|S(\phi)| \ge 1\right] \le \mathbf{E}\left[|S(\phi)|\right].$

Must compute $\mathbf{E}[|S(\phi)|]$

Notice that given a truth assignment A and 3 variables x_i, x_j, x_k then there is only one clause on x_i, x_j, x_k which is not SAT by A. Therefore, in the $G_{n,m}^*$ model, out of the $8\binom{n}{3}$ clauses only $\binom{n}{3}$ evaluate to 0 under any given A.

 $\mathbf{E}\left[|S(\phi)|\right] = \sum_{A \in S(A)} \Pr\left[A \vDash \phi\right] = \frac{|\{\langle A, \phi \rangle \mid A \vDash \phi\}|}{|\{\phi\}|}$ $\mathbf{E}\left[|S(\phi)|\right] = (2(7/8)^r)^n \text{ to make it } < 1 \text{ we need}$

$r \ge 5.1909$

5.2 is far above the experimental 4.27, because there could be a few formulas with many sat. truth assignment which contribute too much to $\mathbf{E}[|S(\phi)|]$.

Single Flips

We wish to find r s.t. $\mathbf{Pr}_{m*}[\phi \text{ is SAT}] \rightarrow 0 \text{ and } r < 5.2$

Kirousis, Kranakis, Krizanc (1996), Dubois, Boufkhad (1996) Instead of using $S(\phi)$, we restrict to the class $S^1(\phi)$:

Let $S^1(\phi)$ be the set of assignments $\{A \mid A \in S(\phi)\}$ such that if we modify A to A' by changing a single 0 assignment to 1 then $A' \nvDash \phi$ If $A \vDash \phi$ in the *single flip* sense, we denote $A \vDash^{sf} \phi$.

Single Flips

$$\begin{split} \phi &= (x_1 \lor \bar{x_2} \lor x_4) \land (\bar{x_1} \lor \bar{x_2} \lor \bar{x_4}) \land (x_1 \lor \bar{x_3} \lor \bar{x_4}) \land (\bar{x_1} \lor x_2 \lor \bar{x_3}):\\ S(\phi) &= \{(1,1,1,0), (1,1,0,0), (1,0,0,1), (1,0,0,0), (0,1,0,1), \\ (0,0,1,0), (0,0,0,1), (0,0,0,0)\}.\\ \text{Take, } A &= (1,0,0,1). \text{ Flipping the second 0 yields } A' = (1,1,0,1)\\ \text{and } A' \nvDash \phi, \text{ due to } (\bar{x_1} \lor \bar{x_2} \lor \bar{x_4}). \text{ Such a clause is called a} \end{split}$$

blocking clause for the flip.

So a blocking clause for an assignment A is a clause which contains a negated variable, which if we change only the value of that variable from 0 to 1, the clause if not satisfied.

 $S^{1}(\phi) = \{(0010), (0101), (1000), (1001), (1110)\}$

If ϕ is satisfiable then $S^1(\phi) \neq \emptyset$. Moreover, $S^1(\phi) \subseteq S(\phi)$ and, thus, $|S^1(\phi)| \leq |S(\phi)|$. In fact, $|S^1(\phi)| \ll |S(\phi)|$ and convergence to 0 is faster and therefore we get a smaller r.

$$\mathbf{E}\left[|S^{1}(\phi)|\right] \leq \left[\left(\frac{7}{8}\right)^{r}\left(1-e^{-\frac{3}{7}r}\right)\right]^{n}$$
Therefore, $r = 4.667$
Kirousis, Kranakis, Krizanc (1996)

Double flips

Kirousis, Kranakis, Krizanc, Stamatiou (1998) Given a random ϕ and a $A \models^{sf} \phi$, we say A satisfies ϕ in the double flip sense $A \models^{df} \phi$ if for variables x_i, x_j with i < j and s.t. $A(x_i) = 0$ and $A(x_j) = 1$, when we modify A to A' by changing only $A'(x_i) = 1$ and $A'(x_j) = 0$ then $A' \nvDash \phi$. Let $S^2(\phi) = |\{A| \models^{df} \phi\}$.

