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Abstract

In this paper, a new scheme to address the face recog-

nition problem is proposed. Different from traditional face

recognition approaches which represent each facial image

by a single feature vector as the classification problem,

the proposed method establishes a new way to formulate

the face recognition problem as a deformable image regis-

tration problem. The main contributions of the paper lie

in the following aspects: (i) Each pixel is represented by

an anatomical feature signature calculated from its corre-

sponding best scale salient region by using a new salient

region detector based on the survival exponential entropy

(SEE); (ii) The face recognition problem is formulated as

a deformable image registration problem, the deformation

model is represented by a Markov random field (MRF) la-

beling framework. Explicit pixel correspondence is estab-

lished by the deformation framework. (iii) The survival

exponential entropy based normalized mutual information

(SEE-NMI) is proposed and integrated with the MRF based

deformation model as the similarity measure to reflect the

similarity between two facial images. The proposed method

is evaluated on the FERET and FRGC version 2 databases

and compared with several state-of-the-art face recognition

approaches. Experimental results show that the proposed

method achieves the highest recognition rate among all the

compared approaches.

1. Introduction

Automatic face recognition (AFR) is an active research

topic in computer vision. Its applications include biomet-

rics, law enforcement, and surveillance development. It

has also gained an increasing interest in building natural

human-computer interaction (HCI) systems. Face recog-

nition is a challenging task because factors such as pose

[6], illumination [17, 12], facial expression [3] make it dif-

ficult to achieve high face recognition rate. As the demand

of such applications increases, many novel face recognition

methods have been proposed in the last several decades.

Face recognition can be factorized into two essential

parts for conventional face recognition approaches: (1) fea-

ture extraction from facial images; and (2) similarity mea-

sure and classifier design. Many feature extraction methods

have been proposed regarding to the first part. For exam-

ple, Wiskott et al. applied the Gabor wavelet features in the

elastic bunch graph matching algorithm (EBGM) for face

recognition [16]. Turk et al. used the principle component

analysis (PCA) to compute facial image features [14]. This

is commonly called the ”eigenface”. Belhumeur et al. pro-

posed the linear discriminant analysis (LDA) method [2],

which finds a linear transformation maximizing the inter-

class distance while minimizing the intra-class distance.

Manli and Martinez [20] selected the principal components

in a two-stage LDA. Hwang et al. proposed the hybrid

Fourier feature to model facial images [4]. In recent years, a

new feature extraction method, called local binary patterns

(LBP) was proposed, which was originally used in texture

classification [5]. It has also been applied in face recog-

nition [1] and facial expression recognition [11]. For the

second part, the Kullback-Leibler distance [13], χ2 statis-

tics, and etc. are commonly used to measure the similarity

between two facial images in classification.

In this paper, we propose a new way to formulate the

face recognition problem. More specifically, the face recog-

nition problem is converted to a deformable image registra-

tion problem. For each testing facial image, it is deformed

to the fixed training facial image space by a pre-defined de-

formation model. A similarity measure function is defined

between two facial images to guide the registration process.

The goal of the registration process is to find a deformation

field which can minimize/maximize the similarity measure

function between the deformed testing facial image and the

fixed training image. Finally, the testing facial image is

classified to the subject of the training image which is most

similar to the deformed testing image according to the sim-

ilarity measure function. The main contributions of this pa-
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per are listed as follows: (1) This paper proposes a new class

of method (i.e. deformable image registration) to model

the face recognition problem; (2) A feature driven Markov

random field (MRF) deformation model is proposed for the

registration process, a new salient region detector based on

the survival exponential entropy (SEE) is proposed to cal-

culate the best scale anatomical feature signatures for each

pixel; (3) A new information-theoretic measure function,

namely the survival exponential entropy based normalized

mutual information (SEE-NMI) is proposed and integrated

with the MRF based deformation model as the similarity

measure function to guide the registration process. The pro-

posed method is evaluated on both the FERET and FRGC

version 2 databases. It is shown that the proposed method

achieves the highest recognition rate among all the com-

pared state-of-the-art approaches.

The paper is organized as follows. In Section 2, we de-

scribe the details about how to formulate the face recogni-

tion problem as a deformable image registration problem.

Section 3 introduces the feature signature calculation pro-

cess for each pixel and the feature based MRF deformation

model. Section 4 gives the definition of the survival expo-

nential entropy based normalized mutual information (SEE-

NMI) and describes how to integrate it with the MRF defor-

mation model. Section 5 analyzes the experimental results

of the proposed method and the comparisons with other

widely used methods on the FERET and FRGC databases.

Section 6 concludes the paper.

2. Formulate Face Recognition as a De-

formable Image Registration Problem

In this section, we describe the motivation and details of

formulating face recognition as a deformable image regis-

tration problem.

2.1. Background Knowledge of Deformable Image
Registration

In computer vision, groups of images obtained by sam-

pling the same subject at different times, or from differ-

ent subjects, will be represented in different coordinate sys-

tems. The task of image registration is to transform differ-

ent groups of images into a common coordinate system for

comparison purpose.

Figure 1 shows the general flow chart of image registra-

tion.

As shown in Figure 1, The basic input data for the reg-

istration process are two images: one is the fixed image,

denoted as X , the other is the floating image, denoted as Y .

The goal of registration is to find an optimal transformation

Topt based on a pre-defined transformation model such that

the transformed floating image is aligned to the fixed im-

age. The optimal transformation Topt is defined according

Fixed Image

Floating Image

Similarity Measure Optimizer

TransformInterpolation

function value

transform

parameters

transformed

floating image

Figure 1. The flow chart of image registration.

to the similarity measure function E, the role of E is to eval-

uate the matching degree between the current transformed

floating image T (Y ) and the fixed image X , where T is

the transformation found in the current iteration. Therefore,

by minimizing/maximizing the similarity measure function

E, the corresponding transformation is said to be able to

precisely map the floating image to the fixed image. The

registration process thus can be illustrated by Equation 1:

Topt = argmax
T

E(X,T (Y )), (1)

where we assume that we need to maximize the target func-

tion E. After obtaining Topt, the final transformed floating

image can be calculated as Topt(Y ).
In order to minimize/maximize E, an optimizer is also

needed. Moreover, interpolation is also required in case

some of the pixels of the transformed floating image do not

fall exactly on the image grid of the fixed image. Some

commonly used similarity measure functions E in the liter-

atures are: sum of squared difference (SSD), mutual infor-

mation (MI) and et al. Transformation models can also be

various, simple transformation models include rigid trans-

form and affine transform [15], which has small degrees of

freedom. In order to transform the floating image more ac-

curately to the fixed image, more complicated transforma-

tion models are required, such as the B-spline based trans-

formation and the free-form deformation [10].

2.2. Face Recognition as a Deformable Image Reg-
istration Process

Face recognition has close connection with the de-

formable image registration process. For instance, one of

the major challenges for face recognition is the pose and

facial expression variations. Such variations are actually

caused by the deformable process of the muscles and fea-

tures of faces. Therefore, intuitively, by establishing re-

liable correspondence between two facial images via de-

formable image registration, such variations and interfer-

ence factors can be eliminated. Moreover, if a robust simi-

larity function E is adopted, illumination variation effects

can also be reduced. For example, the mutual informa-

tion (MI) is proved to be robust against global illumination

changes, bias fields and image modalities [15].

Therefore, we are motivated to formulate the face recog-

nition problem as a deformable image registration process.



Algorithm 1 Classification of an input testing facial image

Input: testing image Y , n training imagesXi (i=1,...,n). The deformation

model T , and the similarity measure function E.

Output: A class label assigned to Y .

1. FOR i = 1 to n

2. Register Y toXi by finding the optimal transformation Topt

to minimizing/maximizing E. Record the value of E with

respect to Topt, denote as Eopt(i).
3. IF Eopt(i) is the smallest/largest among Eopt(1) to Eopt(i)
4. Update Eglobal = Eopt(i).
5. Update Label(Y ) = Class label ofXi.

6. END IF

7. END FOR

8. Return Label(Y )

The framework of classifying an input testing image can be

summarized by Algorithm 1.

In the following sections, we will explain each compo-

nent of Algorithm 1 in detail: The deformation model T and

the similarity measure function E.

3. The Feature basedMRFDeformationModel

In this section, a feature based Markov random field

(MRF) deformation model is proposed and adopted as the

transformation model in this paper. There are two stages

of this deformation model: First, each pixel is represented

by a feature vector signature calculated from an anatomi-

cal region around it. The scale of the anatomical region is

determined by a new salient region detector based on the

survival exponential entropy (SEE). Then, the deformation

field is represented by a MRF labeling framework.

3.1. Feature Signature for Each Pixel

In this section, we describe the feature signature for each

pixel, which will be used to establish geometric correspon-

dence between two facial images by the MRF deformation

model.

Since faces are topological objects, different features of

faces have different sizes and scales. Therefore, in order to

accurately represent the anatomical properties around each

pixel p, the most salient scales with respect to the anatomi-

cal regionRp centered at p should be first determined. Then

anatomical descriptors are calculated from Rp as the signa-

tures for pixel p.

In this paper, we measure the saliency of anatomical re-

gions based on local image complexity. The survival expo-

nential entropy [21] (SEE) is used to statistically measure

the local image complexity. SEE is defined as follows [21]:

Definition 1: For a random vectorX inRm, the survival

exponential entropy of order α is [21]:

Mα(X) =







∫

Rm
+

F
α

|X|(x)dx







1
1−α

(2)

for α ≥ 0, where m defines the number of dimensions

for X . |X| denotes the random vector with components

|X1|,...,|Xm|. The notation |X| > x means that |Xi| > xi

for xi ≥ 0, i = 1, ...,m. The multivariate survival function

F |X|(x) of the random vector |X| is defined as:

F |X|(x) = P (|X| > x) = P (|X1| > x1, ..., |Xm| > xm)
(3)

for x ∈ Rm
+ with Rm

+ defined by Equation 4:

Rm
+ = {x ∈ Rm : x = (x1, ..., xm), xi ≥ 0, i = 1, ...,m} .

(4)

As compared with the conventional Shannon’s entropy, SEE

has several advantages: (1) SEE is always nonnegative; (2)

SEE have consistent definitions in both the continuous and

discrete domains; (3) The Shannon’s entropy is calculated

based on the density of the random variable p(X). How-

ever, p(X)may not exist as stated in [13]. SEE is calculated
based on the survival function which always exists.

In this paper, the random vector X is the local inten-

sity probability distribution histogram of a squared region

with scale s (i.e. the side length of the square) centered at

each pixel p. Let H(s, p) denote the local intensity prob-

ability distribution calculated from the squared region cen-

tered at p with side length s. It is obvious that the larger

of the value of Mα(H(s, p)), the more image complexity
contained in the squared region. However, if that region ex-

hibits high degrees of self-similarity over a wide range of

scales, it should also be considered as non-salient (e.g. tex-

tures). Therefore, the scale saliency measure function of

each pixel p with scale s, denoted as A(s, p), is defined by
the SEE value of H(s, p) multiplied by the Jensen Shannon
divergence between H(s, p) and H(s−∆s, p) as in Equa-
tion 5:

A(s, p) = Mα(H(s, p)) · JSD(H(s, p), H(s−∆s, p)),
(5)

where JSD(·) denotes the Jensen Shannon divergence, s−
∆s denotes the predecessor scale with respect to scale s.

For each pixel p, the best scale Sp associated with it is

defined as:

Sp = argmax
s

A(s, p). (6)

Based on the experimental results, it is found that α = 3
is a good choice as the order parameter of SEE. The scale

space is defined from 4 to 20 pixels, that is, the best scale of
each pixel is selected from the set of candidate scales {s|s =
4, 5, . . . , 20}, the discrete scale difference parameter ∆s is

set to 1. Such settings are used throughout the whole paper.



Figure 2 shows the top 10 salient regions calculated by

Equation 5 with their corresponding center pixel p located

at the center of the region and the best scale Sp as the side

length of the squares. Figures 2 (a) and (b) are facial im-

ages taken from the same subject but with different facial

expressions in the FERET database, while Figure (c) is a

facial image taken from a different subject in the FERET

database.

(a) (b) (c)
Figure 2. The top 10 most salient regions detected by using Equa-

tion 5, with the referencing pixel at the center of each squared

region. The best scale is represented by the side length of each

squared region. (a) and (b) are two facial images of the same sub-

ject taken from FERET, (c) is a facial image of a different subject

taken also from FERET.

It is observed that the locations of the most salient pix-

els and their corresponding best scales are very similar with

each other in Figures (a) and (b), but are significantly differ-

ent from each other compared to Figure (c). It demonstrates

the effectiveness of the proposed best scale salient measure

expressed by Equation 5, as indeed Figures 2 (a) and (b)

are from the same subject and it exhibits high degrees of re-

peatability, which can also clearly distinguish the one from

Figure 2 (c).

One point should be emphasized is that, determining the

best scale of each pixel is of essential importance. For ex-

ample, the salient region detected around the nose region in

Figure 2 (a), the region will become non-salient if the scale

of the squared region becomes smaller. Therefore, saliency

of each pixel is closely related to the scales under consider-

ation.

After determining the best scale Sp of each pixel p, we

then extract anatomical features from the squared regions

Vp centered at p with side length Sp as signatures for pixel

p. In this paper, The histogram of the uniform local binary

patterns (LBP) [1] calculated from Vp is used as signature

for each pixel p, denoted as ~fp. The radius of LBP is set to 2

and the number of neighboring samples is set to 8 following

the same line in [1].

It is worth pointing out that the proposed method is dif-

ferent from the conventional LBP [1] for face recognition.

The conventional LBP method extracts a single feature vec-

tor of each pre-defined partitioned region of facial images,

combining the feature vectors extracted from each parti-

tioned region together, and pass them to the classifier. While

our approach used LBP features as signatures for each pixel,

which is used to establish correspondence between different

pixels in the deformation model to be discussed in the next

section.

3.2. The Markov Random Field Deformation

Model

After calculating the feature signatures ~fp for each pixel

p with respect to its best scale Sp, it is served as the input

for a Markov random field (MRF) deformation model.

The general form of the MRF energy function can be

expressed as:

E = Edata + Esmoothness

=
∑

p∈Ω

Dp(lp) +
∑

(p,q)∈N

Vp,q(lp, lq), (7)

where Ω is the set of pixels, N is the neighborhood sys-

tem defined in Ω. In this paper, the 4-connected neighbor-

hood system is used. Dp(lp) is the energy function for the

data term, which penalizes the cost of assigning label lp to

pixel p, and Vp,q(lp, lq) is the energy function related to the
smoothness term penalizes the cost of label discrepancy be-

tween two neighboring pixels.

The registration problem is converted to the MRF label-

ing problem by quantizing the deformation space. A dis-

crete set of labels L ∈ {l1, l2, ..., ln} is defined. Each la-

bel li (1 ≤ i ≤ n) corresponds to a displacement vector
~di. Each label assignment lp to pixel p denotes moving p

to a new position according to the corresponding displace-

ment vector ~dlp . In this paper, each pixel can be displaced

off the original position bounded by a discretized window

Ψ = {0,±s,±2s, ...,±ws}d of dimension d. Since we are

dealing with 2D facial images, the dimension d is 2. The

2D displacement window for the MRF deformation field in

this paper is set to: Ψ = {0,±1,±2, ...,±12}2.
The data term energy function Dp(lp) is defined based

on the feature signature for each pixel as:

Dp(lp) = Dp(Gfixed(p), Gfloat(p+ ~dlp)

= Dp(~f
fixed
p , ~f

float

p+ ~dlp
))

= JSD(~ffixed
p ||~ffloat

p+ ~dlp
), (8)

where Gfixed is the fixed image, Gfloat is the floating im-

age, ~ffixed
p denotes the feature vector signature for pixel p

of the fixed image, ~f
float

p+ ~dlp
denotes the feature vector sig-

nature of p after p is displaced off the original position ac-

cording to the displacement vector ~dlp of the floating image.

JSD(·) denotes the Jensen Shannon divergence. Therefore,
we can observe that the data term energy function actually



is establishing pixel correspondence between two facial im-

ages based on comparing the feature signature similarities

between two pixels.

The piece-wise truncated absolute distance is used as the

energy function related to the smoothness term:

Vp,q(lp, lq) = min(λ, | ~dlp − ~dlq |), (9)

where λ is a constant representing the maximum penalty. λ

is set to 15 in this paper. The truncated absolute distance is

a metric as stated in [18].

The energy function defined in Equations 7 is optimized

by the the α-expansion algorithm [18].

It should be noted that the energy function expressed

by Equation 7 is defined based on the local pixel informa-

tion. As both the data term and smoothness term are defined

based on comparing the individual pixel-wised feature sig-

nature similarity and label similarity. Such local informa-

tion may become unstable in the presence of the global illu-

mination changes. Therefore, in the next section we will in-

troduce the survival exponential entropy based normalized

mutual information (SEE-NMI), which is a global measure

metric and can serve as the complement for the original

MRF energy term defined by Equation 7. SEE-NMI is a

generalized information-theoretic metric which shares the

robustness property of the conventional mutual information

(MI) such as the robustness against bias fields and illumina-

tion changes.

4. The Survival Exponential Entropy based

Normalized Mutual Information

In this section, we propose a global similarity measure

metric, namely the survival exponential entropy based nor-

malized mutual information (SEE-NMI) to integrate with

the MRF model proposed in Section 3. SEE-NMI is defined

based on SEE and shares similar properties of the conven-

tional MI [15], such as its robustness against image bias

fields and illumination changes.

The SEE-NMI is defined by Equation 10:

R(Gfixed, T (Gfloat)) =
Mα(Gfixed) + Mα(T (Gfloat))

Mα(Gfixed, T (Gfloat))
,

(10)

where Gfixed denotes the fixed image, T (Gfloat) denotes

the transformed floating image under the transformation

model T . Mα(Gfixed) and Mα(T (Gfloat) denote the sur-

vival exponential entropy of the intensity probability distri-

bution function of the fixed image and transformed float-

ing image respectively. Mα(Gfixed, T (Gfloat)) denotes

the joint survival exponential entropy of the joint inten-

sity probability distribution function of the fixed and trans-

formed floating images. α is the order of the survival expo-

nential entropy, as discussed in Section 3.1, α = 3 is used in

this paper. SEE-NMI not only shares the robustness proper-

ties of the conventional MI [15], but also has the advantages

of the survival exponential entropy defined in Section 3.1.

The physical meaning of SEE-NMI is the amount by

which the uncertainty about the intensity distribution of

T (Gfloat) decreases when the intensity distribution of

Gfixed is provided. In other words, it reflects the amount

of the information of the intensity distribution of Gfixed

contains about the intensity distribution of T (Gfloat). The

optimal transformation Topt is assumed to be achieved by

maximizing SEE-NMI, where the images are aligned such

that the amount of intensity distribution information they

contain about each other is maximized.

It should be noted that SEE-NMI is calculated based

on the global intensity distribution information of the fixed

and floating images. Therefore, it is more robust against

the regional illumination changes than the local information

based metric defined in Equation 7 for the original MRF

model. Thus, SEE-NMI is integrated with the original MRF

model by including it as the third energy term in the MRF

model. Now the overall energy function is defined as:

E = Edata + Esmoothness − Eglobal

=
∑

p∈Ω

Dp(lp) +
∑

(p,q)∈N

Vp,q(lp, lq)

−R(Gfixed, T (Gfloat)), (11)

where R(Gfixed, T (Gfloat)) denotes the SEE-NMI func-

tion defined in Equation 10, the data term energy Edata and

the smoothness term energy Esmoothness are with the same

definition as the ones defined in Equation 7. Therefore, the

registration process is now formulated as an optimization

problem to minimize the energy function defined in Equa-

tion 11. Again, the α-expansion algorithm [18] is used to

optimize the energy function.

Figure 3 demonstrates the effectiveness and robustness

of the energy function defined in 11 under different inter-

ference conditions such as different pose and facial expres-

sions and illumination changes. Figure 3 (a) is a facial im-

age obtained from the FERET database with neutral facial

expression, which is served as the fixed image. Figure 3 (b)

is the facial image of the same subject as in Figure 3 (a) but

with different facial expressions. Figure 3 (c) is the facial

image of the same subject as in Figure 3 (a) but is taken un-

der different illumination conditions. Figures 3 (d) and (e)

are the results of registering the images in Figures 3 (b) and

(c) to the fixed image in Figure 3 (a), Figures 3 (f) and (g)

are their corresponding deformation fields.

It is observed that after the deformable image registration

process, both the facial expression variations and illumina-

tion changes can be satisfactorily recovered with respect to

the fixed image in Figure 3 (a), which is evidence from the

high degrees of visual similarity between the registered im-

ages in Figures 3 (d) and (e) and the fixed image in Figure 3



(a) Fixed (b) Expression (c) Illumination

(d) Registered Image of (b) (e) Registered Image of (c)
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(g) Deformation Field for

(c)
Figure 3. (a) The fixed image; (b) Image of the same subject as (a) but with different facial expression, (c) Image of the same subject as (a)

but with different illumination condition, (d) Resulting image after registering image (b) to the fixed image (a); (e) Resulting image after

registering image (c) to the fixed image (a); (f) The corresponding deformation field for transforming (b) to (d); (g) The corresponding

deformation field for transforming (c) to (e).

(a). Therefore, the effectiveness and robustness of the pro-

posed method is strongly implied.

5. Experimental Results

In this section, systematic experiments were conducted

to evaluate the proposed method on both the full FERET

database and the FRGC version 2 database. The proposed

method is also compared with several state-of-the-art ap-

proaches. In all experiments, the nearest neighbor classifier

was used in this paper.

5.1. Experiments on the FERET Database

To perform face recognition experiment on the FERET

database, we used the same Gallery and Probe sets as

the standard FERET evaluation protocol. In the FERET

database, Fa is used as Gallery, which contains 1196 frontal

images of 1196 subjects. Fb contains 1195 images of ex-

pression variations, Fc contains 194 images taking under

different illumination conditions, Dup I has 722 images

taken later in time and Dup II is a subset of Dup I which

consists of 234 images that were taken at least one year af-

ter the corresponding Gallery images. Figure 4 shows some

sample images from the FERET database.

Figure 4. Samples in the FERET Database.

In this paper, all facial images were cropped according

to the manually located eyes positions supplied with the

FERET data and normalized to the resolution of 128× 128

pixels. The rank-1 recognition rates (in %) of different ap-

proaches are listed in Table 1. The first two rows are the



results obtained by the proposed method with and without

adding the SEE-NMI energy function to the MRF deforma-

tion model.

Methods Fb Fc Dup I Dup II

1. MRF + SEE-NMI 98.2 98.8 83.2 79.4

2. MRF 96.4 91.6 79.2 74.7

3. LGBPHS [19] 98.0 97.0 74.0 71.0

4. LBP [1] 97.0 79.0 66.0 64.0

5. PCA [14] 85.0 65.0 44.0 22.0

6. UMD LDA [9] 96.2 58.8 47.2 20.9

7. USC EBGM [9] 95.0 82.0 59.1 52.1

8. Bayesian, MAP [8] 82.0 37.0 52.0 32.0
Table 1. The rank-1 recognition rates of different approaches ac-

cording to the same FERET evaluation protocol, whereMRF de-

notes the proposed method without using the SEE-NMI metric in

the MRF deformation model,MRF + SEE-NMI denotes the pro-

posed method with the SEE-NMI metric in the MRF deformation

model

From Table 1, we can observe that even without integrat-

ing the SEE-NMI metric into the MRF deformation model

(Row 2), the proposed method can achieve high recogni-

tion rates among all the compared methods. Especially

for the probe set Dup I and Dup II, where the variations

caused by aging are satisfactorily captured by the MRF de-

formation model. It is also observed that the recognition

rate of the proposed method without SEE-NMI for probe

set Fc is lower than the LGBPHS [19] approach. The rea-

son is analyzed in Section 3.2, where the MRF deforma-

tion model without integrating the global similarity metric

SEE-NMI only considers the local pixel information, there-

fore it is not very robust against the illumination change

interference. However, after integrating the SEE-NMI into

the MRF deformation model, the proposed method has the

highest recognition rates among all the compared methods

for all the probe sets. Moreover, the recognition rate of each

probe set with the SEE-NMI metric is also higher than the

one obtained without using the SEE-NMI metric. There-

fore, the complementary property of the SEE-NMI metric

for the original MRF deformation model defined by Equa-

tion 7 is also illustrated.

5.2. Experiment on the FRGC Database

To further evaluate the performance of the proposed

method, we also evaluate the proposed method on the

FRGC version 2 database [7] which is known as the largest

face image data sets available. Before we performed the ex-

periment, the facial images were normalized and cropped

to the size of 120 × 120 to extract the facial region based

on the eye positions provided by the FRGC. Figure 5 shows

some example facial images from the FRGC database after

the cropping pre-processing step.

Figure 5. Sample facial images in the FRGC Database. Images in

the FRGC database are taken under both the controlled and uncon-

trolled illumination conditions.

In the FRGC version 2 database, there are 12776 images

taken from 222 subjects in the training set, 16028 target im-

ages taken under the controlled illumination condition. We

conduct experiment 1 and experiment 4 protocols to evalu-

ate the performance of the proposed method. In experiment

1, there are 16028 query images taken under the controlled

illumination condition, the goal to perform experiment 1 is

to test the basic recognition abilities of different approaches.

In experiment 4, there are 8014 query images taken under

the uncontrolled illumination condition. Experiment 4 is

the most challenging protocol in FRGC as the uncontrolled

large illumination variation brings significant difficulties to

achieve high recognition rate.

The experimental results for the FRGC version 2

database in experiment 1 and experiment 4 are evaluated by

using the Receiving Operator Characteristics (ROC), which

is the face verification rate (FVR) versus the false accept

rate (FAR). There are three ROC values, ROC 1 correspond-

ing to images collected within semester, ROC 2 correspond-

ing to images collected within year and ROC 3 correspond-

ing to images collected between semesters. Tables 2 and 3

list the performance of different approaches on the face ver-

ification rate (FVR) at the false accept rate (FAR) of 0.1%

in experiment 1 and experiment 4:

FVR at FAR = 0.1% (in %)

Methods ROC 1 ROC 2 ROC 3

1. BEE Baseline [14] 77.61 75.17 70.63

2. LBP [1] 86.10 83.27 79.23

3. LGBPHS [19] 92.75 91.16 87.85

4. MRF 95.37 93.25 89.79

5. MRF + SEE-NMI 97.51 95.87 92.60

Table 2. The FVR value of different approaches at FAR = 0.1% in

experiment 1 of the FRGC version 2 database.

It is observed from Tables 2 and 3 that the proposed

method significantly outperforms the BEE baseline algo-



FVR at FAR = 0.1% (in %)

Methods ROC 1 ROC 2 ROC 3

1. BEE Baseline [14] 17.08 15.14 13.52

2. LBP [1] 26.83 22.64 19.08

3. LGBPHS [19] 31.07 28.84 23.92

4. MRF 63.21 60.07 57.40

5. MRF + SEE-NMI 74.16 73.38 71.77

Table 3. The FVR value of different approaches at FAR = 0.1% in

experiment 4 of the FRGC version 2 database

rithm (PCA), the conventional LBP method [1] and the

LGBPHS method [19] under both the controlled and uncon-

trolled conditions. Especially for experiment 4, which is the

most challenging protocol in FRGC version 2 database, the

proposed method achieves the FVR rate of 71.77% in ROC

3 when the SEE-NMI metric is integrated with the MRF

deformation model, which is significantly higher than the

recognition rates obtained by the other compared methods.

6. Conclusion

In this paper, a new way of formulating the face recog-

nition problem is proposed. The face recognition problem

is formulated as a deformable image registration problem.

A feature based Markov random field (MRF) deformation

model is proposed in this paper to drive the registration pro-

cess. The feature signature for each pixel is represented by

the histogram of the uniform local binary pattern distribu-

tion calculated from the best scale salient region detected by

a new best scale salient region detector. A new information-

theoretic similarity measure named the survival exponen-

tial entropy based normalized mutual information (SEE-

NMI) is proposed and integrated with the MRF deforma-

tion model. It is shown that the SEE-NMI metric brings

complementary information to the MRF deformation model

which is based on the local pixel information. The proposed

method is evaluated on the FERET and FRGC databases. It

is shown that the proposed method outperforms all the com-

pared state-of-the-art and baseline algorithms, which illus-

trates the robustness of the proposed method against the ap-

pearance variations of expression, lighting and aging. The

proposed method hopefully can inspire a new thinking and

new way to tackle the face recognition problem.
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