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◼ Do you think that you could earn "US$1 
billion" by doing the gambling on the HK 
horse racing?
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Let me give some information to you. 

If you are the single winner for the Triple Trio, 
you could obtain ~US$13 million

What is the total number of times we need to be a single 
winner of Triple Trio?

= 1,000/13 = 76.92 = ~77

There are more than 10 million combinations



◼ Do you think that you could earn "US$1 
billion" by doing the gambling on the HK 
horse racing?
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Someone did that!

Bill Benter used the data analysis technology to do that!



◼ Bill Benter collected a lot of statistics about 
the “horse performance” in the past. 
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◼ He used some data analysis technology 
to predict the “next” horse racing result.
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data analysis = US$1 billion!



◼ We have just discussed one successful 
story of using data analysis.

◼ Let us discuss one more successful 
story of using data analysis.
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What is it?
a computer program with data 
analysis developed by Google 
DeepMind.

Who is he?

Ke Jie (a 9-dan professional)
World GO number ONE in 2017
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They competed each other in 
March 2017. 
Finally, who won the game?

AlphaGo



◼ AlphaGo collected a lot of statistics 
about the “GO player performance” in 
the past. 

◼ It used some data analysis technology 
to predict the “next” move for each 
round in the game.
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data analysis  “wins” human!



◼ Maybe, you are interested in why 
AlphaGo may win the game.

◼ Let us describe one basic game related 
to this.

◼ The details of AlphaGo may be known 
by you when you study some courses 
about data analysis.
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Gambling

◼ Suppose that Raymond has enough money and enough 
time for gambling.

◼ Consider that Raymond wants to do a gambling.

◼ The gambling game has only two possible outcomes, 
namely “large” (with probability = 0.5) and “small” (with 
probability = 0.5).

◼ Raymond could play the gambling game multiple times by 
always guessing that the outcome is “large”.

◼ Is it always true that Raymond must earn money at the 
end with a “smart” strategy by playing a number of times 
of the gambling game?

11
Yes.



Gambling

◼ Suppose that Raymond has enough money and enough 
time for gambling.

◼ Consider that Raymond wants to do a gambling.

◼ The gambling game has only two possible outcomes, 
namely “large” (with probability = 0.3) and “small” (with 
some probabilities).

◼ Raymond could play the gambling game multiple times by 
always guessing that the outcome is “large”.

◼ Is it always true that Raymond must earn money at the 
end with a “smart” strategy by playing a number of times 
of the gambling game?

12
Yes.



Gambling

◼ Consider the following.

◼ For each round,

◼ I should give $1 to play the game

◼ If I lose the game, 
I will get $0 (i.e., will lose $1).

◼ If I win the game,
I will get $2 (i.e., will earn $1).

13
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Give $1

L SGet $2
(Earn $1)

Get $0
(Lose $1)

L SGet $4
(Earn $1(=4-2-1))

Get $0
(Lose $3(=2+1))

Give $2

L SGet $8
(Earn $1(=8-4-3))

Get $0
(Lose $7(=4+3))

Give $4

L S
Get $16
(Earn $1(=16-8-7))

Get $0
(Lose $15(=8+7))

Give $8

L S
Get $32
(Earn $1(=32-16-15))

Get $0
(Lose $31(=16+15))

Give $16

…

Give $32

L S
Get $ 2x
(Earn $1)

Get $0
(Lose $ (2x-1) )

Give $ x

Finally, Raymond must earn $1 at the end.

However, Raymond needs to spend 
a lot of time and a lot of money.

This is true when P(L) = 0.5.

This is true when P(L) = 0.3 or other values.



Gambling

◼ What is the “expected” number of 
rounds that Raymond could earn $1 
when P(L) = 0.5?

15

The expected number of rounds = 1/0.5

= 2



Gambling

◼ When P(L) = 0.5, is it always true that 
Raymond could earn $1 after playing 2 
rounds? 

16

No

◼ When P(L) = 0.5, is it always true that 
Raymond could earn $1 after playing 
1000 rounds? 

No 



Gambling

◼ What is the “expected” number of 
rounds that Raymond could earn $1 
when P(L) = 0.3?

17

The expected number of rounds = 1/0.3

=3.33



Gambling

◼ Do you think that the casino must lose?

18

No. In some casinos there are the following rules.
1. For each game, the player has a “minimum” amount 
of the money (e.g., $100) for playing. This means that 
the player has to bring more money to the casino.

