Introduction to Cybersecurity
and Security Mindset
Shuai Wang

Eﬂ]éi&*ﬂﬂiﬁ:%
THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Agenda

* Motivation & definition about “Security”
* Some interesting topics in security research
* Mindset

Learn to become a “hacker”, an ethic one ©

Cybersecurity is Real-World Problem-
Driven

* Many (research) topics are indeed driven by
security breaches in the real world!

* That’s one key reason | decide to work in this field

A Sad (?) Story

aws

Translate ¥

Was this response helpful? Click here
to rate:

Amazon Web

Services
* ok kKK

Mon May 18 2020 Hi there,
1N-C1-248
wangshuai

g Hello,
aws

Translate V¥
isr nse helpful? Click her

Armaron Web Was this response helpful? Click here

. to rate:
Services

) & & & &

Fri Jun 05 2020 Hello there,
15:00:49
GMT+0800 (Hong Martin here from AWS.
Kong Standard
Time) I'm happy to advise that 100% of the charges for the compromised activity on '

been waived. Rest assured, you no longer have to worry about the charges.

To avoid similar compromises in the future, please consider the following to hel
security of your account.

What’s Security?

Confidentiality

Information is secret

Integrity
Information/System is correct

Availability

System is usable

You will again and again come to this part when doing security research...

Typical Topics Covered in Cybersecurity Studies

 Security basics and principles :
* Confidentiality, integrity, availability, attack models
* Cryptography:

* Basic crypto primitives, public key crypto, signatures,
authentication, symmetric crypto

» Software security:

* Memory errors, buffer overflow, obfuscation, malware, security
testing

e System & web security:

* Authentication, access control, protocols, browser security, side
channel attacks

e Security on emerging platforms:
* blockchain; loT; Al;

Reverse Engineering

HhHe 1 Test v | hemp v £& = B[2M A=
DEme @ 2HAS /0 PR NY T v & &)
Ben [SBMER "~ o NX -0~ SHK~~ ¢ : ;2% uhm BAVAS

X D:\temp\binaryCrack\Debug\bil m2 e %% 7 464
Please enter the passwor v i A N

] IDAViewA | 33 Mex ViewA | B Exports Bglrro-:m N Names) Funcions a Stuchses En Enums

ldfl‘gdl‘tgl‘tdfg call Sub_hui/ow
call sub_hoihoe
” R o ‘d »nov [espe+98hevar 98], offset aPleaseEnterYou ; "lease enter your pa rd
long paool'lol call ‘ll‘illl'
1ea eax, [ebpevar /8]
nov [esp+98hevar_94], eax
nov [espe98hevar 98], offset as
call scanf
lea eax, [ebpevar 78]
nov [espe98hevar _94), offset aFindmeifyoucan ; “FindMelfYoutan
nov [esp+98hsvar 98], eax
call Shrenp
test A, Pax
inz short loc A@13et
BN BN
wv [esp+9Bhesvar 98], offset aCongratsCorrec ; "Congratstt Correct Pa i
zall printf loc_hot3e1: : "Wong Pa n\n
jnp short loc 01300 nov [espeYEhevar 98], offset aWrongPass
call printf
|
Yy
AN A
100,00% (5,414) (300,160) O0000EEA OOM0IZEA: _maineS5A

Compiling Tile s\Program Files\IDA Demo §,3\1dc\1da,%dc¢", ..
Executing fTuncel masnt,.,.,
Compiling Tile ‘Ci\Program Files\I0A Demo §,3\1dc\onload,fac’, ..
Executing Tunction “Omoad'...
I0A 15 analysing the 1nput Mle...
YOuU may start to explore the 1nput file right now.
Using FLIRT signature: SEM for vc?/8
Propagating type information...
Function argument information has been propagated
AUTOANS %1% has been

ow to find vulnerabilities in
software?

#include <stdio.h>
#define MAX_IP_LENGTH 15
int main(void) {

char file_name[] = "ip.txt";
FILE *fp;
fp = fopen(file_name, "r");
¢ higirmehiz
int counter = 0;
char buf[MAX_IP_LENGTH]; Buffer overflow if “ip.txt” has
while((ch = fgetc(fp)) '= EOF) { more than 15 bytes.
buf [counter++] = ch;
I

—> BUFFER
OVERFLOW
ATTACKS

Vulnerability Finding Today

* Security bugs can bring $500-5100,000 on the open market
* Good bug finders make $180-5250/hr consulting

* Few companies can find good people, many don’t even
realize this is possible.

e Google: Team Zero; Tencent: Keen Lab; ...

