Artificial Intelligence in Medical Image Analysis: Challenges, Methods, Applications and Beyond

Dr. Hao CHEN jhc@cse.ust.hk

Mar 31, 2021

Research Focus

Algorithm

Novel machine learning methods including (semi)supervised, unsupervised, or weakly learning.

A C

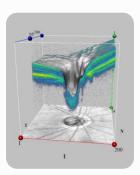
Robustness, Adaptation, and Generalization capability of AI.

Explainable AI (XAI) for interpretable and trustable healthcare, etc.

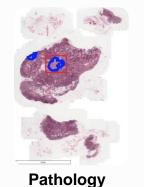
How AI-driven technologies can assist doctors and help patients ultimately?

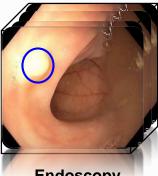
Applications

Radiology



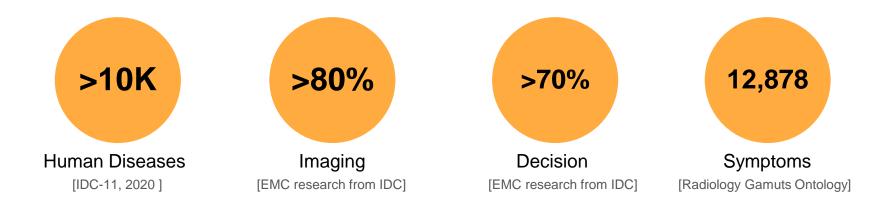
Ophthalmology





Endoscopy

Why Medical Image Analysis?



Shortage of Healthcare Resources



20.6% Radiologists spend 10+ hours reading reports everyday Radiotherapy target area outline takes 1-3 hours or more

Lacking 100K+ pathologists 15+ mins per WSI

Grand View Research

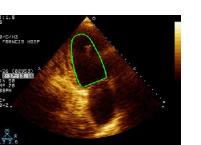
US

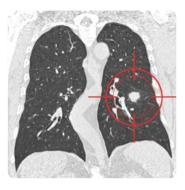
Introduction

Medical Image Computing/Analysis (MIC/MIA)

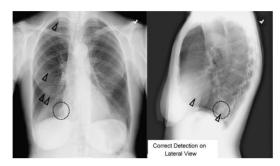
Disease classification, Biomarker detection & Semantic parsing

- Disease screening and triaging;
- Diagnosis and prognosis;
- Surgical planning and treatment;
- Measurements & visualization, etc.

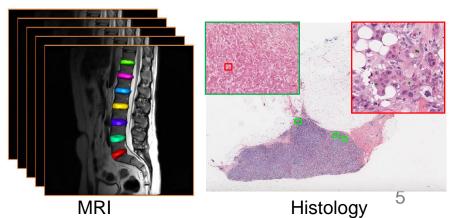




CT



Computerized analysis of medical images in 1960s; CADe/CADx dated back to 1980s [Kunio, CIMG, 2007]

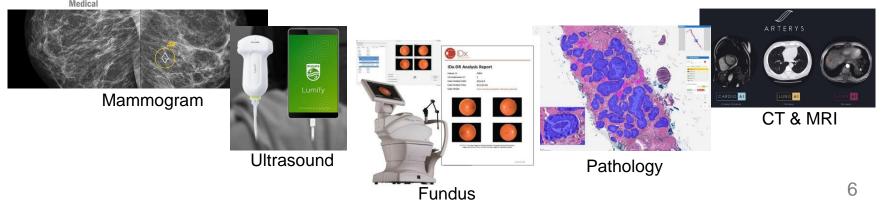


Introduction

DL in Medical Image Analysis

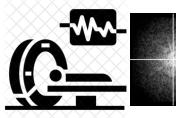
FDA approved AI-based products in medicine

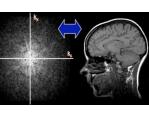
ScreenPoint

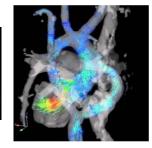


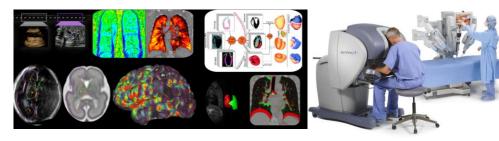
AI Improves Entire Clinical Workflow

from acquisition to prognosis









Acquisition

Reconstruction

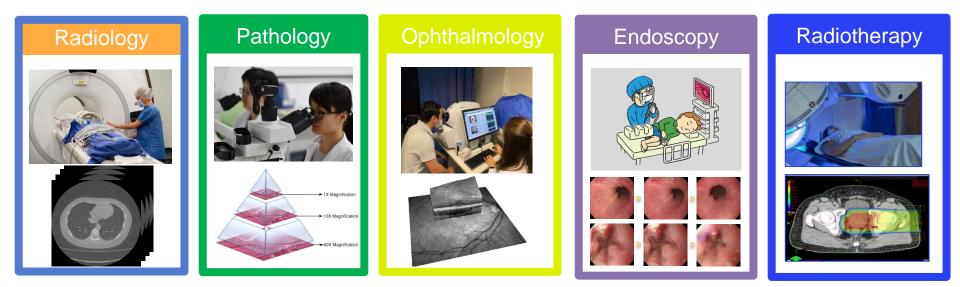
Visualization

Analysis

Treatment & Prognosis

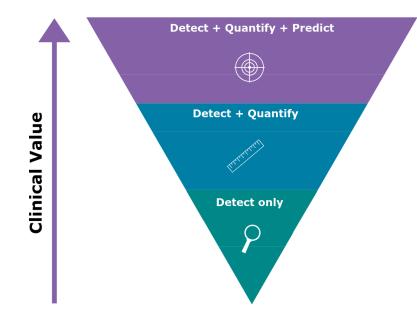
Versatile Applications

Including but definitely not limited to...