2. For each game, the player has a maximum amount 
of the money (e.g., $1000) for playing. This means that 
the player could not play the game with a large amount
of money.



Gambling

◼ Caution

◼ Each player may need to spend a lot of 
time (maybe, more than 1 day)

◼ Each player may need to spend a lot of 
money (more than what the player has).

19

Is it valuable to play a time-consuming game to win $1?



◼ The probabilities (0.5 or 0.3) could be 
learnt from the past data using the data 
analysis technology
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◼ No matter how “accurate” the 
probabilities could be learnt from the 
past data, Raymond must always win 
the game!



◼ This concept is NOT restricted to the 
gambling. 
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◼ This could also be applied to the stock 
market for investment where “large” 
could be replaced by “up” and “small” 
could be replaced by “down”.



◼ Now, we know two successful stories of 
using data analysis.

◼ Next, let us see a case study of how to 
analyze data analysis.
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Singapore Taxis

◼ In Singapore, each taxi is 
equipped with a sensor. 

◼ We know the path/trajectory 
of each taxi.

◼ We can collect the location of 
each taxi every second.

◼ There are a lot of points 
generated.
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◼ During rainy days, hard to find taxi in Singapore

◼ EXPLANATION 1: Taxis are slow to avoid accident

◼ DATA: GPS location of taxis are often on roadside; few cars are 
on the road

◼ EXPLANATION 2: Higher customer need

◼ DATA: Taxi income drops significantly

◼ FACT: A Singapore law says that higher penalty is imposed for 
car accidents that happen in rain

24

Singapore Taxis

Why?



◼ Let us see one more successful story of 
using social networks.
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◼ In 2007, nobody knew the top-secret of 
“The Wizarding World of Harry Potter” 
(i.e., building a theme park in Orlando).

◼ The Marketing Manager of this project 
did not spend money on TV or other 
media for advertisement. 
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◼ 7 top fans of “Harry Potter” were 
invited to participate in a top-secret 
Webcast held at midnight on May 31, 
2007. 

◼ Finally, 350,000,000 knew this secret!

◼ 7 = 350,000,000!!

HKUST 27



Finding “Good” People for Marketing
Objective: to find a limited number of people for marketing in order to 

“influence” as many people as possible at the end

Which two people should I choose for 
marketing?

Raymond

Ada

Bob

Clement

David

PeterEmily

Fred

Grace

29



Other Applications

◼ Ice Bucket Challenge 
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◼ Next, let us see a list of data analysis 
topics.
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Major Topics

1. Association

2. Clustering

3. Classification

4. Data Warehouse

5. Web Databases
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1. Association

Customer Apple Orange Milk

Raymond Apple Orange

Ada Orange Milk

Grace Apple Orange

… … … …

Items/Itemsets Frequency

Apple 2

Orange 3

Milk 1

{Apple, Orange} 2

{Orange, Milk} 1

We are interested in 
the items/itemsets 
with frequency >= 2

Frequent Pattern
(or Frequent Item)

Frequent Pattern
(or Frequent Item)

Frequent Pattern
(or Frequent Itemset)
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1. Association

Customer Apple Orange Milk

Raymond Apple Orange

Ada Orange Milk

Grace Apple Orange

… … … …

Items/Itemsets Frequency

Apple 2

Orange 3

Milk 1

{Apple, Orange} 2

{Orange, Milk} 1

We are interested in 
the items/itemsets 
with frequency >= 2

Association Rule:
1. Apple → Orange

(            customers who buy 
apple will probably buy orange.)

2. Orange → Apple

(            customer who buy 
orange will probably buy apple.)

100% 

2 

2 

67% 

3 

2 

Problem: to find all frequent patterns and association rules
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1. Association

◼ Applications of Association Rule Mining

◼ Supermarket

◼ Web Mining

◼ Medical analysis

◼ Bioinformatics

◼ Network analysis 
(e.g., Denial-of-service (DoS))

◼ Programming Pattern Finding
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Major Topics

1. Association

2. Clustering

3. Classification

4. Data Warehouse

5. Web Databases
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2. Clustering

Computer History

Raymond 100 40

Louis 90 45

Wyman 20 95

… … …

Computer

History

Cluster 1
(e.g. High Score in Computer
and Low Score in History)