* Still largely a black art

Automatic Vulnerability Detection

Find a needle in a haystack

OSS-Fuzz - continuous fuzzing for
open source software.

& google.github.io/oss-fuzz

Fuzz Testing

CodeQL

Discover vulnerabilities across a codebase with CodeQL, our
industry-leading semantic code analysis engine. CodeQL lets you
query code as though it were data. Write a query to find all variants
of a vulnerability, eradicating it forever. Then share your query to help
others do the same.

Information flow analysis

Formal Verification

* Formal verification can (ideally) completely eliminate
vulnerabilities.
 Mathematically prove the absence of bugs.

 How to | know the insertion sort will always return a sorted

L]
Ilst? # Python program for implementation of Insertion Sort

Function to do insertion sort
def insertionSort (arr):

Traverse through 1 to len(arr)
for i in range(l, len(arr)):

key = arr[i]
Move elements of arr[0..i-1], that are

greater than key, to one position ahead
of their current position

j = 1i-1

while j >=0 and key < arr[j] :
arr[j+1] = arr[j]
j =1

arr[j+1l] = key

Driver code to test above

arr= [12, 11, 13; 5; 6]

insertionSort (arr)

print ("Sorted array is:")

for i in range(len(arr)):
print ("%d" %arr[i])

Formal Verification

* You can prove it, as how you prove some Euclidean

geometry properties.

Python program for implementation of Insertion Sort

Function to do insertion sort
def insertionSort (arr):

Traverse through 1 to len(arr)
for i in range(l, len(arr)):

key = arr[i]

Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position
j = 1i-1
while j >=0 and key < arr[j]

arr[j+1l] = arr[jl]

B R
arr[j+1] = key

Driver code to test above

arr = [12, 11, 13, 5; 6]

insertionSort (arr)

print ("Sorted array is:")

for i in range(len(arr)):
print ("%d" %arr[i])

Proof

—

Computer will check the
correctness

Haven’t finished yet..

Side Channel Attacks

l How?
‘ Unable to exploit vulnerabilities

%

Exploit software vulnerabilities

Side Channel Attacks

* De-facto exploitations in Cybersecurity

Side Channels

Infer secrets via secret-dependent
physical information.

A
4

Side Channel Attacks

* Infer your secrets (password; private key) via
acoustic side channel attack

(A)

Attacker’s Victim’s

Blockchain

BLOC 64

ENTETE 64
HASH BLOCK 63

TRANSACTION 2163
TRANSACTION 2164
TRANSACTION 2165

TRANSACTION 2166

PROOF OF WORK 64

HASH BLOCK 64

Bitcoin

Unregulated digital currency
Bitcoin transactions are stored on Blockchain
Each anonymous address on the blockchain
acted as a simple bank account.

BLOC 65

ENTETE 65

HASH BLOCK 64

i

TRANSACTION 2267

TRANSACTION 22468

TRANSACTION 2269

TRANSACTION 2270

PROOF OF WORK &5

HASH BLOCK 65 3

The best real-world crypto application and-have-mademanymiltienaires?

\

ENTETE 66 ENTETE 67
<l HASH BLOCK 65 (] HASH BLOCK 66
TRANSACTION 2371 TRANSACTION 2475
TRANSACTION 2372 TRANSACTION 2476
TRANSACTION 2373 TRANSACTION 2477
TRANSACTION 2374 TRANSACTION 2478
PROOF OF WORK 66 PROOF OF WORK 67

== = = = = = === === - -

! Ethereum

I+ Unregulated digital currency and computing system
I+ Smart contracts: programs executed on the blockchain |
I+ Each anonymous address on the blockchain could be a |
I user orasmart contract. I

e e e e e e e e e e e e e e e e e e = =

Blockchain figure from: https://blog.theodo.com/2018/01/deploy-first-ethereum-smart-contract-blockchain/

Artificial Intelligence

* Al techniques have been used for security purposes.

