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Overview

The COVID-19 pandemic has significantly changed online shopping
behavior, prompting some tech companies to develop new digital
solutions for online shopping,

In response, Appcider Limited offers ShipAny, a software service
designed to assist merchants in managing orders from different online
platforms and arranging shipping using various courier services.

In this project, we aim to build a temporary e-commerce platform

within ShipAny. This will allow merchants to sell their products in
temporary online stores for specific periods.

Objectives

The objectives are divided into two perspectives:
Customer:
1. Receive a hyperlink from merchants and gain access to the stores,

2. Purchase products from online stores and have the products delivered to the shipping address.

Merchant:

1. Have the ability to publish the hyperlink and update any product information in the store.

2. Check customer order information and verify payment in ShipAny.
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3. Have the ability to use all courier services or locations from ShipAny.
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Methodology
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The system was implemented using AWS Services. The backend
server is deployed to AWS Lambda, while API Gateway handles I5\\__’
endpoint routing. DynamoDB and S3 are used for data storage, and

SQS is used to control concurrency limits.
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The restock system utilizes AWS SQS to check the expiration time of checkout creation and payment
submission. However, a race condition may occur if the restock system is triggered while the customer

is submitting the order or payment simultaneously.

To address this, we can add a mutex lock to prevent such race condition problems.
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Since the system depends on AWS Lambda, which is a serverless
platform, we deployed the project as a function and allowed API

Gateways to directly trigger the event.

Conclusion

Overall, the goals of this project have been successtully completed and it is ready for testing and

deployment in a production environment. We can simulate a customer's experience of purchasing a
product and having it delivered to the address.

Further improvements could include:
- Online payment

- Email notification

- User Interface
- Refund and Return order handling

- Deployment using Docker




