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ABSTRACT

In this paper, we propose a new feature extraction method,
which is robust against rotation and histogram equalization
for texture classification. To this end, we introduce the con-
cept of Advanced Local Binary Patterns (ALBP), which re-
flects the local dominant structural characteristics of different
kinds of textures. In addition, to extract the global spatial dis-
tribution feature of the ALBP patterns, we incooperate ALBP
with the Aura Matrix measure as the second layer to analyze
texture images. The proposed method has three novel contri-
butions. (a) The proposed ALBP approach captures the most
essential local structure characteristics of texture images (i.e.
edges, corners); (b) the proposed method extracts global in-
formation by using Aura Matrix measure based on the spatial
distribution information of the dominant patterns produced
by ALBP; and (c) the proposed method is robust to rotation
and histogram equalization. The proposed approach has been
compared with other widely used texture classification tech-
niques and evaluated by applying classification tests to ran-
domly rotated and histogram equalized images in two differ-
ent texture databases: Brodatz and CUReT. The experimental
results show that the classification accuracy of the proposed
method exceeds the ones obtained by other image features.

Index Terms— Texture Classification, Advanced Local
Binary Patterns, Spatial Distribution

1. INTRODUCTION

Analysis of textures plays an important role in many appli-
cations in computer vision, for example, image retrieval, face
image analysis, and motion analysis. A very challenging prob-
lem in texture classification is to extract rotation and histogram
equalization invariant features. This problem is also of par-
ticular interest because the applications of rotation and his-
togram equalization sensitive feature extraction methods are
strictly limited.

In the past few decades, some researchers have considered
applying various kinds of methods to extract rotation invari-
ant texture features. Madiraju et al. [1] extracted rotation
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invariant features by computing the covariance. Chetverikov
used anisotropy features [2] to classify rotated texture im-
ages. Also, several rotation invariant feature extraction meth-
ods have been proposed by modifying some existing success-
ful rotation sensitive methods. For example, Kashyap and
Khotanzad et al. [3] developed an isotropy circular Gaus-
sian MRF (ICGMRF) method [3] based on the GMRF method
proposed by Chellappa [4]. Deng and Clausi [5] extended the
ICGMREF approach by using similar circular neighborhoods
so that it is more robust to non-isotropy textures, which is
the anisotropic circular Gaussian MRF model (ACGMREF).
Porter and Canagarajah [6] extracted rotation invariant fea-
tures based on the traditional wavelet transform [7]. They
removed the HH wavelet channels and combined the LH and
HL wavelet channels to obtain rotation invariant features. Also,
Ojala et al. [8] proposed the uniformed local binary patterns
(LBP) approach to extracting rotation and histogram equal-
ization invariant features, which was extended by Huang, Li
and Wang by computing the derivative-based local binary pat-
terns and applied it to the application of face alignment [9].

The approach of the conventional LBP is simple and effi-
cient. However, as the conventional LBP just considers the
uniform patterns in the images. It discards important pat-
tern information for images whose dominant patterns (e.g. the
specific patterns with the largest proportion among all the pat-
terns) are not uniform patterns. Also, the features of the con-
ventional LBP are the histograms of the uniform patterns in
a texture image. As such, the spatial distribution information
of the patterns (e.g. the locations of the patterns in the image)
is lost, which will be shown that it is an important feature to
classify the textures in this paper.

Therefore, we are motivated to propose a new rotation and
histogram equalization invariant texture classification method
by extending the conventional LBP approach to reflect the
dominant pattern information contained in the texture images
and capturing the spatial distribution information of the domi-
nant patterns. The main contributions of this paper are twofold.
First, based on the framework of the conventional LBP, we
extend it by observing the frequency histogram of all the la-
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bels of the patterns and then use the histogram distribution of
the dominant patterns as features. Therefore, the features of
the improved LBP method can describe the dominant pattern
structures in a texture image more reliably and effectively.

Second, we find out the locations of all the dominant pat-
terns in a texture image and then construct a binary image for
each dominant pattern by marking the locations where such
dominant pattern occurs as ’1”, and ”’0” otherwise. Therefore,
each binary image contains the spatial distribution informa-
tion of its corresponding dominant pattern. Then, we use the
Gray Level Aura Matrix [10] to extract the spatial information
features in each binary image. It is found that significant im-
provement can be made by the modified LBP method. Also,
by combining the spatial distribution information of the dom-
inant patterns, further improvement can be achieved. In the
experiments, it is observed that high classification accuracy
can be achieved even in the tough situation by applying rota-
tion and histogram equalization to the challenging databases
of texture images. We utilize the support vector machine [11]
as the classifier in this paper. The grid search is performed to
find out the best values of the parameters in which the highest
classification accuracy can be achieved for each feature.

We evaluate the performance of the proposed approach by
performing texture classification experiments in two different
databases: Brodatz [12] and CUReT textures [13]. Excellent
classification accuracy can be achieved by using the proposed
method. This implies that our method can produce robust ro-
tation and histogram equalization invariant features for dis-
criminating a large number of textures. The features of our
proposed method are also computationally efficient as it does
not need to perform any image filtering.

2. ADVANCED LOCAL BINARY PATTERNS

In the conventional LBP approach [8], the image pixels are
first labelled by thresholding the difference between the cen-
ter pixel and its neighbors using the step function u(z) (i.e.
u(z) = 1 when x>0 and u(z) = 0 otherwise). The con-
catenation of the neighboring labels is then used as a unique
descriptor for each pattern.

The patterns are uniform if the transitions between “0”
and “1” are less than or equal to two. For example, 01100000
and 11011111 are uniform patterns. The histogram of the
uniform patterns in the whole image is used as the feature
vector [8].

Multiresolution analysis can be achieved by choosing dif-
ferent values of m and R, where m denotes the number of
neighboring pixels with respect to the center pixel, and R
represents the distance from the center pixel to each of the
neighboring pixels.

However, for some textures whose dominant patterns are
not "uniform local binary patterns”, especially for the textures
with irregular shapes and edges, the conventional local binary
patterns cannot effectively and reliably capture the majority

pattern information in the texture images by just considering
the uniform local binary patterns”. Table 1 lists the propor-
tions of the uniform local binary patterns” with different ra-
dius R in some texture images in the CUReT database.

Textures P=8,R=1 P=16,R=2 P=24,R=3
Loofa0002 52.73 41.34 31.73
Loofa0008 57.11 4573 38.10

Brown Bread0017 53.18 39.95 24.82
Brown Bread0022 47.69 32.42 20.76
Concrete 0009 52.83 44.04 35.18
Concrete 0016 4791 36.04 26.17
Crumpled Paper0015 50.05 46.18 33.06
Crumpled Paper0016 57.85 48.82 36.11

Table 1. Proportions (%) of "uniform LBP” for some samples in
the CUReT database. It shows that, for some kinds of textures, the
dominant patterns are not mainly the "uniform LBP”.

In order to fully describe the dominant patterns contained
in the texture images, we extend the conventional LBP to
ALBP. Each pattern in the image is assigned a unique label
by the following equation [8]

p—1
LBP(m,R) = u(t; —t)2', (1)
i=0
where t. is the intensity of the center pixel, ¢; is the intensity
of the neighbor ¢, and u(z) is the step function. It is obvious
that the LBP defined in Equation 1 is not rotation-invariant as
the intensity value of ¢; changes when the circle is rotated by
a specific angle. Two patterns should be treated as the same
type if one can be obtained from the other through rotating by
a certain angle. Therefore, the ALBP pattern group is defined
as,

ALBP?®(m, R) = min(Cir(LBP(m, R),n)), (2)
where n = 0,1, ...,p — 1, Cir(z, n) performs a circular anti-
clockwise bitwise shift on the p-bit number by n times.

The histogram of the ALBP group is computed from the
image and sorted in a descending order. Therefore, the first
several entries of the histogram are guaranteed to be the dom-
inant patterns from the image. Our experiments show that
around 80% of the patterns in the image are sufficient for rep-
resenting the information of the dominant patterns, and the 20
leading entries are enough to cover 80% of the whole ALBP
histogram in the texture image.