Cluster 2
(e.g. High Score in History
and Low Score in Computer)

Problem: to find all clusters
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2. Clustering

◼ Clustering for Understanding

◼ Applications

◼ Biology

◼ Group different species

◼ Psychology and Medicine

◼ Group medicine

◼ Business

◼ Group different customers for marketing

◼ Network

◼ Group different types of traffic patterns

◼ Software

◼ Group different programs for data analysis
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Major Topics

1. Association

2. Clustering

3. Classification

4. Data Warehouse

5. Web Databases
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3. Classification

root
child=yes child=no

Income=high Income=low

100% Yes
0% No

100% Yes
0% No

0% Yes
100% No

Decision tree

Race Income Child Insurance

white high no ?

Suppose there is a person.
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Applications

◼ Insurance
◼ According to the attributes of customers,

◼ Determine which customers will buy an insurance policy

◼ Marketing
◼ According to the attributes of customers, 

◼ Determine which customers will buy a product such as 
computers

◼ Bank Loan
◼ According to the attributes of customers,

◼ Determine which customers are “risky” customers or 
“safe” customers
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Applications

◼ Network
◼ According to the traffic patterns,

◼ Determine whether the patterns are related to 
some “security attacks”

◼ Software
◼ According to the experience of 

programmers,
◼ Determine which programmers can fix some 

certain bugs



Applications

◼ We could have a more “general” 
application.

◼ It is NOT just to determine whether 
something is related to “yes” or “no”.

◼ E.g., Automatic Image Caption 
Generation
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s
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Major Topics

1. Association

2. Clustering

3. Classification

4. Data Warehouse

5. Web Databases
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4. Warehouse

Databases Users

Databases UsersData 
Warehouse

Need to wait for a long time 
(e.g., 1 day to 1 week)

Pre-computed results

Query
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Advantages

◼ Fast Query Response
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Major Topics

1. Association

2. Clustering

3. Classification

4. Data Warehouse

5. Web Databases
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5. Web Databases

Raymond Wong
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How to rank the webpages?



◼ We have illustrated a list of major topics 
in data analysis

◼ Next, let me illustrate 2 recent research 
papers from me.
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Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

Which apartment should Raymond buy?

If the value is larger, then it is better to a user.
One example is the apartment size.

There are 2 popular queries for this 
problem. 

Top-k queries

Skyline queries

In this talk, we will talk about a new 
type of queries.

k-regret queries

D



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

Top-k queries

D



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment
Top-k queries

◼ Assume that Raymond has a 
“known” utility function.

◼ Utility function f
f(p) = 0.3 X1 + 0.7 X2

◼ Utility vector u = (0.3, 0.7)

Utility

0.7

0.76

0.81

0.69

0.44

0.3

…

◼ Output
Maximum utility point of D = p3

D

Advantage: The output size is “fixed”

◼ Suppose that we want to find the 
top-1 apartment.

Disadvantage: We need to know the “exact” utility function of Raymond
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Suppose that user Raymond wants to buy an apartment
Top-k queries

◼ My previous work

◼ k-Hit Query: Top-k Query with Probabilistic 
Utility Function (SIGMOD 2015)



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

Which apartment should Raymond buy?

If the value is larger, then it is better to a user.
One example is the apartment size.

There are 2 popular queries for this 
problem. 

Top-k queries

Skyline queries

In this talk, we will talk about a new 
type of queries.

k-regret queries

D



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

Skyline queries

D



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment
Skyline queries

D

p2 dominates p1 because 
(1) the X1 value of p2 is better than that 
of p1. 
(2) the X2 value of p2 is equal to that of 
p1. 

◼ There is no assumption that we know the “exact” utility function of 
Raymond 

◼ There is a concept called “dominance”



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment
Skyline queries

D

p5 dominates p6 because 
(1) the X1 value of p5 is equal to that of 
p6. 
(2) the X2 value of p5 is better than that 
of p6.

◼ There is no assumption that we know the “exact” utility function of 
Raymond 

◼ There is a concept called “dominance”



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment
Skyline queries

D

◼ There is no assumption that we know the “exact” utility function of 
Raymond 

◼ There is a concept called “dominance”

◼ Apartments are called skyline 
apartments if they are not 
dominated by any other apartments

◼ Output
Skyline apartments = {p2, p3, p4, p5}

Advantage: There is no need to specify the
utility function of Raymond

Disadvantage: The output size is uncontrollable.



◼ My previous work

◼ Skyline Queries and Pareto Optimality (Encyclopedia of Database 
Systems, 2016)

◼ Finding Competitive Price (SIGSPATIAL GIS 2013)

◼ Finding Top-k Preferable Products (TKDE 2012)

◼ Finding Top-k Profitable Products (ICDE 2011)

◼ Creating Competitive Products (VLDB 2009)

◼ Online Skyline Analysis with Dynamic Preferences on Nominal 
Attributes (TKDE 2009)

◼ Finding the Influence Set through Skylines (EDBT 2009)

◼ Efficient Skyline Querying with Variable User Preferences on Nominal 
Attributes (VLDB 2008)

◼ Mining Favorable Facets (SIGKDD 2007)
HKUST 60

Suppose that user Raymond wants to buy an apartment
Skyline queries



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

Which apartment should Raymond buy?

If the value is larger, then it is better to a user.
One example is the apartment size.

There are 2 popular queries for this 
problem. 

Top-k queries

Skyline queries

In this talk, we will talk about a new 
type of queries.

k-regret queries

D



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

k-regret queries

D



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

k-regret queries

D

Advantage: There is no need to specify the
utility function of Raymond

◼ It has both the advantage of the top-k queries and the advantage 
of the skyline queries.

Advantage: The output size is “fixed”

The output size is specified 
by parameter k (e.g., 2)
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Suppose that user Raymond wants to buy an apartment

k-regret queries

◼ My previous work

◼ Interactive Search for One of the Top-k (SIGMOD 2021)

◼ Being Happy with the Least: Achieving α-happiness with Minimum Number of 
Tuples (ICDE 2020)

◼ Strongly Truthful Interactive Regret Minimization (SIGMOD 2019)

◼ FindYourFavorite: An Interactive System for Finding the User's Favorite Tuple in 
the Database (SIGMOD 2019 (demo paper))

◼ Finding Average Regret Ratio Minimizing Set in Database (ICDE 2019)

◼ Efficient k-Regret Query Algorithm with Restriction-free Bound for any 
Dimensionality (SIGMOD 2018)

◼ k-Regret Minimizing Set: Efficient Algorithms and Hardness (ICDT 2017)

◼ Minimizing Average Regret Ratio in Database (SIGMOD 2016 (Undergraduate 
Research Competition)) 

◼ Geometry Approach for k-Regret Query (ICDE 2014)



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

k-regret queries

D

◼ Consider that Raymond has a utility function with the utility vector 
(0.3, 0.7).
But, we do not know this utility function.

◼ Suppose that the whole dataset is seen
by user Raymond.

◼ We could find his favorite apartment p3

(Raymond’s maximum utility point).

Utility

0.7

0.76

0.81

0.69

0.44

0.3

…

0.81



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

k-regret queries

D

◼ Consider that Raymond has a utility function with the utility vector 
(0.3, 0.7).
But, we do not know this utility function.

◼ Suppose that the whole dataset is seen
by user Raymond.

Utility

0.7

0.76

0.81

0.69

0.44

0.3

…

◼ We could find his favorite apartment p3

(Raymond’s maximum utility point).

◼ Consider a set S = {p2, p4}
(which could be an output of this query).

◼ Suppose that set S is seen by user 
Raymond.

◼ We could find his favorite apartment p2

(Raymond’s maximum utility point).

0.81

0.76

There is a difference 
between these 2 utility 
values

Raymond’s maximum utility in S

Raymond’s maximum utility in D

If Raymond’s maximum utility in S is equal to 
Raymond’s maximum utility in D,
then Raymond’s regret ratio is equal to 0

Thus, we would like to have a smaller 
value for Raymond’s regret ratio.



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

k-regret queries

D
Utility

0.7

0.76

0.81

0.69

0.44

0.3

…

There is a difference 
between these 2 utility 
values

Raymond’s maximum utility in S

Raymond’s maximum utility in D

◼ Consider that Raymond has a utility function with the utility vector 
(0.3, 0.7).
But, we do not know this utility function.



Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …
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Suppose that user Raymond wants to buy an apartment

k-regret queries

D
Utility

0.7

0.76

0.81

0.69

0.44

0.3

…

There is a difference 
between these 2 utility 
values

Raymond’s maximum utility in S

Raymond’s maximum utility in D

◼ Consider that Raymond has a utility function with the utility vector 
(0.3, 0.7).
But, we do not know this utility function.

