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Visual Scene Understanding

 Fundamental research domain in computer vision
 Complex inference: objects, parts, context, interaction and location
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Visual Scene Understanding

* |mportant tasks: scene parsing, depth estimation, object detection,
visual odometry

Input RGB

Object Detection Instance Segmentation Visual Odometry



Visual Scene Understanding

* |mportant tasks: scene parsing, depth estimation, object detection,
visual odometry

What? Where?



Application

« Self-driving scenarios: automotive driving safety, path planning

_

Driving safety systems Path planning



Application

« Robotic navigation scenarios: perception and localization

Robot perception Robot localization



Application

* Public safety and smart cities: transportation monitoring, anomaly
detection

Transportation monitoring Anomaly detection



Research Objectives

» Effective representations from rich multi-modal and structured data

= Multi-modal data: RGB,
depth, thermal, semantics

= Multi-modal deep learning

- |nput is one modality,
output is another

- Multi-modalities are jointly
learned

- One modality assists in
the learning of another




Research Objectives

» Effective representations from rich multi-modal and structured data

= Highly structured and
correlated

» Graph-based modelling
and deep network design

= Effective structured
P representations and
predictions
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Research Objectives

* Modelling complex task via joint learning of multiple sub-tasks
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Research Objectives

* Modelling 2D and 3D for high-level scene understanding

2D and 3D data and tasks are
beneficial to each other

- 2D semantics (object categories,
appearance and spatial relationships)
boost the 3D estimation

- 3D information (e.g. scene geometry)
facilitates the prediction of 2D tasks

Interaction between 2D and 3D

tasks and data in a single deep
model




Overview

Scene depth estimation with structured probabilistic modeling
A joint multi-modal and multi-task deep learning framework

Modelling the interaction between 2D and 3D data and tasks

Hot research & development fields along the direction

Summary



Overview

» Scene depth estimation with structured probabilistic modeling



Monocular Depth Estimation
* Regression from RGB - Depth
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Structured Modelling on Deep Predictions

* Deep predictions: local kernels, structured information lost

Appearance relationship

Spatial relationship



Structured Modelling on Deep Predictions

» Structured modelling with CRFs for depth regression

Back-Bone
CNN

Coarse
Prediction
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Structured Modelling on Deep Predictions

Deep structured discrete prediction (e.g. semantic segmentation)

CNN coarse output CRF-modeling Inference

Representative works:
CRF-RNN:

. Zheng and Torr et al., Conditional random fields as recurrent neural networks. In /ICCV, 2015.

Deep convolutional neural field:
. Liu and Reid et al., Learning depth from single monocular images using deep convolutional neural fields. IEEE TPAMI, 38(10):2024-2039, 2016.

Applicable in discrete domain or in single scale



Structured Modelling on Deep Predictions

* Multi-scale information in deep CNN

Input image X
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Hypercolumn HED
B. Hariharan, P. Arbela ‘ez, R. Girshick and J. Malik. S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015.

Hypercolumns for object segmentation and fine-grained
localization. In CVPR, 2015.

* Fusion schemes: concatenation or weighted averaging



Multi-scale Structured Modelling

 Joint multi-scale CNN-CRF deep framework

Front-End Convolutional Neural Network

Multi-Scale Fusion with Continuous CRFs

First work for multi-scale deep structured fusion & prediction in continuous domain



Results on NYUD-V2 Benchmark

AlexNet VGG16 VGG-CD ResNet VGG-CD-Ours ResNet-Ours Groundtruth




Results on KITTI Benchmark

RGB Eigen et al. Zhou et al. Garg et al. Godard et al. Ours GT
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Better qualitative results with more clear scene structure and detalls



Results on KITTI Benchmark

Eigen et al. (NIPS 14)

Zhou et al. (CVPR 1

Ours (CVPR 18) Garg et al. (ECCV 16)
— —




Structured Modelling on Deep Features

 Limitations in modelling on deep predictions

= [ess flexibility (continuous or discrete tasks)
» Lose more scene structure information while the network goes deep

[

(@) Monocular Depth Estimation

| (b) Object Contour Detection

Discrete classification tasks

(c) Semantic Segmentation



Structured Modelling on Deep Features

 Limitations in modelling on deep predictions

= [ess flexibility (continuous or discrete tasks)
» Lose more scene structure information while the network goes deep

[

(@) Monocular Depth Estimation

Design a model working on e Gontour Deteston
the intermediate feature level? o

(c) Semantic Segmentation



Structured Modelling on Deep Features

* Probabillistic graph attention network on deep features

(@) Multi-Scale Neural Network (b) Multi-Scale CRFs (c) Attention-Gated CRFs

= Attention as gating for controlling message passing between features



Structured Modelling on Deep Features

* Probabillistic graph attention network on deep features

= Model formulation
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(c) Attention-Gated CRFs



Structured Modelling on Deep Features

* Probabilistic graph attention network on deep features

* Neural network implementation




Structured Modelling on Deep Features

* Probabilistic graph attention network on deep features

= Applicable in the middle of a CNN for deep structured feature refinement

\

Encoder Structured graph attention network module  Decoder

Depth Map




Structured Modelling on Deep Features

* Significant improvement on different continuous or discrete tasks
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Overview

* Ajoint multi-modal and multi-task deep learning framework

Multi-Modal Multi-Task Deep
Learning

Single-Task Deep Learning




Joint Multi-Modal/Task Deep Learning

» Single task learning vs. multi-task learning
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Single task learning

Task 1

Task 2
Multi task learning

Task 3

Independently train each task

No training data or parameter sharing

Train multi-tasks with shared multi-modal data

Tasks dependent to each other

Convenience in deployment



Joint Multi-Modal/Task Deep Learning

* Problems and motivation in multi-task deep learning

= Difficulty: Directly optimizing multiple tasks
given input training data not guarantees
consistent gain on all the tasks

= QObservation: Multi-modal input data improves
training the model

DEPTH SURFACE NORMAL

-
- -W = Could we facilitate final tasks via
) leveraging intermediate multiple
SEMANTIC CONTOUR CNN y v
Intermediate Auxiliary Multiple Tasks J ‘ 2 pred|Ct|OnS?
= Only one single modal data required?

Final Main Tasks




PAD-Net: Prediction and Distillation Network

e Network structure
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Multi-task distillation network for simultaneous depth estimation and scene parsing.
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Results on Indoor NYUD-VZ2
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Demo on Outdoor Cityscapes Dataset

motorcycle

car bicycle




Overview

* Modelling the interaction between 2D and 3D data and tasks

Deep Learning in the
interaction of 2D & 3D

Deep Learning in 2D




Perception of 3D from 2D

+ 2D RGB Image




Perception of 3D from 2D

« 2D RGB Image -> Depth




Perception of 3D from 2D

« 2D RGB Image -> 3D Layout




Learning 3D from 2D

* Ambiguity in 2D: depth lost during projection

» Supervised learning using ground-truth 3D data

GT Depth



Learning 3D from 2D

» Self-supervised learning from multi-views
multi-views

Model Training

$

Model Testing




StM(Structure from Motion)-Learner

» Self-supervised framework for joint learning of depth and pose
Depth CNN

y = Differentiable image warping
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Experimental Results

« Kitti visual odometry
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Utilization of 3D for 2D tasks

» Estimating 3D Scene Geometry for 2D Video Object Detection

(a) A False Positive Detection Case (b) Height in Pixels of Objects (¢) Pseudo Depth Map of Humans
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Utilization of 3D for 2D tasks

» Estimating 3D Scene Geometry for 2D Video Object Detection
y
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* Achieved significant improvement over one-stage and two-stage video
object detectors (Faster RCNN, SSD)




Overview

* Hot research & development fields along the direction



= Statistical Graph Theoretic
Framework for Deep Model
Design and Explanation

...........

Research Hotspots

* End-to-End Deep Learning Frameworks and Systems towards Real Al
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Shared Feature Learning  Task-specific learning
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Develop big application-level systems for realistic large-
scale visual scene understanding applications.

= Effective architecture design
and learning strategies for
deep multi-task learning
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* High-level scene modelling
via complex interaction from
2D & 3D data and tasks




Dynamic Graph Network

Statistical Graph Theory Framework Deep Model Design and Explanation

High efficiency graph deep learning

- Leaning dynamic graph instead of fully/partially connected static graph
- Dynamic sampling, dynamic kernels and dynamic affinities




Deep Multi-Task Learning Framework

» Effective Architecture Design and Learning Strategies for Deep Multi-Task

Learning
= Network architecture search for shared and task-specific structure design

= Exploration of gradient balance and clipping strategies in optimization




Deep Multi-Task Learning Framework

» Effective Architecture Design and Learning Strategies for Deep Multi-Task

Learning
= Network architecture search for shared and task-specific structure design

= EXxploration of gradient balance and clipping strategies in optimization




End-to-end Deep Visual SLAM

= Whatis SLAM?
- Compute the pose of the robot and create a map at the same time

» Localization: estimating the robot’s localization
= Mapping: building a map

= SLAM: simultaneously localizing the robot and building a map




End-to-end Visual SLAM

» End-to-end deep learning based visual slam systems

- Challenges in Key- frame detection, global pose optimization, 3D reconstruction

3.9} A >3 | :Floor M:Vertical structure/Wall
’ Large structure/furniture T:Small structure
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» dense 3D reconstitict
Semantic Label ¥ and semantic label fusior




Summary

Introduced the importance and applications of visual scene understanding

Introduced an advanced scene depth estimation framework with structured
probabilistic modeling

Described a joint multi-modal deep learning pipeline for simultaneous multi-task
inference for complex scene understanding

End-to-end learning the interaction between 2D and 3D data and tasks

Hot research trends: graph models for deep learning, effective multi-task deep learning
network design, end-to-end visual SLAM system for self-driving and robotics




Thank you!
Questions?