3. SPATIAL DISTRIBUTION INFORMATION OF
DOMINANT PATTERNS

Although the advanced local binary patterns can more reliably
and effectively describe the dominant pattern information and
more robust to random rotation, the spatial distribution infor-
mation of the dominant patterns (SIDP) is still lost. More
precisely, by using the ALBP alone, we only know what are
the dominant patterns in a texture image. However, we do
not know where are the locations of such dominant patterns.
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Fig. 1. Spatial distribution maps of dominant pattern labelled 24 in
C32, C34, C14 and C17.

Fig. 2. The four textures obtained from the CUReT database. From
left to right: C32, C34, C14, C17.

Such information actually is a powerful feature to describe
the texture image. To illustrate the concepts of SIDP, Fig. 1
plots the distribution of a dominant pattern in several texture
images obtained from the Curet [13] database.

The four texture images in Fig. 2 actually are misclas-
sified by using only the conventional LBP or ALBP accord-
ing to our experimental results. The reason is that although
ALBP can describe the types of dominant patterns in the tex-
ture more reliably, the spatial distribution information of such
patterns is lost. In the above four textures, they all have the
same sets of dominant patterns with very similar proportions,
and the pattern type labelled with 24 is one of the dominant
patterns. As we can see, the numbers of such dominant pat-
terns in each texture are very close to each other. However, the
distribution properties of this pattern in these four texture im-
ages are very different with each other. Therefore, the SIDP
is a very important property to describe the textures, which
will be further illustrated in the Experimental Results section.

To extract features from the each dominant pattern distri-
bution maps, we use the Gray Level Aura Matrix (GLAM)
approach [10] to extract features from the dominant pattern
distribution maps. Since now the input image is the dominant
pattern distribution maps, which can be treated as a binary
image with only two gray levels (with value ”’1” assign to the
locations where they contain such pattern, and ”0” otherwise),
it is very efficient to calculate the GLAM from this binary im-
age with only two gray levels. There are only four elements
in the resulting GLAM. Then, these four elements are used
as features to describe the spatial distribution characteristic of
the dominant patterns.

Some basic concepts related to the GLAM [10] are now

introduced. Suppose that we represent an image X with a
rectangular lattice of m x n grids S, where m and n denote
the width and height of X. X now can be represented by S
as,

S={s=0/)0<i<m-1,0<j<n-1}. (3)
Also, a neighborhood system N = {N,,s € S} is defined,
where N is the neighborhood at site s. There are two impor-
tant properties in the neighborhood system N: (a) s ¢ N, and
(b) s € Ny if an only if t € N,. Property (a) implies that site
s is not included in its neighborhood. Property (B) implies
that the neighborhood is symmetric. In this paper, we use a
symmetric 11x11 window with the target pixel at the center
as the neighborhood system.

Aura: [10] Given two subsets A,B C S, the aura of
A with respect to B for neighborhood system N, denoted
9p(A,N), is given by,

I5(A,N) = Usea(B N Ny). 4

Aura Measure: [10] With the same notations as in Eq.

4, the aura measure of A with respect to B, denoted by
m(A, B), is given by:

m(A,B) =Y |N.NB|, 5)
s€A
where for a given subset A C S, |A] is the total number of
elements in A.

Gray Level Aura Matriz (GLAM): [10] Let N be the
neighborhood system over S, and {S;, 0< i < G — 1} be the
gray level sets of an image over S. Then, the gray level aura
matrix of the image over IV, denoted A, is given by,

A=A(N) = [m(S;,55)], ©)
where @ is the total number of gray levels in the image, .S; =
{s € S|z, =i} is the gray level set corresponding to the ¢"
level, and m/(S;, S;) is the aura measure between S; and S;
defined in Eq. 5.

The resulting four elements in the GLAM are strong fea-
tures, which can describe the spatial distribution information
of the dominant patterns and are used as features to comple-
ment with the ALBP.

4. EXPERIMENTAL RESULTS

We have evaluated our proposed method on two different databases

with large sets of texture images: (1) 24 textures selected
from the Brodatz album [12]; (2) 47 textures selected from
the CUReT database [13]. In our experiment, random rotation
(each image in the training set and testing set was rotated by a
randomly generated angle between O to 360 degrees) and his-
togram equalization were performed on each sample on both
the training and testing sets in order to test the robustness of
method. Half of the images in each class were used as training
sets and the remaining images were used as testing sets. Our
approach has been compared with eight widely used texture
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classification methods. In our experiment, the support vector
machine (SVM) was used as the classifier. The kernel for the
SVM was the Gaussian Radial Basis Function (RBF).

Experiments on Brodatz Database: The classification ac-
curacies of different approaches under different environments
are listed in Table 2. According to the experimental results,
the proposed ALBP approach can already outperform the other
eight methods under different conditions. Also, by embed-
ding the spatial distribution information of dominant patterns
(SIDP) with the ALBP, the classification performance is bet-
ter than using ALBP alone.

Experiments on CUReT Database: In the CUReT database
[13], it has the largest number of texture classes (47 classes).
The major characteristic of this database is that the number
of texture classes is very large. Therefore, it is very diffi-
cult to classify such large number of textures because it can
have small inter-class distances in the feature space. This
database actually can test how precise can the features of each
approach describe the texture images. The experimental re-
sults are listed in Table 3. We can see that, by embedding the
SIDP features to the ALBP features, our proposed method
gives very good performance.

Classification accuracy %
Features Original  Histogram  Randomly  Histogram Equalized &
Textures Equalized Rotated Random Rotated
Textures Textures Textures

DBWP [7] 98.06 87.73 81.32 62.71
RDBWP [6] 91.67 75.00 91.20 76.83
TGF [14] 98.61 91.67 83.51 61.36
CGF [14] 90.07 60.28 88.64 58.42
GMRF [4] 96.70 84.33 50.63 40.75
ACGMREF [5] 95.83 86.52 93.75 81.65
MRH [15] 93.57 70.00 87.35 58.31
LBP [8] 97.22 96.30 92.75 91.50
ALBP 98.61 98.61 96.78 96.76
ALBP with SIDP 99.85 99.54 99.54 99.54

Table 2. Performance of different features in the Brodatz Database. Re-
sults of our methods are listed in the last two rows. For each test (column), the
highest classification accuracy is highlighted in bold. DBWP: Daubechies
wavelet packet features; RDBWP: Rotational invariant DBWP; TGF: Tradi-
tional Gabor filters; CGF: Circular Gabor filters; GMRF: Gaussian Markov
random fields; ACGMRF': Anisotropic circular Gaussian MRFs; MRH: Mu-
tiresolution histograms; LBP: Uniform local binary patterns; ALBP: Ad-
vanced local binary patterns; SIDP: Spatial Information of Dominant Pat-
terns.

Classification accuracy %
Features Original ~ Histogram  Randomly  Histogram Equalized &
Textures Equalized Rotated Random Rotated
Textures Textures Textures

DBWP [7] 90.43 61.17 80.13 54.46
RDBWP [6] 85.11 39.89 83.75 45.81
TGF [14] 76.06 44.15 63.25 33.56
CGF [14] 60.64 27.66 61.53 36.80
GMREF [4] 46.81 45.27 27.04 35.63
ACGMREF [5] 77.13 71.26 76.59 68.25
MRH [15] 69.15 38.83 63.68 38.21
LBP [8] 72.87 69.15 70.25 62.58
ALBP 82.98 79.79 84.18 76.02
ALBP with SIDP 97.64 96.57 96.57 95.80

Table 3. Performance of different features of 64x64 image resolution in
the CUReT Database. Results of our methods are listed in the last two rows.
For each test (column), the highest classification accuracy is highlighted in
bold.

5. CONCLUSION

In this paper, we have proposed a new advanced local binary
pattern approach based on the conventional LBP. Also, we
find that the spatial distribution information of dominant pat-
terns (SIDP) actually is a very powerful feature for describing
the characteristics of the texture image as it includes the lo-
cation information of the dominant patterns in the texture im-
ages. It has been evaluated by comparing with eight widely
used approaches with two databases: Brodatz and CUReT.
It is experimentally shown that our approach has excellent
performance in texture classification and is very robust to his-
togram equalization and random rotation. Computational sim-
plicity is another advantage of our proposed method as the
features can be obtained with only a few calculations and
comparisons without the need of performing any image fil-
tering.
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