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What is Machine Learning?
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Artificial Intelligence

Artificial intelligence (AI) enables machines to perform some 
cognitive functions similar to those attributed to humans,

as opposed to conventional machines which act according to how 

they are programmed to act.

“AI is the new electricity.” – Andrew Ng
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History of AI

AI is as old as the field of computer 
science (CS).

Many pioneers in CS are also 

pioneers in AI, e.g., Alan Turing, John 

McCarthy, Herbert Simon, Marvin 

Minsky.
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AI, Machine Learning, and Deep Learning

Machine learning (ML) marries 
algorithms in CS, mathematical and 

statistical modeling, and learning 

from data/examples.

Deep learning (DL) is a subarea of 

ML – representation learning often 

using relatively deep, layered 

network architectures.

CS
AI

ML

DL
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Conventional Programming vs. Supervised Learning

Other learning paradigms:
● Unsupervised learning

● Reinforcement learning

● Semi-supervised learning

● …

Supervised Learning

Conventional Programming vs. Supervised Learning

Computer

Conventional programming

output
program

data

Computer

Supervised learning

program
output

data
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The Power of Machine Learning
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AlphaGo
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From AlphaGo to AlphaGo Zero and AlphaZero
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Talking Heads with Motion

YouTube video

Zakharov et al., “Few-shot adversarial learning of realistic neural talking head models”, ICCV, 2019.
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https://www.youtube.com/watch?v=p1b5aiTrGzY


Generating Photorealistic Deepfakes

Karras et al., “Analyzing and improving the image quality of StyleGAN”, CVPR, 2020.

YouTube video
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https://www.youtube.com/watch?v=BIZg_PPuj_0


AI Assistant (Google Duplex)

YouTube video
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https://www.youtube.com/watch?v=D5VN56jQMWM


The Limits of Machine Learning
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Adversarial Examples (or Adversarial Attacks)

Imperceptible perturbations 
(which are carefully generated) 

added to images or audio signals 

can fool even state-of-the-art 

classifiers to give incorrect 

predictions.
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Safety Concerns of Adversarial Examples
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Physical attacks on STOP sign



One-pixel Attacks

Changing just one pixel

(marked by red circle)
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Su et al., “One pixel attack for fooling deep 
neural network”, IEEE T-EC, 2019.

SU et al.: ONE PIXEL ATTACK FOR FOOLING DNNs 829

Fig. 2. One-pixel attacks on ImageNet dataset where the modified pixels are
highlighted with red circles. The original class labels are in black color while
the target class labels and their corresponding confidence are given below.

labels (Figs. 1 and 2) Our proposal has mainly the following
advantages compared to previous works.

1) Effectiveness: On Kaggle CIFAR-10 dataset, being able
to launch nontargeted attacks by only modifying one
pixel on three common DNN structures with 68.71%,
71.66%, and 63.53% success rates. We additionally
find that each natural image can be perturbed to 1.8,
2.1, and 1.5 other classes. On the original CIFAR-
10 dataset with a more limited attack scenario, we
show 22.60%, 35.20%, and 31.40% success rates. On
ImageNet dataset, nontargeted attacking the BVLC
AlexNet model also by changing one pixel shows that
16.04% of the test images can be attacked.

2) Semiblack-Box Attack: Requires only black-box feed-
back (probability labels) but no inner information of
target DNNs such as gradients and network structures.
Our method is also simpler than existing approaches
since it does not abstract the problem of searching per-
turbation to any explicit target functions but directly
focus on increasing the probability label values of the
target classes.

3) Flexibility: Can attack more types of DNNs (e.g.,
networks that are not differentiable or when the gradient
calculation is difficult).

Regarding the extremely limited one-pixel attack scenario,
there are several main reasons why we consider it.