 $\begin{aligned} \phi &= (x_1 \lor \bar{x_2} \lor x_4) \land (\bar{x_1} \lor \bar{x_2} \lor \bar{x_4}) \land (x_1 \lor \bar{x_3} \lor \bar{x_4}) \land (\bar{x_1} \lor x_2 \lor \bar{x_3}). \\ S(\phi) &= \\ \{(0000), (0001), (0010), (0101), (1000), (1001), (1100), (1110)\} \\ S^1(\phi) &= \{(0010), (0101), (1000), (1001), (1110)\} \\ S^2(\phi) &= \{(0010), (1001)\} \end{aligned}$

Double flips

Kaporis, Kirousis, Stamatiou, Vamkari, Zito (07) For ϕ in $G^*_{n,m}$,

$$\Pr\left[\phi \text{ is SAT}\right] \leq \mathbf{E}\left[S^{2}(\phi)\right] = \\ = \sum_{A} \Pr\left[A \vDash \phi\right] \Pr\left[A \in S^{1}(\phi) | A \vDash \phi\right] \Pr\left[A \in S^{2}(\phi) | A \in S^{1}(\phi)\right]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

They obtained r = 4.571, by more accurate computations.

Balanced literals

Dubois, Boufkhad, Mandler (2000)

For each variable x_i in a given a random ϕ :

- ▶ if number occurrences of x_i ≥ number of occurrences of x̄_i, leave all appearances of x_i as they are.
- if number occurrences of x_i < number of occurrences of x̄_i, swap all appearances of x_i and x̄_i in φ.

 $\phi = (x_1 \lor \bar{x_2} \lor x_4) \land (\bar{x_1} \lor \bar{x_2} \lor \bar{x_4}) \land (x_1 \lor \bar{x_3} \lor \bar{x_4}) \land (\bar{x_1} \lor x_2 \lor \bar{x_3}).$ $S(\phi) =$

 $\{(0000), (0001), (0010), (0101), (1000), (1001), (1100), (1110)\}$ after balancing it:

 $\phi' = (x_1 \lor x_2 \lor \bar{x_4}) \land (\bar{x_1} \lor x_2 \lor x_4) \land (x_1 \lor x_3 \lor x_4) \land (\bar{x_1} \lor \bar{x_2} \lor x_3).$ $S(\phi') = (1001) \land (10$

 $\{(0010), (0101), (0110), (0111), (1001), (1011), (1110), (1111)\}$

Notice $|S(\phi)| = |S(\phi')| \Rightarrow \mathbf{E}[|S(\phi)]| = \mathbf{E}[|S(\phi')|]$

Single flips + balancing

However, if
$$\phi = (\bar{x_1} \lor \bar{x_2} \lor \bar{x_4})$$
. Then
 $S^1(\phi) = \{(011), (101), (110)\}$ but
 $S^1(\phi') = \{(111)\}$
So $\mathbf{E} [|S^1(\phi')|] << \mathbf{E} [|S^1(\phi)|]$ (exponentially small)

Dubois, Boufkhad, Mandler (2000) starting from a random ϕ in $G_{n,m}$, and modifying ϕ and S(A) according to:

Formula typicallity + balancing + single flips:

r = 4.506

Given a random ϕ a literal is said to be **pure** if its completement does not appear in ϕ . *Pure literal rule:* As long as there is a pure literal in ϕ assign value 1 and remove all clauses where it appears. Broder, Frieze, Upfal (1996), proved that whp, the pure literal rule finds SAT assignments for ϕ in $G_{n,m}$ up to r = 1.63, but no further.