L S SN
. ,ﬁ'ﬂ3mg7no\ NN

\sofymw;

;’ - ', _u;’;- . - ‘ .:'.
» BREAKING NEWS. - \‘1\' o \:\ - NN

POLICE CHASING STOLEN VEHICLE -
-~ = <

Medical Image Processing

Artificial Intelligence

e Adversarial attacks are popular...

+ 0.001x Classification failure

Object detection failure

We will talk more cases on Al security.

The Security Mindset

Attacker vs. defender

The Security Mindset

* Think like a cyber attacker

* Understand techniques and opportunities for
exploiting security. = next two slides

* Think like a cyber defender
* Know yourself: security policy
* Know yourself: risk assessment
* Know your enemy: threat model

* Benefits vs. costs:
* Some security defenses are just too expensive

Think Like an Attacker

Breach!
have
Systems ~ Assets
A
 contain to control
\J
Vulnerabilities - Attackers

exploited by

Think Like an Attacker

Where do vulnerabilities come from?

Vulnerabilities

/ AN

Design Implementation
* Theoretical limitations « Coding errors
* Lack of security features e Hardware errors
(e.g. authentication) * Injected errors
* Side channels * Failure to meet specifications

* Wrong threat model

* Wrong user model Where can | get vulnerabilities?

* Find unknown vulnerabilities = hard
* Buy zero-day vulnerabilities 2> well, you can do that..?
* Reuse known vulnerabilities > easy?

But Why Good Citizens Need to Know
How to Attack?

To understand this, think about why biologists would study (unknown) virus...

White hat wizards!
* Identify vulnerabilities so they can be fixed.
 Learn about unknown threats.

* Help venders to build more secure systems.
+—And-getlotsofbenusfremvendeors

Think Like a Defender

 Security policy

 What property we are trying to enforce?
* E.g., password can only be stored within my phone.

e E.g., data pointers in your C code can only access certain
memory region.

* Could be difficult to even define the policy/specification

e Risk assessment

* |dentify assets (e.g., network, servers, applications, data
centers, etc.) within the organization.

e Asset criticality.

* Measure the risk ranking for assets and prioritize them
for assessment.

Think Like a Defender

* Threat model
* Who are the attackers?
* What kind of capability they have?
* What kind of information/data they try to steal?

Think Like a Defender

* Threat model for a (simplified) cloud computing platform
» Attacker; capability; assets

Think Like a Defender

e Threat model

* Who are the attackers?
» Service provider, and other users

* What kind of capability they have?
 Service provider can control anything

* Attackers on the cloud VM can share the same hardware with you
* Common threat model for side channels

 What kind of assets they try to steal?
* Anything valuable!

Think Like a Defender

e Costs vs. benefits?

* For example, to protect an OS kernel from being
exploited, you can have two options:
* Online monitoring:

* easy to do.
* slow down the performance

e Offline formal verification:
* very difficult to conduct for commercial OS.
* But no penalty for online performance.

 Saltzer and Schroeder’s Principles of Secure Design

* A series of design principles for secure systems
* Extensions for reading after the class.

* Some of the rules may not be applicable nowadays.

Saltzer and Schroeder's Principles
of Secure Design

* 1) Open Design vs. Obscure Design

The system’s design
should be openly available to everyone.

“Given enough eyeballs, all bugs are shallow”
-- Linus Torvalds

® ?
“The eyeballs weren’t looking”

Saltzer and Schroeder's Principles
of Secure Design

e 2) Economy of Mechanism

The system should be simple enough
to understand and analyze.

Helpful for security analysis:
* Debugging/code audit

* Static/dynamic analysis

* Formal verification

Clean interfaces between modules,
avoid global state, etc.

Saltzer and Schroeder's Principles
of Secure Design

* 3) Least Privilege

A subject should only be given the minimum
necessary privileges for completing its task.

MAKE ME A SANDWICH.
‘ WHAT? MAKE
IT YOURSELF.
SUDO MAKE ME /
A SANDWICH.
OKAY.

|
5

:

Figure out exactly what capabilities a program

requires in order to run, and grant exactly

those

* This is not easy. One approach is to start
with granting none, and see where errors
occur.

Summary

* The endless arms race between cyber attackers and
defenders lead to many interesting problems

* For doing research & engineering

* Be a happy and ethic hacker!

e Otherwise, you (and your teacher) might run into
trouble ...

