

Turn Based Strategy Game
Pedram Amirkhalili

Supervised by: Prof. Sunil Arya

Introduction

Motivation

Turn-Based Tactics (TBT) games are often plagued with long level
design times. “Endless Tower”, is a game that gets round this by
randomly generated levels with the help of a genetic algorithm.

Objectives:

1. Randomly generated levels

2. Genetic algorithm for generation

3. Basic gameplay mechanics

TBT games repeatedly have two major issues, the first is that the level de-

sign process can be very lengthy. The second is without the correct and

strenuous testing, levels can often be more difficult than they should be.

Figure B: Difficulty Curve that may

occur due to randomly generating

levels

Fig. B shows a plot of Estimated Difficul-

ty against Level Number, sometimes re-

ferred to as a difficulty curve. It shows a

case in which the difficulty becomes wild-

ly varied due to all control over the level

being deferred to the random chance.

Player’s must survive by outwitting
an AI on varying maps, with nothing
but their Army to help them.

Figure A: The title screen

E
st

im
at

ed
 D

iffi
cu

lt
y

Level Number

The lengthy design process can be re-

duced by randomly generating levels

that fit a set of pre-defined criteria.

Random Generation

E
st

im
at

ed
 D

iffi
cu

lt
y

Level Number

The second major issue and the problem

random generation causes (Fig. B), is re-

solved through the introduction of a ge-

netic algorithm

Figure C: The “Ideal” Difficulty

Curve that most games try to emu-

late

The genetic algorithm evaluates the lev-

els that are generated and breeds them

in to find the “ideal” difficulty based on

level number.

The levels for Endless Tower are

generated in 3 parts:

1. Map

2. Armies

3. AI

The map is generated by placing

different tile types into a large array,

using varying methods dependent

on tile type.

Then 2 armies, one for the player

and one for the AI, composed of

units from a pool of different types

are created and placed across map

to set up the battlefield

Figure D: An example of a randomly gen-

erated level.

The AI is simply selected to be either

passive or aggressive, with a chance

of having a priority targeting sys-

tem.

Fitness Function

Conclusion

Once a sufficient number of levels have been generated they are passed to

the genetic algorithm. Levels are evaluated by a Fitness Function on two

fronts, the map and the strength of the player and AI armies.

The map was planned to

be evaluated, as shown in

Fig. E, on each “Choke

Point” in it. The proximity

to the player/AI deter-

mined it’s score.

Figure E: The evaluation planned for maps, based

off choke points

The new player score is subtracted from the AI’s new score. This is then

combined with the map component to get the overall score for the level.

Figure F: The evaluation used for each unit in the

player’s army, this was done for the AI’s army as well.

The levels and are then bred through the genetic algorithm to find one that

meets the current requirements as specified by Fig. C.

The armies of both player

and AI are evaluated as

shown in Fig. F, their re-

spective scores are multi-

plied by a “Skill Level”.

This project achieved the majority of it’s objectives, and begun to solve two

big issues in TBT games.

However there is still more that could have been done given more time:

 Completing map evaluation

 Background for the game world