Clause typicality

Given any 3SAT formula there are 4 types of clauses

- Type 0: $(\bar{x}, \bar{y}, \bar{z})$
- ► Type 1: (x, ȳ, z̄)
- ▶ Type 2: (*x*, *y*, *z*)
- ► Type 3: (x, y, z)

A ϕ with *n* variables and *m* clauses is said to be *clause typical* if # clauses type 0 = # clauses type $3 = \frac{m}{8}$ and # clauses type 1 = # clauses type $2 = \frac{3m}{8}$

Díaz, Kirousis, Mitsche, Pérez (2008)

- 1. Use random ϕ with typical degree sequence (Poisson)
- 2. Define a process over time for the elimination pure literals. This yield a system of ODE, which can be solved by the differential equation method. The result will be a set of formulae which will have *almost* typical degree sequence.
- 3. Use positive balancing.
- 4. Use clause typicality to thin the space of formulae resulting from the previous step to formulae with typical clause.

5. Apply single-flips to the obtained space.

r = 4.4898

A new approach to upper-bound

Key fact emerging from *Replica method*: For ϕ with $r > 3.92 \ S(\phi)$ is split into clusters. Within the same cluster we can change from one assignment to the other by flipping a single variable. To move between assignments in two different clusters, we need to flip several variables at the same time.

Give a ϕ consider the set $V(\phi)$ of partial valid assignments where each variable can be assigned a value $\{0, 1, *\}$, and such that each clause gets no (0, 0, 0) or (0, 0, *). Notice $S(\phi) \subseteq V(\phi)$.

Given any partial or total assignment of ϕ , a literal is constrained in C_i it has value 1 and the remaining literals in the clause have value 0.

If $C_i = (x, \overline{y}, z)$ and $(0, 1, 0) \Rightarrow \overline{y}$ is constrained. If (0, 1, *) then \overline{y} is not constrained.

Lattice structure for $V(\phi)$

Braunstein, Zecchina (2004); Maneva, Mossel, Wainwright (2005).

Partial valid assignments A_1^* and A_2^* , $A_1^* \rightarrow A_2^*$ if A_2^* has one * more than A_1^* (01001010 * 0 * 1) \rightarrow (010 * 1010 * 0 * 1)

This create a set of lattices of $V(\phi)$ (a lattice for cluster) The lattices have layers: layer 0 contains S(A).

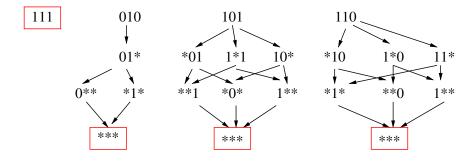
Layer i contains the p. assignments with i *

The minimal elements of each lattice is *unique* and is called the core.

From any $A \in S(\phi)$, choose an unconstrained variable in ϕ and substitute its value by *, and continue until it is not possible.

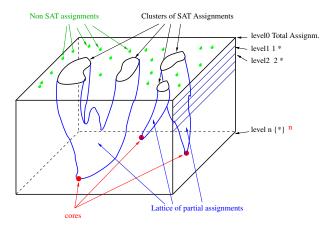
Example of lattices with the core

Let $\Phi = (x_1 \lor \bar{x_2} \lor \bar{x_3}) \land (\bar{x_1} \lor x_2 \lor \bar{x_3}) \land (\bar{x_1} \lor x_3 \lor \bar{x_3})$. The lattices of partial assignments for assignments: $A_1 = (1, 1, 1); A_2 = (0, 1, 0); A_3 = (1, 1, 0)$. In boxed red, the core for each lattice.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The world of partial assignments



The world of partial assignments for a 3-SAT formu la (Maneva et all)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A core is non-trivial if the core is different from $*^n$.

Achlioptas, Ricci-Tersenghi (2006) have proved that for a random k-SAT ϕ ($k \ge 8$), and densities r near the threshold, whp every SAT assignment has a non-trivial core. This result is open for k < 8.

