How to Sort 100TB of Data:
Algorithm Design for
Massive Datasets

Prof. Ke Yi
Hong Kong University of Science and Technology

Sort Benchmark Home Page

New: We are happy to announce the 2019 winners listed below. The new, 2019 records are listed in green. Congratulations to the winners!

Background

Until 2007, the sort benchmarks were primary defined, sponsored and administered by Jim Gray. Following Jim's disappearance at sea in January 2007, the sort
benchmarks have been continued by a committee of past colleagues and sort benchmark winners. The Sort Benchmark committee members include:

» Chris Nyberg of Ordinal Technology Corp
¢ Mehul Shah of Amazon Web Services
* Naga Govindaraju of Microsoft

Top Results

Daytona

Indy

2016, 44.8 TB/min

Tencent Sort
100 TB in 134 Seconds
512 nodes x (2 OpenPOWER 10-core POWERS 2.926 GHz,

2016, 60.7 TB/min

Tencent Sort
100 TB in 98.8 Seconds
512 nodes x (2 OpenPOWER 10-core POWERS 2.926 GHz,

Qian Wang, Rong Gu, Yihua Huang
Nanjing University
Reynold Xin
Databricks Inc.

Wei Wu, Jun Song, Junluan Xia
Alibaba Group Inc.

Gray 512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe SSD, 512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe SSD,
: 100Gb Mellanox ConnectX4-EN) 100Gb Mellanox ConnectX4-EN)
Jie Jiang, Lixiong Zheng, Junfeng Pu, Jie Jiang, Lixiong Zheng, Junfeng Pu,
Xiong Cheng, Chongqing Zhao Xiong Cheng, Chongqing Zhao
Tencent Corporation Tencent Corporation
Mark R. Nutter, Jeremy D. Schaub Mark R. Nutter, Jeremy D. Schaub
2016, $1.44 / TB 2016, $51.44 / TB
NADSort NADSort
100 TB for $144 100 TB for $144
394 Alibaba Cloud ECS ecs.n1.large nodes x 394 Alibaba Cloud ECS ecs.n1.large nodes x
(Haswell E5-2680 v3, 8 GB memory, (Haswell E5-2680 v3, 8 GB memory,
Cloud 40GB Ultra Cloud Disk, 4x 135GB SSD Cloud Disk) 40GB Ultra Cloud Disk, 4x 135GB SSD Cloud Disk)

Qian Wang, Rong Gu, Yihua Huang
Nanjing University
Reynold Xin
Databricks Inc.

Wei Wu, Jun Song, Junluan Xia
Alibaba Group Inc.

/ |+ III 1I" "

m |
ARBADA| (U

As Transistor Count Increases, Clock Speed Levels Off

10,000,000

1,000,000 -

100,000

10,000

1,000 -

100

B Transkstors (000)
Clock Speed (MHz) |
A Power (W)

& Perf/Clock {ILP)

Transistor
count still
rising

Clock speed

flattening
sharply

Instructions [clock]

source: Intel 1970 1975 1980 1985 1900 1995 2000 2005 2010

Going Parallel/Distributed 1s
the Only Way to Scale

The Frustration of Parallel
Programming

« Race conditions

Thread A Thread B
1A: Read variable V 1B: Read variable V
2A: Add 1 to variable V 2B: Add 1 to variable V

3A: Write back to variable V 3B: Write back to variable V

e Intended result: add 2to V

 But, what 1f 1A 1s executed between 1B and 3B?

The Frustration of Parallel
Programming

e Usel~~1

T0 thread has a

LOCK 1.

Threa’d A but reqa?rergﬁﬂurce resource
resource? for

IA: Lock finishing execution

2A: Reac
3A: Add

4A: Writ sle V
S5A: Unlc resource ? T1 thread has a

LOCK on resource2
but requires
resource for finishing
execution.