1) Analyze the Vicinity of Natural Images: Geometrically,
several previous works have analyzed the vicinity of
natural images by limiting the length of perturbation vec-
tor. For example, the universal perturbation adds small
value to each pixel such that it searches the adversarial
images in a sphere region around the natural image [14].
On the other side, the proposed few-pixel perturbations

Fig. 3. Illustration of the adversarial images generated by using Jacobian
saliency-map approach [18]. The perturbation is conducted on about 4% of
the total pixels and can be obvious to human eyes. Since the adversarial pixel
perturbation has become a common way of generating adversarial images,
such abnormal “noise” might be recognized with expertise.

can be regarded as cutting the input space using very
low-dimensional slices, which is a different way of
exploring the features of high-dimensional DNN input
space. Among them, one-pixel attack is an extreme case
of several-pixel attack. Theoretically, it can give geomet-
rical insight to the understanding of CNN input space,
in contrast to another extreme case: universal adversarial
perturbation [14] that modifies every pixel.

2) A Measure of Perceptiveness: The attack can be effec-
tive for hiding adversarial modification in practice. To
the best of our knowledge, none of the previous works
can guarantee that the perturbation made can be com-
pletely imperceptible. A direct way of mitigating this
problem is to limit the amount of modifications to as few
as possible. Specifically, instead of theoretically propos-
ing additional constraints or considering more complex
cost functions for conducting perturbation, we propose
an empirical solution by limiting the number of pixels
that can be modified. In other words, we use the number
of pixels as units instead of length of perturbation vec-
tor to measure the perturbation strength and consider the
worst case which is one-pixel modification, as well as
two other scenarios (i.e., 3 and 5 pixels) for comparison.

II. RELATED WORKS

The security problem of DNN has become a critical
topic [1], [2]. Szegedy et al. [24] first revealed the sensitiv-
ity to well-tuned artificial perturbation which can be crafted
by several gradient-based algorithms using back-propagation
for obtaining gradient information [11], [24]. Specifically,
Goodfellow et al. [11] proposed “fast gradient sign” algorithm
for calculating effective perturbation based on a hypothesis in
which the linearity and high dimensions of inputs are the main
reason that a broad class of networks are sensitive to small

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 07,2020 at 03:39:29 UTC from IEEE Xplore.  Restrictions apply. 



White-box vs.
black-box attacks

White-box attacks
● Have full knowledge of internal 

structure of target model when 

generating adversarial attacks

● Worst-case scenario

Black-box attacks
● Have no knowledge of internal 

structure of target model when 

generating adversarial attacks

● More realistic scenario
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Figure 2: Taxonomy of adversarial attacks to deep neural
networks (DNNs). “Back propagation” means an attacker
can access the internal con�gurations in DNNs (e.g., per-
forming gradient descent), and “Query” means an attacker
can input any sample and observe the corresponding output.

successfully bypass 10 di�erent detections methods designed for
detecting adversarial examples [7].
• Transferability: In the context of adversarial attacks, transfer-
ability means that the adversarial examples generated from one
model are also very likely to be misclassi�ed by another model.
In particular, the aforementioned adversarial attacks have demon-
strated that their adversarial examples are highly transferable from
one DNN at hand to the targeted DNN. One possible explanation
of inherent attack transferability for DNNs lies in the �ndings that
DNNs commonly have overwhelming generalization power and lo-
cal linearity for feature extraction [40]. Notably, the transferability
of adversarial attacks brings about security concerns for machine
learning applications based on DNNs, as malicious examples may
be easily crafted even when the exact parameters of a targeted DNN
are absent. More interestingly, the authors in [29] have shown that
a carefully crafted universal perturbation to a set of natural im-
ages can lead to misclassi�cation of all considered images with
high probability, suggesting the possibility of attack transferability
from one image to another. Further analysis and justi�cation of a
universal perturbation is given in [30].

1.2 Black-box attacks and substitute models
While the de�nition of an open-box (white-box) attack to DNNs is
clear and precise - having complete knowledge and allowing full
access to a targeted DNN, the de�nition of a “black-box” attack
to DNNs may vary in terms of the capability of an attacker. In an
attacker’s perspective, a black-box attack may refer to the most
challenging case where only benign images and their class labels
are given, but the targeted DNN is completely unknown, and one is
prohibited from querying any information from the targeted classi-
�er for adversarial attacks. This restricted setting, which we call a
“no-box” attack setting, excludes the principal adversarial attacks
introduced in Section 1.1, as they all require certain knowledge
and back propagation from the targeted DNN. Consequently, under
this no-box setting the research focus is mainly on the attack trans-
ferability from one self-trained DNN to a targeted but completely
access-prohibited DNN.

