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Agenda

* Motivation & definition about “Security”
* Some interesting topics in security research
* Mindset

Learn to become a “hacker”, an ethic one ©



Cybersecurity is Real-World Problem-
Driven

* Many (research) topics are indeed driven by
security breaches in the real world!

* That’s one key reason | decide to work in this field



A Sad (?) Story
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What’s Security?

Confidentiality

Information is secret

Integrity
Information/System is correct

Availability

System is usable

You will again and again come to this part when doing security research...



Typical Topics Covered in Cybersecurity Studies

 Security basics and principles :
* Confidentiality, integrity, availability, attack models
* Cryptography:

* Basic crypto primitives, public key crypto, signatures,
authentication, symmetric crypto

» Software security:

* Memory errors, buffer overflow, obfuscation, malware, security
testing

e System & web security:

* Authentication, access control, protocols, browser security, side
channel attacks

e Security on emerging platforms:
* blockchain; loT; Al;



Reverse Engineering
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ow to find vulnerabilities in
software?

#include <stdio.h>
#define MAX_IP_LENGTH 15
int main(void) {

char file_name[] = "ip.txt";
FILE *fp;
fp = fopen(file_name, "r");
¢ higirmehiz
int counter = 0;
char buf[MAX_IP_LENGTH]; Buffer overflow if “ip.txt” has
while((ch = fgetc(fp)) '= EOF) { more than 15 bytes.
buf [counter++] = ch;
I

—> BUFFER
OVERFLOW
ATTACKS



Vulnerability Finding Today

* Security bugs can bring $500-5100,000 on the open market
* Good bug finders make $180-5250/hr consulting

* Few companies can find good people, many don’t even
realize this is possible.

e Google: Team Zero; Tencent: Keen Lab; ...

* Still largely a black art




Automatic Vulnerability Detection

Find a needle in a haystack

OSS-Fuzz - continuous fuzzing for
open source software.

& google.github.io/oss-fuzz

Fuzz Testing

CodeQL

Discover vulnerabilities across a codebase with CodeQL, our
industry-leading semantic code analysis engine. CodeQL lets you
query code as though it were data. Write a query to find all variants
of a vulnerability, eradicating it forever. Then share your query to help
others do the same.

Information flow analysis



Formal Verification

* Formal verification can (ideally) completely eliminate
vulnerabilities.
 Mathematically prove the absence of bugs.

 How to | know the insertion sort will always return a sorted

L]
Ilst? # Python program for implementation of Insertion Sort

# Function to do insertion sort
def insertionSort (arr):

# Traverse through 1 to len(arr)
for i in range(l, len(arr)):

key = arr[i]
# Move elements of arr[0..i-1], that are

# greater than key, to one position ahead
# of their current position

j = 1i-1

while j >=0 and key < arr[j] :
arr[j+1] = arr[j]
j =1

arr[j+1l] = key

# Driver code to test above

arr= [12, 11, 13; 5; 6]

insertionSort (arr)

print ("Sorted array is:")

for i in range(len(arr)):
print ("%d" %arr[i])



Formal Verification

* You can prove it, as how you prove some Euclidean

geometry properties.

# Python program for implementation of Insertion Sort

# Function to do insertion sort
def insertionSort (arr):

# Traverse through 1 to len(arr)
for i in range(l, len(arr)):

key = arr[i]

# Move elements of arr[0..i-1], that are
# greater than key, to one position ahead
# of their current position
j = 1i-1
while j >=0 and key < arr[j]

arr[j+1l] = arr[jl]

B R
arr[j+1] = key

# Driver code to test above

arr = [12, 11, 13, 5; 6]

insertionSort (arr)

print ("Sorted array is:")

for i in range(len(arr)):
print ("%d" %arr[i])

Proof

—

Computer will check the
correctness

Haven’t finished yet..



Side Channel Attacks

l How?
‘ Unable to exploit vulnerabilities

%

Exploit software vulnerabilities




Side Channel Attacks

* De-facto exploitations in Cybersecurity

Side Channels

Infer secrets via secret-dependent
physical information.