◼ Raymond’s Regret Ratio = 0.06173

◼ There are many other users (e.g.,
Mary and Peter). 

◼ Each of them has different utility 
functions.

◼ E.g., Mary’s Regret Ratio = 0.05120
E.g., Peter’s Regret Ratio = 0

◼ Maximum Regret Ratio (mrr) =
the maximum of all regret ratios 
(among all users) (e.g., 0.06173)

Problem (k-regret): Given a set D, we want to 
find a set S of k points such that the mrr of S is 
minimized. 

Each user’s preference is 
represented in form of a utility 
vector (w1, w2)

Consider all possible vectors.

Advantage: There is no need to specify the
utility function of Raymond

Advantage: The output size is “fixed”



◼ Next, let us give some details.
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Suppose that user Raymond wants to buy an apartment

k-regret queries
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Suppose that user Raymond wants to buy an apartment

k-regret queries

◼ Consider that Raymond has a utility function with the utility vector 
(0.3, 0.7).
But, we do not know this utility function.

Problem (k-regret): Given a set D, we want to 
find a set S of k points such that the mrr of S is 
minimized. 

Raymond

Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …

D

Which one is better?

1. p2

2. p3

p3

After this round,
we understand Raymond’s 
preference better.
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Suppose that user Raymond wants to buy an apartment

k-regret queries

◼ Consider that Raymond has a utility function with the utility vector 
(0.3, 0.7).
But, we do not know this utility function.

Problem (k-regret): Given a set D, we want to 
find a set S of k points such that the mrr of S is 
minimized. 

Raymond

Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …

D

Which one is better?

1. p4

2. p5

p4

After this round,
we understand Raymond’s 
preference much better.

With more 
rounds/questions, we 
could know Raymond’s 
preference more.



HKUST 72

Suppose that user Raymond wants to buy an apartment

k-regret queries

◼ Consider that Raymond has a utility function with the utility vector 
(0.3, 0.7).
But, we do not know this utility function.

Problem 1 (Interactive Regret): Given a set 
D, we want to ask a number of questions to 
Raymond and return an apartment such that 
Raymond’s regret ratio is at most . 

Raymond

Apartment X1 X2

p1 0 1

p2 0.2 1

p3 0.6 0.9

p4 0.9 0.6

p5 1 0.2

p6 1 0

… … …

D

Which one is better?

1. p4

2. p5

p4

After this round,
we understand Raymond’s 
preference much better.

With more 
rounds/questions, we 
could know Raymond’s 
preference more.

Problem 2 (Maximum Utility Point 
Determination): Given a set D, we want to ask 
a number of questions to Raymond and return an 
apartment such that this apartment is Raymond’s 
maximum utility point in D.
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Suppose that user Raymond wants to buy an apartment

k-regret queries

◼ My previous work

◼ Interactive Search for One of the Top-k (SIGMOD 2021)

◼ Being Happy with the Least: Achieving α-happiness with Minimum Number of 
Tuples (ICDE 2020)

◼ Strongly Truthful Interactive Regret Minimization (SIGMOD 2019)

◼ FindYourFavorite: An Interactive System for Finding the User's Favorite Tuple in 
the Database (SIGMOD 2019 (demo paper))

◼ Finding Average Regret Ratio Minimizing Set in Database (ICDE 2019)

◼ Efficient k-Regret Query Algorithm with Restriction-free Bound for any 
Dimensionality (SIGMOD 2018)

◼ k-Regret Minimizing Set: Efficient Algorithms and Hardness (ICDT 2017)

◼ Minimizing Average Regret Ratio in Database (SIGMOD 2016 (Undergraduate 
Research Competition)) 

◼ Geometry Approach for k-Regret Query (ICDE 2014)



Demo System

◼ We developed a demo system on a car 
database with the following attributes

◼ Price

◼ Year

◼ Power

◼ Used km
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Raymond chooses this option.
Then, he is asked for several questions and 
keep choosing options.
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◼ Raymond keeps choosing one of the 
two choices.

◼ Finally, he obtains the following answer.
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Conclusion

◼ We have illustrated a lot of applications 
how using data “smartly” could improve 
our life.

◼ We have illustrated some common 
topics in data analysis

◼ We have illustrated some of our recent 
papers.
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Q&A
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