T0 DEADLOCK T1

e How

The Frustration of Parallel
Programming

Hard to debug: Race conditions and deadlocks are
nondeterministic

Most programming languages are low-level

The programmer needs to manage shared memory
and/or communication

OpenMP 1s a good step forward, but still difficult for
most programmers

Programs written for multi-cores do not easily carry
over to clusters

=3 =
et “
B~ W L
e "T) 5
- ey - 1] lk\
N P A DL W
- - 3 el || 3;;3. ;‘;_. ‘; ‘~;=JI|'|'“L% n o [
— 5 R e B = -’L'j' I
- i. P /'-l-:l; ; : [-“.‘ ‘ 3 ﬂ
ST ' e (3Rl el 4 e
'...‘F..] / N .-"/ - I"‘."..f' L g ' . ";."i'v‘f'iﬁf !
:’ 5 he .- L) 't ‘u ";—\ :-'IA | . : l‘]‘;‘i
Ny e o 3
\ . ‘ .] ‘ 'i_‘-"“F --;.H"‘ ".. - 'xl"lr'i
W e £ e o7 U WS AN
AT TR) U i DS
-8, d il e B e——— =
: | A i Ta r I:’J, ia‘ i
L) ‘ P¥_o/ I. “ . '!; = ! *b J
- 'f.: = L ‘5 L q A vl
y v e M= 25 :r«(: .w‘ . t ‘: 74
™o 7 e\ .,'2 “*. |
ar = N =y ¥ E | o
i A B b
o’ Y ok A i | % e | M
¢ _' 'ﬁt’/ﬂ ‘“’ - [: "2" :
v/) TR B 2l RN Y PR G
‘J ‘ o Tl ; 4 . : : f s?-
o -y "..'.‘ N . .
L 4 . . 4 ¥r . p i
4 B V@ L

£y .,’ ; -
> 1.07%. ‘

. b

- ' ; j{,
'

/'

(‘.003|€. | google.com/datgiienters

v'ou prog

B B

ram‘this thlng'-’ L'W L

* ‘.f\

g E L"“" X
7 L. _,
L

. |
;!_. ; “" \)

7

Valiant’s BSP Model (1990)

Bulk Synchronous Parallel

Processors

Local
Computation

Communication ’%

octon -

Synchronisation

MapReduce

Input Output
Record ' Record
Record _ Record
Record - (II?:;) Jaalﬁl;) »Shuffle/Sort [Reduce ™ Record
Record 2 7y Record
Record g Record
Record |
= ¥ Record
Herar » | Map Task Jshuffle/Sort |y »Record
Record (Ke;? value) ~ Reduce —
Record Ll
Record
Record |
Record v
Record > Map Task *Shuffle/Sort Reduce » Record
Record {Key, value) Record
Record m

(key, value) pairs are used as the format for both data and intermediate results

(key, value) pair is sent to worker hash(key) mod p) by the shuffling stage

Example 1: Word Count

Job: Count the occurrences of each word in a data set

Input Files

Each line passed to
inividual mapper
instances

Apple Orange Mango
COrange Grapes Plum

Apple Orange Mango

Drange Grapes Plum

Apple Plum Mango
Apple Apple Plum

Apple Plum Mango

Final Output

Apple 2pple Plum

I |

Map
Tasks

Apple, 4
Grapes,1
Mango, 2
Qrange, 2
Plurm, 3

Sort and
Shuffle
Map Key Value Reduce Key
Splitting Value Pairs
Apple 1
/ Sl 1 »| appled
2pplel &pplel
Crange, 1 Apple 1
lango, 1
Orange, 1 Grapes,1 s Grapes,1
Grapes, 1
Flurm, 1
hlango,l "y -
Applel rango, 1 L ango,
Plum, 1
lango, 1
Crange, 1 » Orange?z
/ Orange, 1
Apple 1
Apple 1
Plum, 1 Flurm,1 |
Plum,1 » Flum,3
Plum,1
Reduce
Tasks

\\
Pageﬂanh x

Cartoon illustrating basic principle of PageRank.
The size of each face is proportional to the total
size of the other faces which are pointing to it.

Example 2: PageRank

Algorithm:
Initialize all PR’s to 1
Iteratively compute

PR(1) « 0.15 + 0.85 x z

v-ou

PR(v)
outdegree(v)

Data stored in adjacency list format: (src, PR, dst;, dst,, ...)

How to define the map and reduce function?

Map:
(src, PR, dsty, dst,, ...) = (dst,, PR/outdegree(src)), i = 1, 2, ...
(src, PR, dst,, dst,, ...) = (src, dst,, dst,, ...) //can be optimized

Reduce:

(dst, cy,) + (dst, ¢,) + ... + (src, dsty, dst,, ...) = (src, 0.15 + 0.85 X };; ¢;, dst, dst,, ..