Clinical Value Chain

Clinical Value of AI Tools in Medical Imaging



Detect + Quantify + Predict

- Real-time diagnostic decision support
- Risk stratification for early detection and/or diagnosis
- Reduced need for intervention (e.g. biopsies)

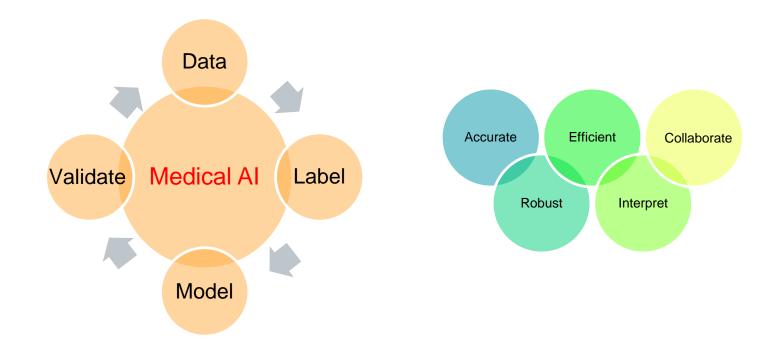
Detect + Quantify

- Enhanced productivity no manual measurements
- Improved diagnostic confidence
- Enables precision medicine (personalized treatment)

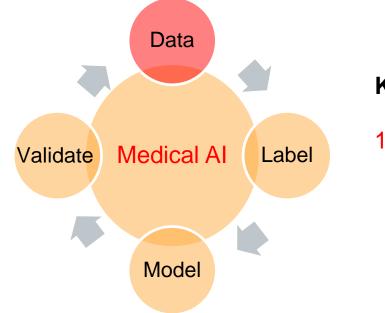
Detect Only

- Improved productivity
- Reduced missed diagnoses

Key Elements of Medical AI

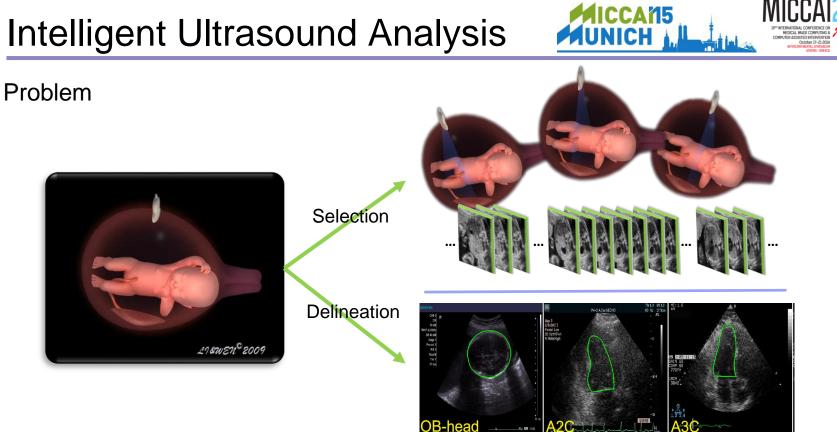


Outline



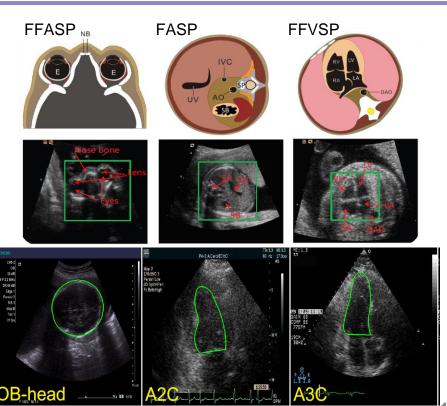
Key Challenges:

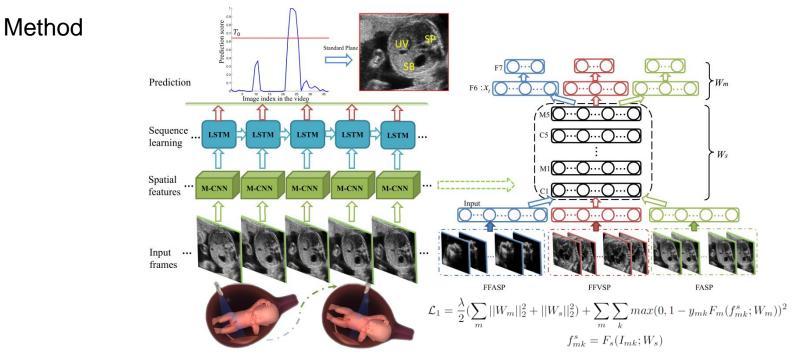
1. Limited training data vs Data hungry in DL



Challenges

- Limited medical dataset, leading to overfitting issue
- Abounding artifacts, e.g., acoustic shadows and speckle noise
- Large intra-variation and small inter-variation due to deformation of soft tissue, vendors, et al.

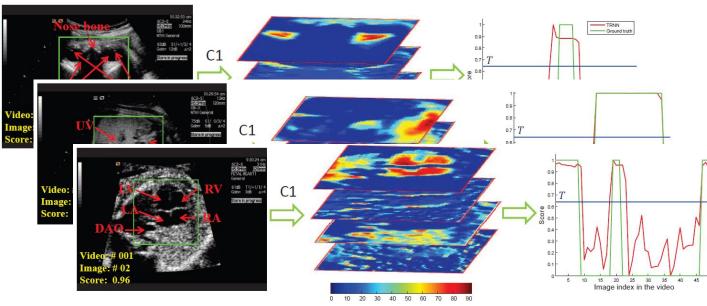


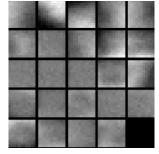


Left: Overview of the proposed T-RNN framework; right: M-CNN model.

