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Traditionally, the study of binary classification has been formulated as a deterministic 

problem with 0-1 labels. However, probabilistic labels are becoming more popular 

nowadays, and they have many practical applications in our real life. Since 

probabilistic labels are more informative - they imply probabilities of the samples 

belonging to positive cases (i.e., labelled as 1), intuitively predictions can be more 

accurate with probabilistic labels in training datasets. Therefore, in this project, from 

both theoretical and experimental view we verify whether probabilistic labels are 

worth using in different data density distribution. 

Training datasets 
Consider a binary classification with two classes, 0 and 1. In traditional setting, we are 

given a training dataset T which contains instances I1, I2 … In. Each instance is 

associated with a feature vector xi and a target attribute yi where i∈ℕ. Let X be the set 

of all possible feature vectors. Note that there are two possible values of target attribute 

yi, 0 and 1. A classifier h is defined to be a hypothesis which takes feature vector xi as 

an input and its output yi is either 0 or 1. 

Everything of datasets with probabilistic labels remains the same, except that now 

target attributes are fractional scores fi.. We assume that all instances are generated 

according to a joint distribution of two random variables, X and Y, denoted by Pr (X, 

Y). Given a feature vector x, we define  (x) to be the conditional probability Pr 

(Y=1| X=x), the probability that an instance with its feature having its target 

attribute equal to1. Note that 𝜂̂(x) is the estimated probability, i.e., 𝜂̂(x) can be 

considered as the computed version of  (x).  fi can be regarded as an “observed” 

version of  (xi), since it is obtained by labelers and statistical information. To be more 

specific, fi is the value  (xi) added by Gaussian white noise. With this noise condition, 

each fractional score fi follows N( (xi),σ2). If fi is smaller than 0, then it can be 

assigned to class 0. Likewise, if fi is larger than 1, then it can be assigned to class 1. 
 

Measurement of Error 
Given a classifier h = 𝑰η̂(x)≥ 0.5, the expected error of h, denoted by err(h), is defined to 

be Pr (x,y)~Pr (X,Y)(y ≠ h(x)). The Bayes classifier, denoted by h* = I (x)≥ 0.5, is defined 

to be the classifier which gives the minimum expected error. Given a classifier, its 

excess error, denoted by E(h), is defined as err(h)-err(h*). Note that E(h) must be 

greater than 0. The hypothesis is more accurate when E(h) is approaching 0. 

 

Data Density Distribution 
Firstly we here state the definition of Tysbakov Noise Condition: 

Definition: Given two noise parameters c>0 and γ ≥ 0, ∀t∈(0, 0.5),  

Pr⁡(𝔼[|𝜂(𝑥) − 0.5|] < 𝑡) ≤ 𝑐𝑡𝛾 

Define 𝑓(𝑡) = c𝑡𝛾. 𝑓’(𝑡)⁡reflects the distribution of data density. 

 

 

 

Problem Definition 

Abstract 



1) Convex Distribution: 

a) Bowl-shape Distribution: when γ > 2,  

data density in terms of  (x) looks like  

a bowl. 

b) V-shape Distribution: when γ = 2, data  

density in terms of  (x) is a symmetrical  

V-shape and the lowest point is at 

  (x)=0.5. 

c) Casp Distribution: when 1 < γ < 2,  

data density in terms of  (x) is a casp. 

2) Uniform Distribution: when γ = 1, data is  

uniformly distributed. 

3) Peak Distribution: when 0 ≤ γ < 1, data  

accumulates around classification boundary. 

4) Double-arch and Double-shape Distribution: 

in this case we write the definition formula as  

Pr⁡(𝔼[|𝜂(𝑥) − 0.5|] < 𝑡) ≤ 𝑐(
1

3
𝑡3 +

1

4
𝑡2) 

instead of original formula in order to get  

tighter error bound. 

 

 

 

 

 

Models 

In this project, we theoretically analyze the error bound of prediction with the use of 

probabilistic labels and Gaussian Process Regression. We also adopted Radial Basis 

Function Network, Nearest Neighbor as well as LibSVM to our experiments for 

comparison. 

 

Problem 
In this project, we study whether in every data density distribution can the models 

perform better with probabilistic labels than with clear-cut labels.  

 

 
Theoretical Results 



 

Experiments 

Only when data density follows any one of bowl-shape, V-shape, double-arch or 

double-bowl distribution do we get a prediction with Gaussian Process Regression and 

probabilistic labels at least as precise as with clear-cut labels. In other cases, the 

conclusion does not necessarily hold. 

Conclusion  
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We conducted experiments via Weka 3.6, on a workstation with 2.10 GHz CPU and 

2.0 GB RAM.  To examine the prediction accuracy, we performed a 10-fold cross 

validation for these experiments. In the result we present the accuracy of GPR with 

probabilistic labels, and the best result with clear-cut labels. Datasets were derived 

from UCI repository. 

Data in Model Years roughly followed bowl-shape distribution. With probabilistic 

labels, the prediction was much more accurate than with clear-cut labels. 

Data in Cadata roughly followed uniform distribution. With probabilistic labels, the 

prediction was no better than with clear-cut labels. 

Data in Student Performance roughly followed peak-distribution. The accuracy was 

even high when clear-cut labels were involved in dataset. 

Data in Wine Quality roughly followed double-arch distribution. With probabilistic 

labels, the prediction was apparently much more accurate than with clear-cut labels. 