)

Performance Measurement

Number of rounds
Ideally, a constant
log N 1s also tolerable
Wordcount: 1
Pagerank: 1 per iteration

Maximum amount of work of a worker in a round
Wordcount: O(N /p) assuming no skew in data
Pagerank: O(V - d,,4./P), V: # vertices, d,,q,: max degree

Space needed by each worker
Wordcount: 0(1), Pagerank: 0(1)

Total amount of work of all workers

Wordcount: O(N) assuming no skew in data
Pagerank: O(V - dg,.) = O(E), E: # edges

Technique 1:
Divide and Conquer

Classical Divide-and-Conquer

e (lassical D&C

— Divide problem into 2 parts
— Recursively solve each part
— Combine the results together

e D&C under big data systems

— Divide problem into p partitions, where (ideally) p is the number of
executors in the system

— Solve the problem on each partition
— Combine the results together

 Example: sum(), reduce()

16

Prefix Sums

* |nput: Sequence x of n elements, binary associative
operator +

 QOutput: Sequence y of n elements, with
Y =X+ o+ X,
e Example:
x=1[1,4,3,5,6,7,0,1]
y=1[1,5,8, 13,19, 26, 26, 27]
e Algorithm:
— Compute sum for each partition
— Compute the prefix sums of the p sums
— Compute prefix sums in each partition

* O(1) rounds, 0 (%) work per worker, O(1) space

— Note: Master node needs to do O(p) work.
— Assumep K N

17

Variants of Prefix Sums

e Assign consecutive id’s for each element
— zipWithIndex()

* Given a list of words, find the first appearance
of “spark”

* Given two long strings, compare them
lexicographically

* Given a sequence of integers, check whether
these numbers are monotonically decreasing.

18

Sorting (Sample Sort)

e Step 1: Sampling

* Master collects a sample of sp elements (will determine
s later)

e Step 2: Choose splitters

— Master picks every (i - s)-th element in the sample as
splitters, i =1, ...,p — 1

— Broadcast them to all workers

e Step 3: Shuffling

— Each worker partitions its data using the splitters
— Send data to the target machine

e Step 4: Sort each partition
— Each machine sorts all data received

19

Determining Sample Size

: : N
* Goal: No machine receives more than (1 + €) > elements w.h.p.
— How large should s be?
* Letthe elements be a4, ..., ay in sorted order

* A sub-sequence q;, vy @ (14)_ n is bad if it contains < s sampled

elements
— Goal achieved if no sub-sequence is bad

* Consider a particular sub-sequence
— X =# sampled elements init; E[X] = g. (1+ E)E =(1+¢)s
— By Chernoff inequality: Pr|X < s] < Pr ’X < 1 ——)E[X]] <
—Q(e s)

» By union bound, Pr[3 a bad subsequence] < N - e~2{€"s)
— It sufficestosets = 0 (62 log N)

— Can you improve the log N term to a logg?

Distributed Sampling

e Q: How to sample one element uniformly from n
elements stored on p servers?

e A:
— First randomly sample a server

— Then ask that server to return an element randomly chosen

from its N /p elements.
1

— The probability of each element being sampled is — - %

= |-

e Q: How to sample many elements at once?

 A: Do each of the two steps above in batch mode

— First sample sp servers with replacement (this can be done at
the master node).

— If a server is sampled k times, we ask that server to return k
samples (with replacement) from its local data.

21

Sample Sort: Summary

* 0(1) rounds

N
0 (glog p) work per worker

-0 (glog %) if comparison-based sorting is used in last

step

e 0 (%) space per worker

* O(N logp) total work

— O(N log N) if comparison-based sorting is used in last
step

* Now, can you solve the word count problem on
skewed data?

22

Technique 2:
Streaming Algorithms

Majority

* Given a sequence of items, find the majority if there is one

- AABCDBAABBAAAAAACCCDABAAA
* Answer: A

e Trivial if we have O(n) memory

e Canyou do it with O(1) memory and two passes?
— First pass: find the possible candidate
— Second pass: compute its frequency and verify that it is > n/2

* How about one pass?
— Unfortunately, no

24

Heavy hitters

 Misra-Gries (MG) algorithm finds up to k items that occur more
than 1/k fraction of the time in a stream

— Estimate their frequencies with additive error < N/(k+1)

 Keep k different candidates in hand. For each item in stream:
— If item is monitored, increase its counter
— Else, if < k items monitored, add new item with count 1
— Else, decrease all counts by 1

1234567829
25

Heavy hitters

 Misra-Gries (MG) algorithm finds up to k items that occur more
than 1/k fraction of the time in a stream

— Estimate their frequencies with additive error < N/(k+1)

 Keep k different candidates in hand. For each item in stream:
— If item is monitored, increase its counter
— Else, if < k items monitored, add new item with count 1
— Else, decrease all counts by 1

K=5

1234567829
26

Heavy hitters

 Misra-Gries (MG) algorithm finds up to k items that occur more
than 1/k fraction of the time in a stream

— Estimate their frequencies with additive error < N/(k+1)

 Keep k different candidates in hand. For each item in stream:
— If item is monitored, increase its counter
— Else, if < k items monitored, add new item with count 1
— Else, decrease all counts by 1

1234567829
27

Streaming MG analysis

N =total input size
* Error analysis

— True count € [counter, counter + # decrements]

— Each decrement corresponds to deleting (k+1) distinct
items from stream

— At most N/(k+1) decrements on each unique key
— So error < N/(k+1)

* Note:

— We can easily keep track of # decrements, so the actual
error guarantee can be smaller than N/(k+1)

— On real date sets, the true count is usually closer to the
upper bound, i.e., counter + # decrements

28

Challenge: The Maximum Subarray Problem

Input: Profit history of a company of the years.

Year 1 2 3 4 5 6 7 8 9
Profit (MS) -3 2 1 -4 5 2 -1 3 -1

Problem: Find the span of years in which the company earned the
most

Answer: Year 5-8 ,9 M$

Formal definition:

Input: An array of numbers A[1 ...n], both positive and negative
Output: Find the maximum V (i, ;), where V(i,j) = ¥._, A[k]

Challenge: Can you solve this problem in 0(1) rounds, O(N/p) work
per worker, and O(1) space per worker?

29

Technique 3:
Graph Algorithms

The Pregel Model for Graph Computation

* \Vertex-centric computation
e The Pregel model

 Each vertex has a local value and a binary state
(active/inactive)

— In each round (superstep), each vertex executes a
user-defined program:
1. If active, the vertex sends messages to neighbors

2. Aggregates messages (inactive vertices become active if
messages are received)

3. Updates local value and optionally set its state to inactive

— Whole computation terminates when no active
vertices

Example: PageRank

* |nitialization:
— local value =1, status = active for all vertices

* User-defined program

for each neighbor v
send message (v, val / outdegree)

val = sum(all messages m received) * 0.85 + 0.15
1f number of rounds > threshold:
set status to 1nactive

Example: BFS

* |nitialization:
— local value = 0, status = active at starting vertex

— local value = oo, status = inactive at all other
vertices

 User-defined program

for each neighbor v
send message (v, val+l)

new val = min(all messages m received)
1f new val < val then

val = new val
Else

set status to i1nactive

Shortest Path: Dijkstra’s Algorithm

Dijkstra(G,s) :
for each v eV do
v.d « ©,v.p « nil, v.color « white

s.d <0
create a min priority queue Q on V with d as key
while Q # @

u < Extract-Min (Q)
u.color « black
for each v € Adj[u] do
if v.color = white and u.d + w(u,v) <v.d then
V.p U
v.d «u.d+w(u,v)
Decrease-Key (Q,v,v.d)

* This is an inherently sequential algorithm!

34

Dijkstra’s Algorithm: Example

Note: All the shortest paths found by Dijkstra’s algorithm form a tree
(shortest-path tree).

35

Bellman-Ford (implemented in GraphX / GraphFrames)

* I|nitialization:
local value = 0, status = active at starting vertex
local value = oo, status = inactive at all other vertices

 User-defined program

for each neighbor v
send message (v, val + dist(self, v))

new val = min(all messages m received)
if new val < val then

val = new val
else

set status to inactive

 Can be much faster (less rounds) than Dijkstra’s
algorithm on shallow graphs

 But may do more total work.

e [t also supports negative-weight edges
— Dijkstra’s algorithm cannot handle negative-weight edges