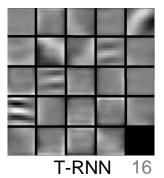
Experiments and Results

Qualitative Evaluation

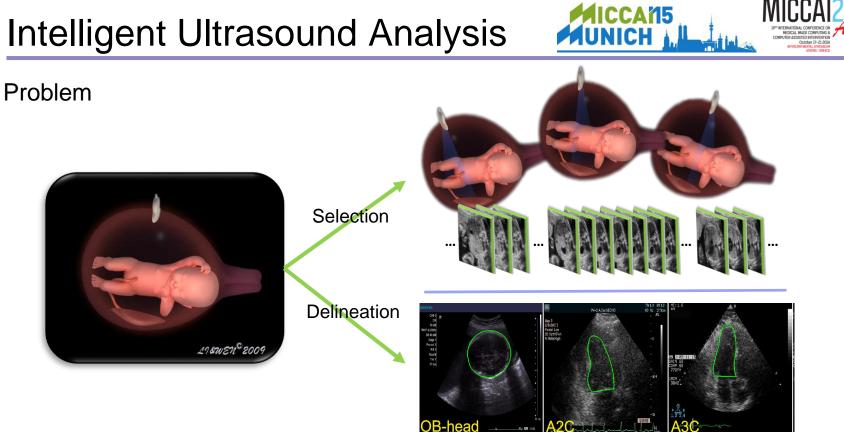




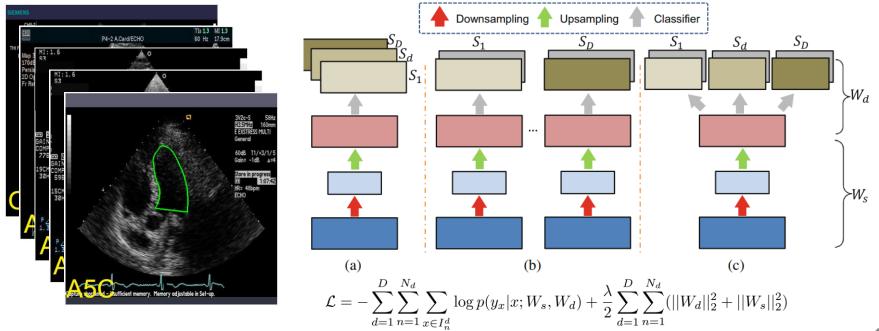
R-CNN



Demo



Iterative Multi-domain Regularized DL for Structure Segmentation



SIEMENS . MICCAI20 Healthineers

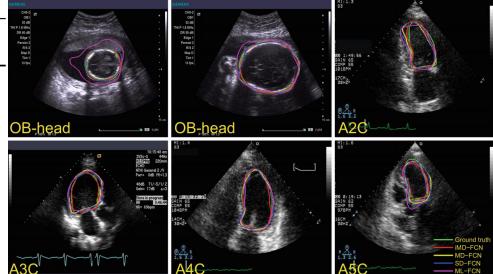
Experiments and Results

Table 3. Dataset of US Image Segmentation Largest dataset

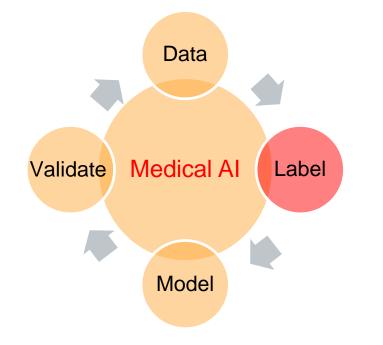
Dataset	OB	A2C	A3C	A4C	A5C	Total
Training Test	/	/	/	/	/	/

 Table 4. Dice Ratio of Segmentation Results

Method	OB	A2C	A3C	A4C	A5C
ML-FCN	0.860	0.826	0.773	0.804	0.738
SD-FCN	0.942	0.851	0.811	0.833	0.768
MD-FCN	0.950	0.865	0.822	0.837	0.797
iMD-FCN	0.961	0.875	0.864	0.879	0.891
DGS $[4]$	-	0.832	-	0.844	-
Human	0.971	0.908	0.858	0.917	0.909



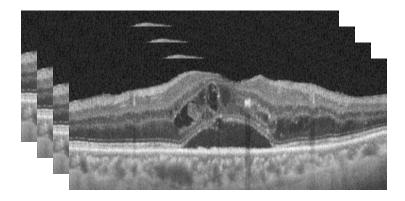
Outline



Key Challenges:

1. Imperfect labels with weak annotation.





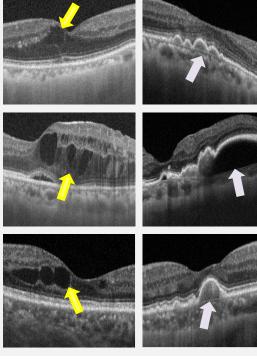
Weak annotation: What is given, but where is missing.

Problem

Diabetic macular edema (DME) and age-related macular degeneration (AMD) are two common macula-related diseases.

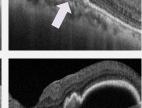
- irreversible visual loss and blindness.
- early detection and timely treatment are important.
- Challenges of manual assessment:
 - huge workload & time-consuming •
 - subjective, error-prone
 - shortage of ophthalmologists •

Automated 3D OCT image classification



Optic coherence tomography (OCT)