The explanation of the success of message passing techniques (SP,BP) to find the threshold density of SAT problems, is based on the existence of those non-trivial cores near r_c .

New result and new technique.

Maneva, Sinclair (2008).

For 3-SAT one of the two statements holds for random 3-SAT:

- r ≤ 4.453 or
- there is a range of densities immediately below the 3-SAT threshold, for which whp there are no non-trivial cores.

Instead of bounding the probability of a random ϕ to be SAT by the expectance of a thinned subspace of $S(\phi)$, they bounded by the expected number of non-trivial cores. They use a weighted version of the first moment method. It opens a new and interesting line of research.

Status of the lower bounds to 3SAT threshold

 $r_c = 4.27$ Experimental threshold (Replica Method)

- r > 3.52 Kaporis, Kirousis, Lalas (2003)
- r > 3.52 Hajiaghayi-Sorkin (2003)
- r > 3.42 Kaporis, Kirousis, Lalas (2002).
- r > 3.26 Achlioptas and Sorkin (2001).
- r > 3.145, Achlioptas (2000).
- r > 3.003, Frieze, Suen (1992).
- r > 2.99 Chao, Franco (1986).
- r > 2.66 Chao, Franco (1986).

General methods for lower bounds to 3SAT threshold

Given a random ϕ in $G_{n,m}$, m = rn consider an *easy to analyze* heuristic, to find a $A \models \phi$,

Let r_l denote the lower bound for the density that we try to compute. Prove that for $r < r_l$, the heuristic succeeds whp.

The heuristic *succeeds* if no empty clause is ever generated, (x and \bar{x} are not at the same time in the same clause).

Let $C_i(t)$ be the number of clauses with *i* literals, at i = 1, 2, 3, At step t + 1 and empty clause can be generated only if $\Delta(C_1(t))/\Delta(t) > 1$.

At every step, the algorithm should strive to keep the expected number of new unit clauses less than 1.

The Differential Equation Method (DEM)

T. Kurtz (1970); Karp-Sipser (1981); Wormald (1995). Given a sequence of random processes, we wish to find properties in the limit:

- 1. Compute the expected changes in random variables per unit of time,
- 2. regard the variables as continuous,
- 3. writte down the ODE suggested by the expected changes
- 4. use large deviations theorems (Wormald) to show that a.s. the solution to the ODE is close to the values of the variables

The Unit Clause algorithm

Chao, Franco (1986)

UC φ
if there is a 1- clause then
select u.a.r. one 1-clause and satisfy it (forced step)
else select u.a.r a x_i and assign u.a.r. T or F (free step)

Analyzing the UC algorithm

The expected number of 1-clauses generated at t is $\frac{C_2(t)}{n-t}$ If $\exists t \text{ s.t. } \frac{C_2(t)}{n-t} > (1+\epsilon)$, a.s. UC will fail If $\forall t \frac{C_2(t)}{n-t} < (1-\epsilon)$ UC will succeed with positive probability. We have to find a value r_l s.t. $\forall t \frac{C_2(t)}{n-t} < (1-\epsilon)$

Analyzing the UC algorithm

Let
$$\Delta C_i(t) = C_i(t+1) - C_i(t)$$
, scaling down $x = t/n$
 $\mathbf{E} [\Delta C_3(t)] = -\frac{3C_3(t)}{n-t} \Rightarrow c'_3(x) = -\frac{3c_3(x)}{1-x}$
 $C_3(0) = rn \Rightarrow c_3(0) = r$
 $\mathbf{E} [\Delta C_2(t)] = \frac{3C_3(t)}{2(n-t)} - \frac{2C_2(t)}{(n-t)} \Rightarrow c'_2(x) = \frac{3c_2(x)}{2(1-x)} - \frac{2c_2(x)}{1-x}$
 $C_2(0) = 0 \Rightarrow c_2(0) = 0$
Solving and using Wormald's theorem we get $r_l = 8/3 = 2.6$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで