Computer Engineering Program

Temporary e-commerce platform

By LO, Chi Fung
Supervised by Prof. Wei WANG

Overview

The COVID-19 pandemic has significantly changed online shopping
behavior, prompting some tech companies to develop new digital
solutions for online shopping,

In response, Appcider Limited offers ShipAny, a software service
designed to assist merchants in managing orders from different online
platforms and arranging shipping using various courier services.

In this project, we aim to build a temporary e-commerce platform

within ShipAny. This will allow merchants to sell their products in
temporary online stores for specific periods.

Objectives

The objectives are divided into two perspectives:
Customer:
1. Receive a hyperlink from merchants and gain access to the stores,

2. Purchase products from online stores and have the products delivered to the shipping address.

Merchant:

1. Have the ability to publish the hyperlink and update any product information in the store.

2. Check customer order information and verify payment in ShipAny.

{ SHIPANY

3. Have the ability to use all courier services or locations from ShipAny.

‘ Select product from .
- e online shop -
End-customer | Merchants

Add to shopping cart

Create checkout

Select delivery method
and
Input customer information

Get shipping fee

\ 4

Submit checkout

\ 4

Upload payment
receipt

|

Thank you page

|

Wait for merchants to
process shippment

X——

Edit store
configuration

Input product information for sale

Create a temporaray
store

Set specific period for sale

Publish url to
customer

A

Wait customer to
purchase

A

Verify payment
receipt

l

Create shipping order

|

Deliver product to
customer address

Methodology

Backend system:

S3 DynamoDB SQS

.—Request—)
AP| Gateway [« > Lambda
~<——Response——

The system was implemented using AWS Services. The backend
server is deployed to AWS Lambda, while API Gateway handles I5__’
endpoint routing. DynamoDB and S3 are used for data storage, and

SQS is used to control concurrency limits.

Restock system:

. Send message to
——>» Create checkout SQS with delay >

- seconds

End customer

Receive message
after delay seconds

A 4

Do order submitted?

No

v

Mark as closed
and
Restock Product

‘ Send message to
——>» Submit checkout SQS with delay

- seconds

End customer

+| Receive message
>
after delay seconds

Y

<Do payment submitted?

No

\’

Mark as closed
and
Restock Product

I
N/
N
————
T —

9 LU

es_)

Drop message

Drop message

The restock system utilizes AWS SQS to check the expiration time of checkout creation and payment
submission. However, a race condition may occur if the restock system is triggered while the customer

is submitting the order or payment simultaneously.

To address this, we can add a mutex lock to prevent such race condition problems.

Restock Submit request Restock

Submit request

! !

Mutex Lock Mutex Lock

A 4 A 4

Restock Submit Request

Result

API Services

User
‘ requests
~_ different
endpoints

Lambda

Create, Read,
Update, Delete

Export
summary report

Sales setting

Other services
for merchants to
manage stores

—> API Gateway

™~

/’

redirect redirect redirect redirect
. Create, Submit
Sales Link ’
Checkout
parse redirect
storefront Upload, Submit
Lambda handler parse—) . —redirect—| P
services payment
parse redirect Diharcpnsi
VUICT STTVIUT S
for customer to
Sales order
browse the
stores
redirect redirect redirect redirect
L Other services
Get, Update, . Create shipping
. Verify Payment for merchants to
List order

manage

Since the system depends on AWS Lambda, which is a serverless
platform, we deployed the project as a function and allowed API

Gateways to directly trigger the event.

Conclusion

Overall, the goals of this project have been successtully completed and it is ready for testing and

deployment in a production environment. We can simulate a customer's experience of purchasing a
product and having it delivered to the address.

Further improvements could include:
- Online payment

- Email notification

- User Interface
- Refund and Return order handling

- Deployment using Docker