A
4



Side Channel Attacks

* Infer your secrets (password; private key) via
acoustic side channel attack

(A)

Attacker’s Victim’s



Blockchain
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Bitcoin

Unregulated digital currency
Bitcoin transactions are stored on Blockchain
Each anonymous address on the blockchain
acted as a simple bank account.
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! Ethereum

I+ Unregulated digital currency and computing system
I+ Smart contracts: programs executed on the blockchain |
I+ Each anonymous address on the blockchain could be a |
I user orasmart contract. I

e e e e e e e e e e e e e e e e e e = =

Blockchain figure from: https://blog.theodo.com/2018/01/deploy-first-ethereum-smart-contract-blockchain/



Artificial Intelligence

* Al techniques have been used for security purposes.
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Artificial Intelligence

e Adversarial attacks are popular...

+ 0.001x Classification failure

Object detection failure

We will talk more cases on Al security.



The Security Mindset

Attacker vs. defender



The Security Mindset

* Think like a cyber attacker

* Understand techniques and opportunities for
exploiting security. = next two slides

* Think like a cyber defender
* Know yourself: security policy
* Know yourself: risk assessment
* Know your enemy: threat model

* Benefits vs. costs:
* Some security defenses are just too expensive




Think Like an Attacker

Breach!
have
Systems ~ Assets
A
 contain to control
\J
Vulnerabilities - Attackers

exploited by



Think Like an Attacker

Where do vulnerabilities come from?

Vulnerabilities

/ AN

Design Implementation
* Theoretical limitations « Coding errors
* Lack of security features e Hardware errors
(e.g. authentication) * Injected errors
* Side channels * Failure to meet specifications

* Wrong threat model

* Wrong user model Where can | get vulnerabilities?

* Find unknown vulnerabilities = hard
* Buy zero-day vulnerabilities 2> well, you can do that..?
* Reuse known vulnerabilities > easy?




But Why Good Citizens Need to Know
How to Attack?

To understand this, think about why biologists would study (unknown) virus...

White hat wizards!
* Identify vulnerabilities so they can be fixed.
 Learn about unknown threats.

* Help venders to build more secure systems.
+—And-getlotsofbenusfremvendeors




Think Like a Defender

 Security policy

 What property we are trying to enforce?
* E.g., password can only be stored within my phone.

e E.g., data pointers in your C code can only access certain
memory region.

* Could be difficult to even define the policy/specification

e Risk assessment

* |dentify assets (e.g., network, servers, applications, data
centers, etc.) within the organization.

e Asset criticality.

* Measure the risk ranking for assets and prioritize them
for assessment.



Think Like a Defender

* Threat model
* Who are the attackers?
* What kind of capability they have?
* What kind of information/data they try to steal?



Think Like a Defender

* Threat model for a (simplified) cloud computing platform
» Attacker; capability; assets



Think Like a Defender

e Threat model

* Who are the attackers?
» Service provider, and other users

* What kind of capability they have?
 Service provider can control anything

* Attackers on the cloud VM can share the same hardware with you
* Common threat model for side channels

 What kind of assets they try to steal?
* Anything valuable!



Think Like a Defender

e Costs vs. benefits?

* For example, to protect an OS kernel from being
exploited, you can have two options:
* Online monitoring:

* easy to do.
* slow down the performance

e Offline formal verification:
* very difficult to conduct for commercial OS.
* But no penalty for online performance.

 Saltzer and Schroeder’s Principles of Secure Design

* A series of design principles for secure systems
* Extensions for reading after the class.

* Some of the rules may not be applicable nowadays.



Saltzer and Schroeder's Principles
of Secure Design

* 1) Open Design vs. Obscure Design

The system’s design
should be openly available to everyone.

“Given enough eyeballs, all bugs are shallow”
-- Linus Torvalds

® ?
“The eyeballs weren’t looking”




Saltzer and Schroeder's Principles
of Secure Design

e 2) Economy of Mechanism

The system should be simple enough
to understand and analyze.

Helpful for security analysis:
* Debugging/code audit

* Static/dynamic analysis

* Formal verification

Clean interfaces between modules,
avoid global state, etc.




Saltzer and Schroeder's Principles
of Secure Design

* 3) Least Privilege

A subject should only be given the minimum
necessary privileges for completing its task.

MAKE ME A SANDWICH.
‘ WHAT? MAKE
IT YOURSELF.
SUDO MAKE ME /
A SANDWICH.
OKAY.

|
5

:

Figure out exactly what capabilities a program

requires in order to run, and grant exactly

those

* This is not easy. One approach is to start
with granting none, and see where errors
occur.




Summary

* The endless arms race between cyber attackers and
defenders lead to many interesting problems

* For doing research & engineering

* Be a happy and ethic hacker!

e Otherwise, you (and your teacher) might run into
trouble ...