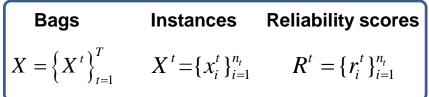
DME vs AMD

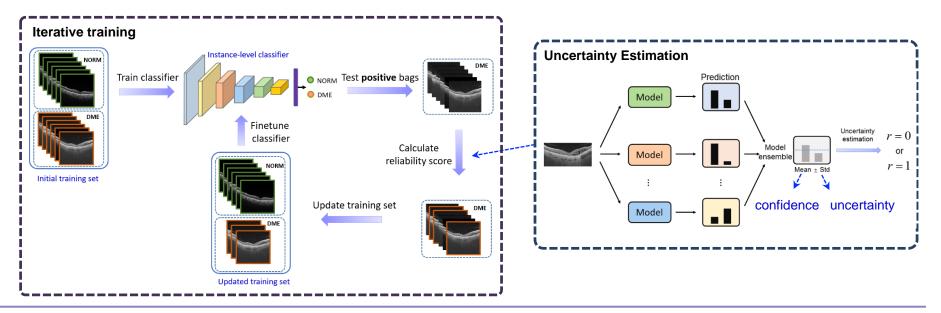


Proposed method

□ Instance-level classifier under UD-MIL

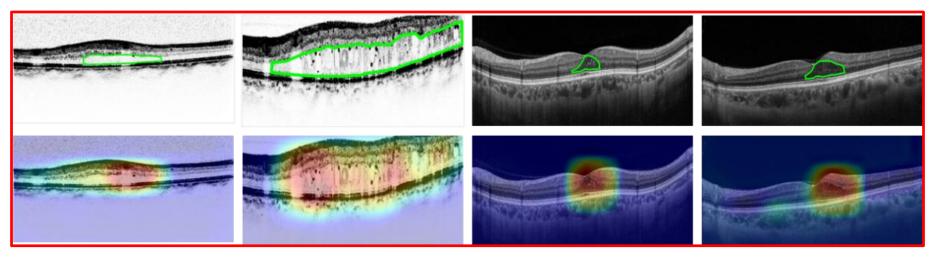
- Identify discriminative instances
- Abstract representative features





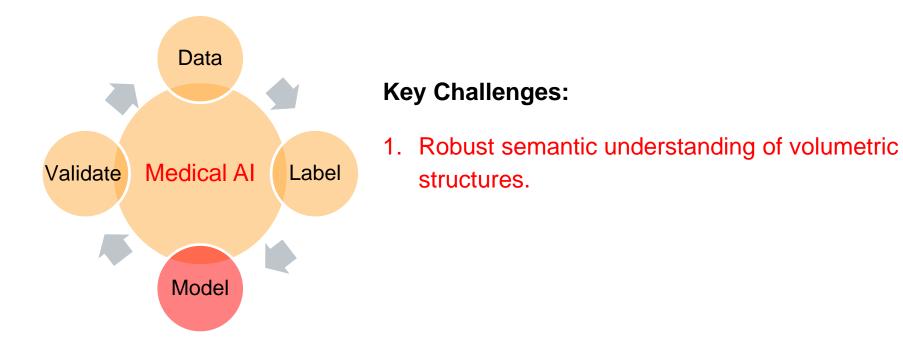
Experiments

Results

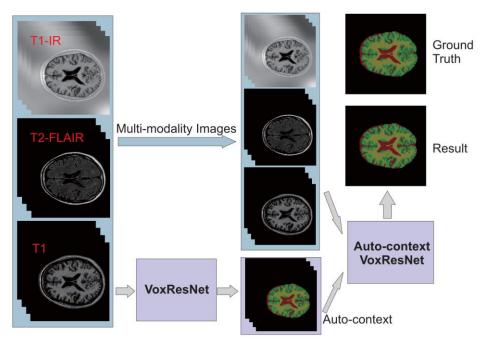


Class activation map obtained by UD-MIL model

Outline



VoxResNet with Multi-modality & Auto-Context [Tu, TPAMI 2010]



[Chen, et al. NeuroImage 2018 Most Cited Articles]

Experiments and Results

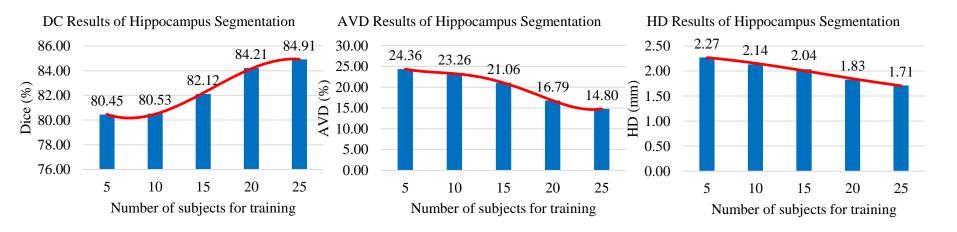
Table II: Results of MICCAI MRBrainS Challenge of different methods (DC: %, HD: mm, AVD: %. only top 10 teams are shown here).

Method	GM		WM		CSF			Score*		
Wiethod	DC	HD	AVD	DC	HD	AVD	DC	HD	AVD	Score
CU_DL (ours)	86.12	1.47	6.42	89.39	1.94	5.84	83.96	2.28	7.44	39
CU_DL2 (ours)	86.15	1.45	6.60	89.46	1.94	6.05	84.25	2.19	7.69	39
MDGRU	85.40	1.55	6.09	88.98	2.02	7.69	84.13	2.17	7.44	57
PyraMiD-LSTM2	84.89	1.67	6.35	88.53	2.07	5.93	83.05	2.30	7.17	59
FBI/LMB Freiburg 6	85.44	1.58	6.60	88.86	1.95	6.47	83.47	2.22	8.63	61
IDSIA [32]	84.82	1.70	6.77	88.33	2.08	7.05	83.72	2.14	7.09	77
STH	84.77	1.71	6.02	88.45	2.34	7.67	82.77	2.31	6.73	86
ISI-Neonatology [22]	85.77	1.62	6.62	88.66	2.07	6.96	81.08	2.65	9.77	87
UNC-IDEA 38	84.36	1.62	7.04	88.68	2.06	6.46	82.81	2.35	10.5	90
MNAB2 [24]	84.50	1.70	7.10	88.04	2.12	7.74	82.30	2.27	8.73	109

*Score = Rank DC + Rank HD + Rank AVD; a smaller score means better performance.