On the other hand, in many scenarios an attacker does have the
privilege to query a targeted DNN in order to obtain useful informa-
tion for crafting adversarial examples. For instance, a mobile app or

a computer software featuring image classi�cation (mostly likely
trained by DNNs) allows an attacker to input any image at will and
acquire classi�cation results, such as the con�dence scores or rank-
ing for classi�cation. An attacker can then leverage the acquired
classi�cation results to design more e�ective adversarial examples
to fool the targeted classi�er. In this setting, back propagation for
gradient computation of the targeted DNN is still prohibited, as
back propagation requires the knowledge of internal con�gurations
of a DNN that are not available in the black-box setting. However,
the adversarial query process can be iterated multiple times until an
attacker �nds a satisfactory adversarial example. For instance, the
authors in [26] have demonstrated a successful black-box adversar-
ial attack to Clarifai.com, which is a black-box image classi�cation
system.

Due to its feasibility, the case where an attacker can have free
access to the input and output of a targeted DNN while still be-
ing prohibited from performing back propagation on the targeted
DNN has been called a practical black-box attack setting for DNNs
[8, 16, 17, 26, 34, 35]. For the rest of this paper, we also refer a
black-box adversarial attack to this setting. For illustration, the
attack settings and their limitations are summarized in Figure 2. It
is worth noting that under this black-box setting, existing attacking
approaches tend to make use of the power of free query to train a
substitute model [17, 34, 35], which is a representative substitute of
the targeted DNN. The substitute model can then be attacked using
any white-box attack techniques, and the generated adversarial
images are used to attack the target DNN. The primary advantage
of training a substitute model is its total transparency to an at-
tacker, and hence essential attack procedures for DNNs, such as
back propagation for gradient computation, can be implemented on
the substitute model for crafting adversarial examples. Moreover,
since the substitute model is representative of a targeted DNN in
terms of its classi�cation rules, adversarial attacks to a substitute
model are expected to be similar to attacking the corresponding
targeted DNN. In other words, adversarial examples crafted from a
substitute model can be highly transferable to the targeted DNN
given the ability of querying the targeted DNN at will.

1.3 Defending adversarial attacks
One common observation from the development of security-related
research is that attack and defense often come hand-in-hand, and
one’s improvement depends on the other’s progress. Similarly, in
the context of robustness of DNNs, more e�ective adversarial at-
tacks are often driven by improved defenses, and vice versa. There
has been a vast amount of literature on enhancing the robustness
of DNNs. Here we focus on the defense methods that have been
shown to be e�ective in tackling (a subset of) the adversarial attacks
introduced in Section 1.1 while maintaining similar classi�cation
performance for the benign examples. Based on the defense tech-
niques, we categorize the defense methods proposed for enhancing
the robustness of DNNs to adversarial examples as follows.
• Detection-based defense: Detection-based approaches aim to
di�erentiate an adversarial example from a set of benign exam-
ples using statistical tests or out-of-sample analysis. Interested
readers can refer to recent works in [10, 13, 18, 28, 42, 43] and
references therein for details. In particular, feature squeezing is

(Chen et al., AISec 2017)



How are Adversarial Examples Generated?

Three major approaches:

1. Optimization-based approach, e.g.,

2. Gradient-based approach, e.g.,

3. Generative approach, e.g., using a generative model

2810 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Fig. 1. Adversarial image generated by FGSM [60]. Left: clean image of a
panda. Middle: perturbation. Right: one sample adversarial image, classified
as a gibbon.

A. L-BFGS Attack

Szegedy et al. [8] first introduced adversarial examples
against DNNs in 2014. They generated adversarial exam-
ples using an L-BFGS method to solve the general targeted
problem

min
x ′

c‖η‖ + Jθ (x ′, l ′)

s.t. x ′ ∈ [0, 1]. (4)

To find a suitable constant c, L-BFGS attack calculated
approximate values of adversarial examples by line-searching
c > 0. The authors showed that the generated adversarial
examples could also be generalized to different models and
different training data sets. They suggested that adversarial
examples are never/rarely seen examples in the test data sets.

L-BFGS attack was also used in [71], which implemented
a binary search to find the optimal c.