More results http://mrbrains13.isi.uu.nl/details.php

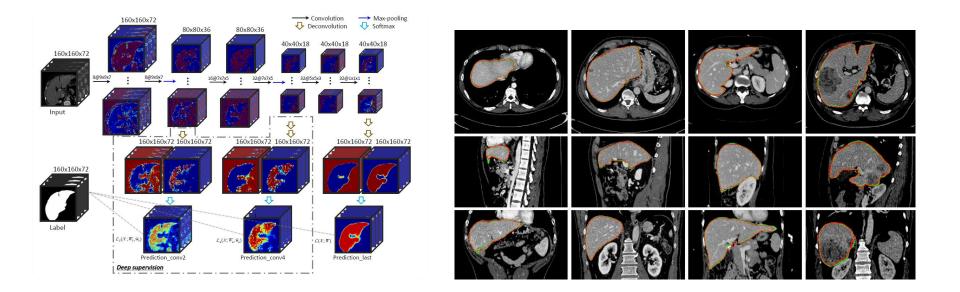
Application to Hippocampus Segmentation



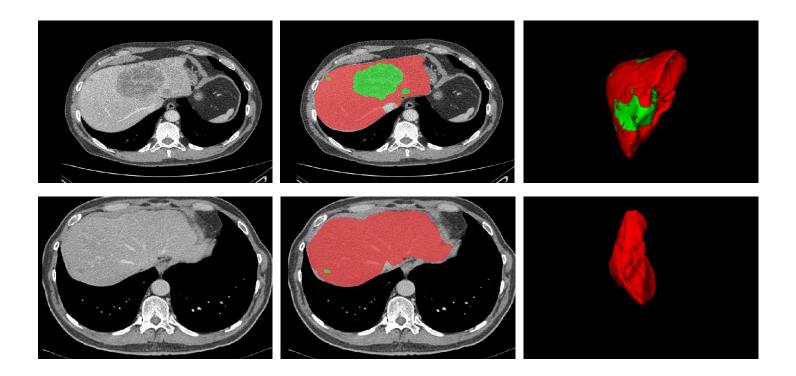
OASIS project <u>http://www.oasis-brains.org/</u>

www.cse.cuhk.edu.hk/~hchen/research/seg_brain.html

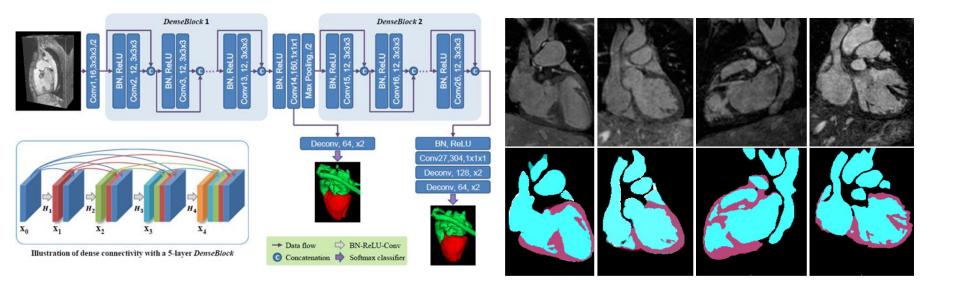
Liver Segmentation with 3D Deeply Supervised Networks



H-DenseUnet for Liver Tumor Segmentation

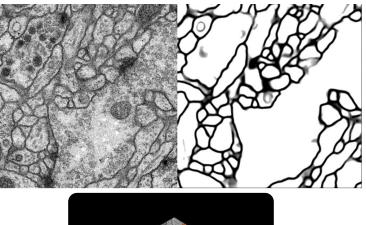


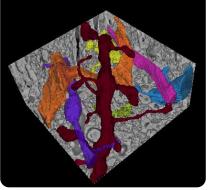
DenseVoxNet for Cardiovascular MR Segmentation



ContextNet for Neuronal Structure Segmentation

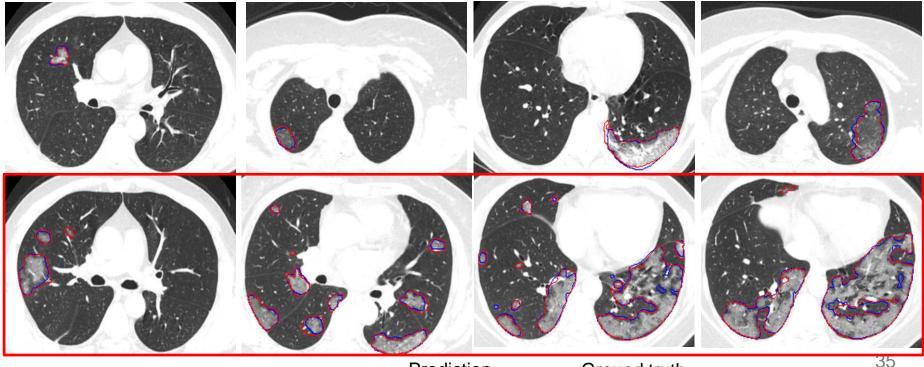






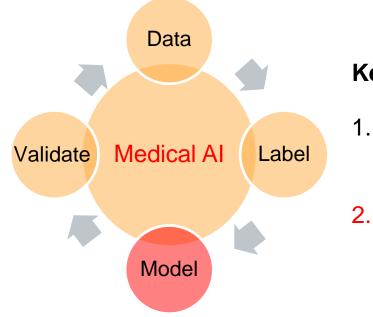
Other Scenarios in Robust Semantic Understanding of Volumetric Structures

Covid-19 CT Lesion Segmentation for Quantitative Evaluation



Prediction

Outline

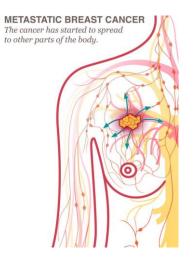


Key Challenges:

- 1. Robust and efficient semantic understanding of volumetric structures.
- 2. Scalable inference in morphology profiling.

Scalable Computational Pathology for Morphology Profiling

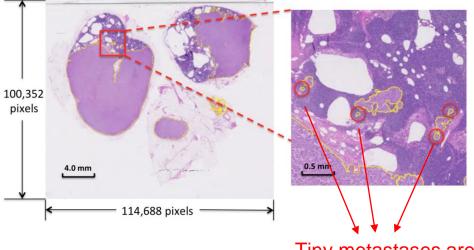
Fast Scannet for Breast Cancer Metastasis Detection from WSIs



Problem

Metastasis Detection

- Breast cancer is one of leading killers among women.
- Underarm lymph nodes are the first place breast cancer likely to spread
- An important diagnostic indicator for cancer stage evaluation

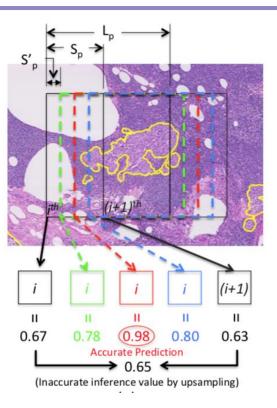


Tiny metastases are easily neglected

Motivation

Dense Scanning

CNN can achieve more accurate predictions on tiny lesions by offset



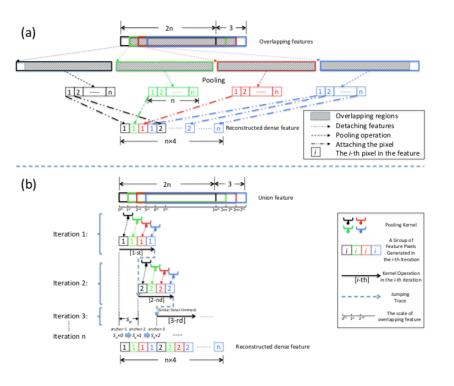
Motivation

ith sliding window Direction of sliding window Dense Scanning Overlapping region *i*th pixel of heat map CNN can achieve more accurate predictions on tiny lesions by offset Overlapping Region Computational redundant leads to low 1st 2nd 3rd 4th 5th efficiency Patch-based FCN Prediction Prediction 4 5 Heat map 4 5 Heat map 1 2

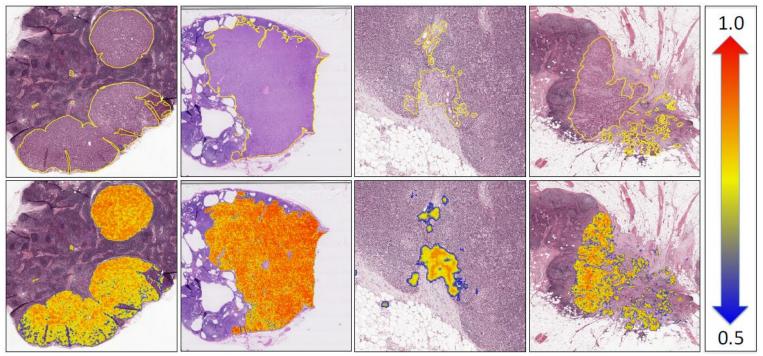
Motivation

Dense Scanning

- CNN can achieve more accurate predictions on tiny lesions by offset
- Computational redundant leads to low efficiency
- With FCN architecture, iterative anchor layer is proposed for efficiency inference

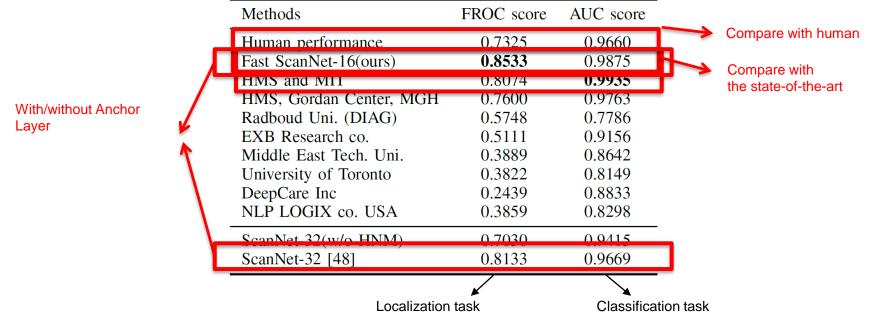


Experiments and Results



Experiments and Results

QUANTITATIVE COMPARISON WITH OTHER METHODS



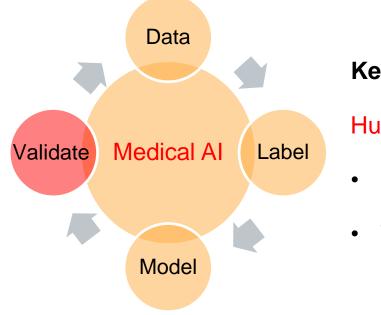
[JAMA 2017, WACV 2018, TMI 2019]

Experiments and Results

Runtime comparison on the ROI (Size 2800×2800) (Unit: Minute)

Network	Methods	stride 32	stride 16	
Fast ScanNet ScanNet [48] GoogleNet ResNet-34 AlexNet VGG16(patch-based)	ours ours HMS and MIT EXB Research co. NLP LOGIX co.	0.0182 0.0182 0.6683 0.7240 0.3342 0.9747	0.0200 0.0730 2.6734 2.8962 1.3367 3.8987	100x faster

Outline

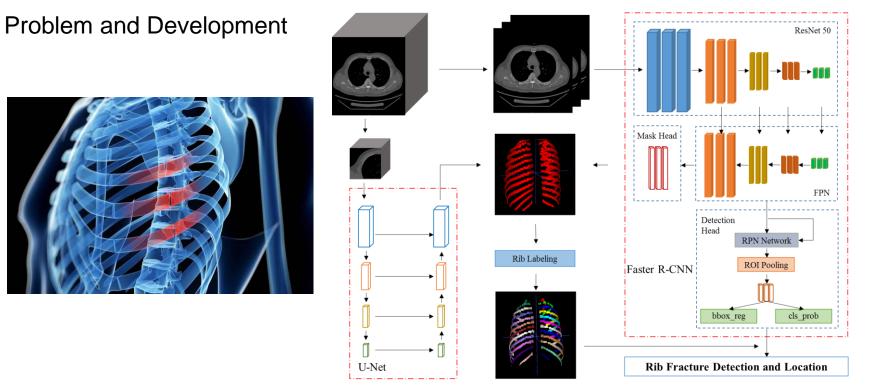


Key Challenges:

Human-machine collaboration

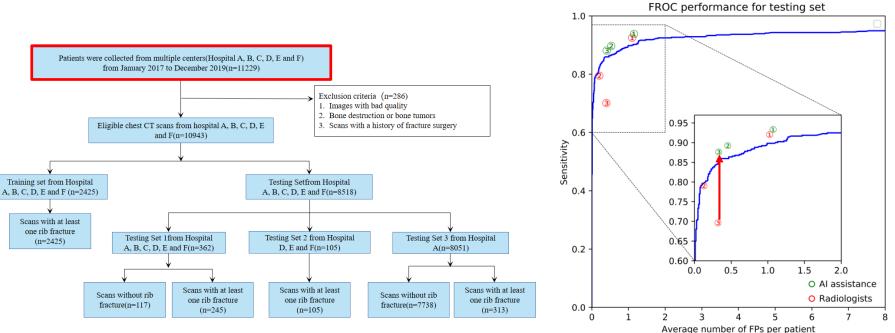
- Fracture Detection,
- Tumor Segmentation.

Rib Fracture Detection from Multi-center Thoracic CT Images



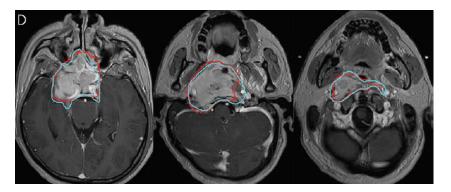
Rib Fracture Detection from Multi-center Thoracic CT Images

Dataset and Results

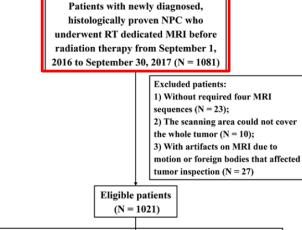


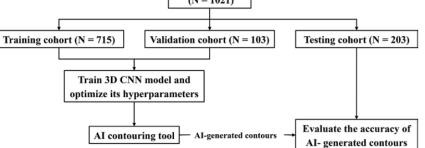
Automated Contouring of PTV for Nasopharyngeal Carcinoma from MRI

Problem and Dataset

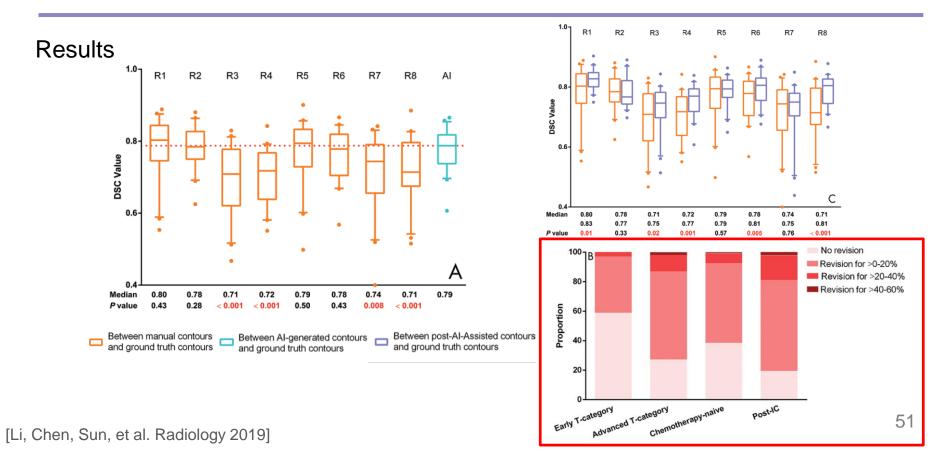


Blue and red lines indicate human experts and AI, respectively.

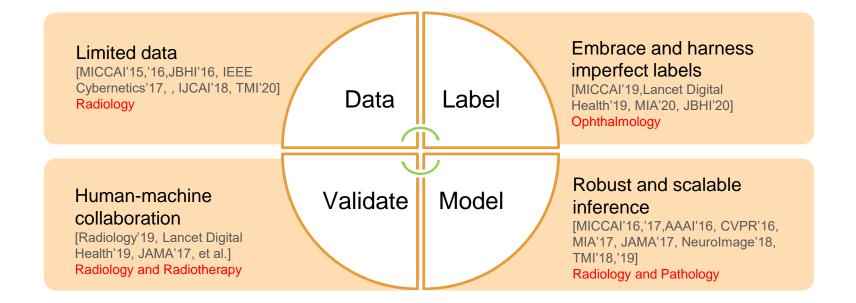




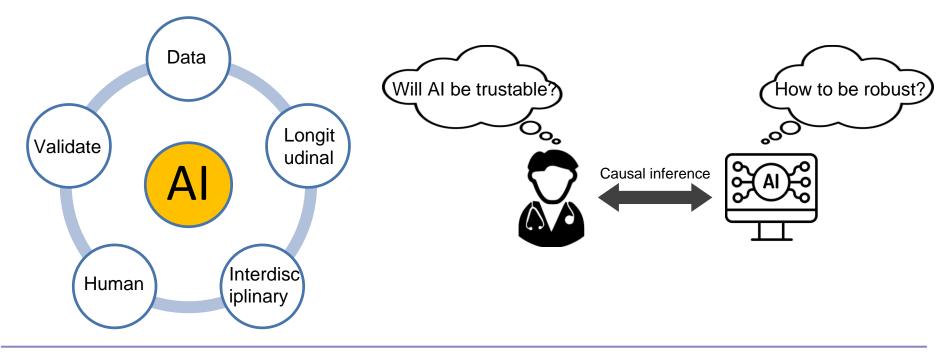
Automated Contouring of PTV for Nasopharyngeal Carcinoma from MRI



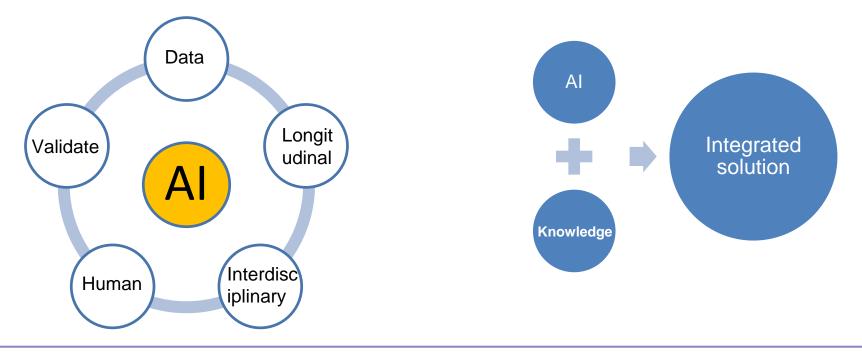
Summary



□ Trustable, generalizable, and explainable AI algorithms.

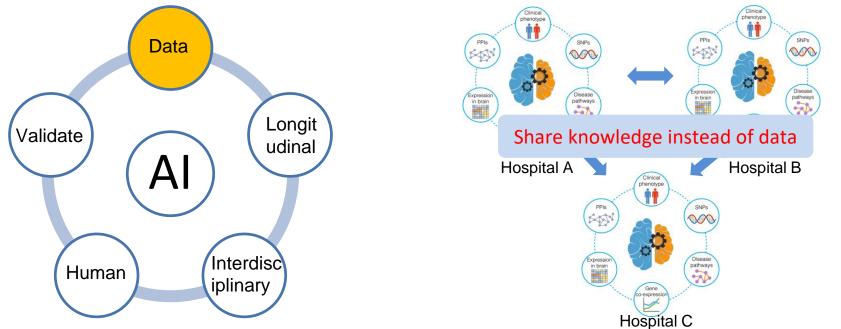


Embedding medical knowledge (evidence discovery) into data-driven learning



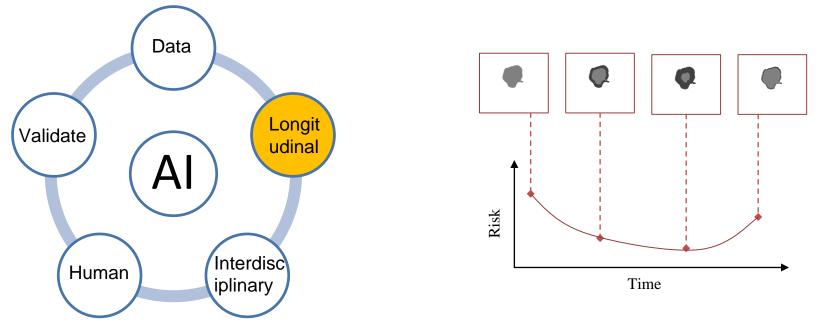
□ AI for personalized precision medicine from image-only to patient-level with

heterogeneous data modelling (e.g., genome, image, pathology, clinical data).



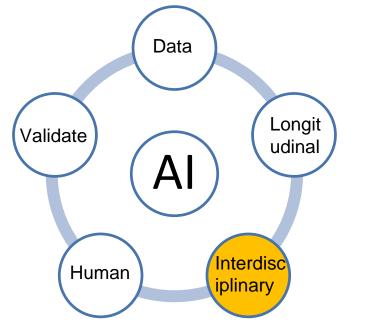
□ Full-stack AI solution in data acquisition, screening, diagnosis, progression,

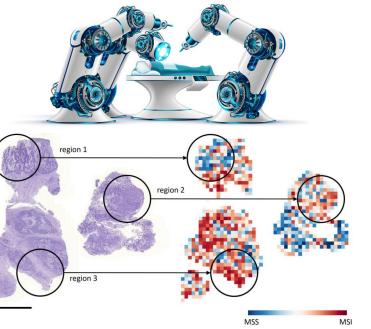
treatment, and prognosis (e.g., molecular underpinning and survival analysis).



□ Interdisciplinary research between AI and other domains, such as surgical robotics,

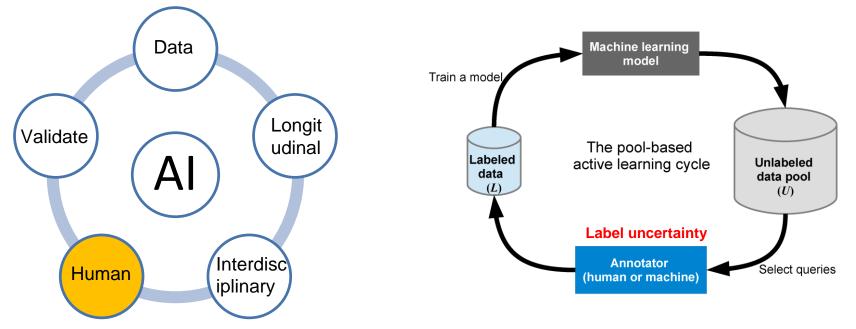
drug discovery, image-guided therapy, etc.



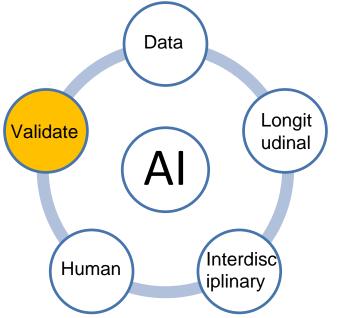


□ Human-in-the-loop active learning, maximize data usage & minimize annotation

efforts using annotation-efficient learning.



Human-machine collaboration research with application to clinical translation and validation, etc.



- Al for Medical Image Analysis has tremendous value in clinical practice.
- Versatile applications from image acquisition to disease diagnosis and prognosis.
- Core challenges still exist. Computational methods are important and collaboration with doctors is absolutely indispensable.
- □ Lots of fun stuff with models, graphics, understanding of disease mechanism and our body, etc.

Thank you!

- Tel: (852) 2358 8346
- Email: jhc@cse.ust.hk
- Office: Room 3517, Department of CSE, HKUST

Google scholar:

https://scholar.google.com.hk/citations?user=Z_t5DjwAAAAJ&hl=en