B. Fast Gradient Sign Method

L-BFGS attack used an expensive linear search method
to find the optimal value, which was time-consuming and
impractical. Goodfellow et al. [60] proposed a fast method
called fast gradient sign method (FGSM) to generate adver-
sarial examples. They only performed one-step gradient update
along the direction of the sign of gradient at each pixel. Their
perturbation can be expressed as

η = εsign(∇x Jθ (x, l)) (5)

where ε is the magnitude of the perturbation. The generated
adversarial example x ′ is calculated as: x ′ = x + η. This
perturbation can be computed by using backpropagation. Fig. 1
shows an adversarial example on ImageNet.

They claimed that the linear part of the high-dimensional
DNN could not resist adversarial examples, although the linear
behavior speeded up training. Regularization approaches are
used in DNNs, such as dropout. Pretraining could not improve
the robustness of networks.

Rozsa et al. [59] proposed a new method, called fast
gradient value method, in which they replaced the sign of
the gradient with the raw gradient: η = ∇x J (θ, x, l). The fast
gradient value method has no constraints on each pixel and
can generate images with a larger local difference.

According to [72], one-step attack is easy to transfer but
also easy to defend (see Section VII-A). Dong et al. [73]
applied momentum to FGSM to generate adversarial examples

more iteratively. The gradients were calculated by

gt+1 = µgt + ∇x Jθ (x ′
t , l)

‖∇x Jθ (x ′
t , l)‖ (6)

and then, the adversarial example is derived by x ′
t+1 = x ′

t +
εsigngt+1. The authors increased the effectiveness of attack
by introducing momentum and improved the transferability
by applying the one-step attack and the ensembling method.

Kurakin et al. [72] extended FGSM to a targeted attack by
maximizing the probability of the target class

x ′ = x − εsign(∇x J (θ, x, l ′)). (7)

The authors refer to this attack as one-step target class method.
Tramèr et al. [75] found that FGSM with adversarial

training is more robust to white-box attacks than to black-
box attacks due to gradient masking. They proposed a new
attack, RAND-FGSM, which added random when updating
the adversarial examples to defeat adversarial training

xtmp = x + α · sign(N (0d , Id ))

x ′ = xtmp + (ε − α) · sign(∇xtmp J (xtmp, l)) (8)

where α and ε are the parameters, α < ε.

C. Basic Iterative Method and Iterative Least-Likely Class
Method

Previous methods assume that adversarial data can be
directly fed into DNNs. However, in many applications, people
can only pass data through devices (e.g., cameras and sensors).
Kurakin et al. [9] applied adversarial examples to the physical
world. They extended the FGSM by running a finer optimiza-
tion (smaller change) for multiple iterations. In each iteration,
they clipped pixel values to avoid a large change on each pixel

Clipx,ξ {x ′} = min{255, x + ξ, max{0, x − ε, x ′}} (9)

where Clipx,ξ {x ′} limits the change of the generated adver-
sarial image in each iteration. The adversarial examples were
generated in multiple iterations

x0 = x

xn+1 = Clipx,ξ {xn + εsign(∇x J (xn, y))}. (10)

The authors referred to this method as BIM.
To further attack a specific class, they chose the least-likely

class of the prediction and tried to maximize the cross-entropy
loss. This method is referred to as iterative least-likely class
(ILLC) method

x0 = x

yL L = arg miny{p(y|x)}
xn+1 = Clipx,ε{xn − εsign(∇x J (xn, yL L))}. (11)

They successfully fooled the neural network with a crafted
image taken from a cellphone camera. They also found that
the FGSM is robust to phototransformation, while iterative
methods cannot resist phototransformation.
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What Makes Adversarial Attacks Possible?

Theoretical study of 
underlying reasons for 

adversarial attacks is still 

rare and immature – good 

research topic to work on.
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Adversarial perturbations
move examples to unexplored
regions of the feature space

Feature space



Defenses Against Adversarial Attacks

Two major approaches:

1. Retraining the model, e.g., adversarial training, defensive distillation

2. Learning to purify the adversarial examples before feeding them into 

the model, e.g., MagNet, PixelDefend
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Adversarial Attacks Beyond Images and Audio Signals

Attacking reading comprehension systems Other adversarial attacks:
● Machine translation

● Text summarization

● Malware detection

● Spam detection

● Reinforcement learning

● …

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2021–2031
Copenhagen, Denmark, September 7–11, 2017. c�2017 Association for Computational Linguistics

Adversarial Examples for Evaluating Reading Comprehension Systems

Robin Jia
Computer Science Department

Stanford University
robinjia@cs.stanford.edu

Percy Liang
Computer Science Department

Stanford University
pliang@cs.stanford.edu

Abstract

Standard accuracy metrics indicate that
reading comprehension systems are mak-
ing rapid progress, but the extent to which
these systems truly understand language
remains unclear. To reward systems
with real language understanding abili-
ties, we propose an adversarial evalua-
tion scheme for the Stanford Question An-
swering Dataset (SQuAD). Our method
tests whether systems can answer ques-
tions about paragraphs that contain adver-
sarially inserted sentences, which are au-
tomatically generated to distract computer
systems without changing the correct an-
swer or misleading humans. In this ad-
versarial setting, the accuracy of sixteen
published models drops from an average
of 75% F1 score to 36%; when the ad-
versary is allowed to add ungrammatical
sequences of words, average accuracy on
four models decreases further to 7%. We
hope our insights will motivate the de-
velopment of new models that understand
language more precisely.

1 Introduction

Quantifying the extent to which a computer sys-
tem exhibits intelligent behavior is a longstanding
problem in AI (Levesque, 2013). Today, the stan-
dard paradigm is to measure average error across
a held-out test set. However, models can succeed
in this paradigm by recognizing patterns that hap-
pen to be predictive on most of the test examples,
while ignoring deeper, more difficult phenomena
(Rimell et al., 2009; Paperno et al., 2016).

In this work, we propose adversarial evaluation
for NLP, in which systems are instead evaluated
on adversarially-chosen inputs. We focus on the

Article: Super Bowl 50
Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest quarterback ever to play
in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”
Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Figure 1: An example from the SQuAD dataset.
The BiDAF Ensemble model originally gets the
answer correct, but is fooled by the addition of an
adversarial distracting sentence (in blue).

SQuAD reading comprehension task (Rajpurkar
et al., 2016), in which systems answer questions
about paragraphs from Wikipedia. Reading com-
prehension is an appealing testbed for adversarial
evaluation, as existing models appear successful
by standard average-case evaluation metrics: the
current state-of-the-art system achieves 84.7% F1
score, while human performance is just 91.2%.1

Nonetheless, it seems unlikely that existing sys-
tems possess true language understanding and rea-
soning capabilities.

Carrying out adversarial evaluation on SQuAD
requires new methods that adversarially alter read-
ing comprehension examples. Prior work in com-
puter vision adds imperceptible adversarial pertur-
bations to input images, relying on the fact that
such small perturbations cannot change an image’s
true label (Szegedy et al., 2014; Goodfellow et al.,
2015). In contrast, changing even one word of a

1
https://rajpurkar.github.io/

SQuAD-explorer/

2021

(Jia and Liang, EMNLP 2017)
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The Journey Ahead
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Interplay between ML and Cybersecurity

The study of security, privacy, 
robustness, resilience, and 

reliability will be central to the 

field of machine learning
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Figure 1. Hype Cycle for Data Science and Machine Learning, 2020

The Priority Matrix

The Priority Matrix arranges each Hype Cycle entry in relation to two dimensions: maturity and
business bene!t. It shows the level of bene!t attainable relative to an innovation’’s progression
along the Hype Cycle. Note, however, that business bene!t is not the only factor to consider when
selecting vendors and products, including open-source tools — applicability, budget, time to
implement and receive payback, and ROI are also important.

Innovations of transformational bene!t will change the world of data science by using augmented
DSML to simplify and accelerate the building, tuning and deployment of models. This will reduce
dependence on traditional data scientists and lower the barriers to starting data science projects.
As more deep neural networks are offered prepackaged as services, these will offer disruptive
potential across industries. Developments such as generative adversarial networks (GANs) and self-
supervised learning will help generate more data and label it. Adaptive ML or continuous learning
will enable frequent retraining of ML models so that they can adapt to changing real-world
circumstances.
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AI Ethics
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