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Nonrigid Brain MR Image Registration Using
Uniform Spherical Region Descriptor

Shu Liao and Albert C. S. Chung

Abstract—There are two main issues that make nonrigid image
registration a challenging task. First, voxel intensity similarity may
not be necessarily equivalent to anatomical similarity in the image
correspondence searching process. Second, during the imaging
process, some interferences such as unexpected rotations of input
volumes and monotonic gray-level bias fields can adversely affect
the registration quality. In this paper, a new feature-based non-
rigid image registration method is proposed. The proposed method
is based on a new type of image feature, namely, uniform spherical
region descriptor (USRD), as signatures for each voxel. The USRD
is rotation and monotonic gray-level transformation invariant and
can be efficiently calculated. The registration process is therefore
formulated as a feature matching problem. The USRD feature
is integrated with the Markov random field labeling framework
in which energy function is defined for registration. The energy
function is then optimized by the �-expansion algorithm. The
proposed method has been compared with five state-of-the-art reg-
istration approaches on both the simulated and real 3-D databases
obtained from the BrainWeb and Internet Brain Segmentation
Repository, respectively. Experimental results demonstrate that
the proposed method can achieve high registration accuracy and
reliable robustness behavior.

Index Terms—Monotonic gray-level transformation invariant,
nonrigid image registration, rotation invariant, uniform spherical
region descriptor (USRD).

I. INTRODUCTION

N ONRIGID IMAGE registration plays an important role in
medical image analysis and processing. Its applications

include, but are not limited to, anatomical analysis, brain dis-
ease diagnosis, and image data mining. Nonrigid image regis-
tration methods can be broadly classified into three categories:
landmark-, intensity-, and feature-based registration methods.
Landmark-based registration methods [1]–[4] first select a set of
reliable landmarks from the input images. The landmark selec-
tion can be manually, semiautomatically, or even fully automat-
ically performed. Features are extracted from those landmark
points. The optimal transformations are then estimated based on
these extracted features. Intensity-based approaches [5]–[8] de-
fine similarity function solely based on the joint intensity distri-
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butions of the template and subject images to guide the registra-
tion. The registration problem is thus formulated as an optimiza-
tion process to minimize or maximize the target similarity func-
tions. Feature-based approaches use anatomical features as sig-
natures for each voxel, and then, registration is formulated as a
feature matching process. Each stream of methods has its advan-
tages and disadvantages. Landmark-based methods are usually
computationally efficient as these methods include prior knowl-
edge extracted from the selected landmarks. However, to ob-
tain accurate registration results, a lot of reliable landmarks are
required, and this can bring additional computational burdens.
Intensity-based approaches are usually fully automatic. How-
ever, intensity similarity may not be necessarily equivalent to
anatomical similarity. Feature-based approaches drive the reg-
istration process based on the adopted features. For instance,
the tensor scale-based image features are used by [9] and [10]
to rigidly align images acquired by different modalities. Nyul et
al. [11] extract the local-scaled-based features from each voxel
to drive the registration process. Bagci and Bai [12] calculate
the image features in the edgeless domain, and input images
are first registered in the edgeless domain. Then, further align-
ment is performed in the intensity domain to the images regis-
tered in the edgeless domain. The intensity standardization pro-
cedure proposed in [13] is adopted in [12] as a preprocessing
step to remove the effect of intensity gray-level differences. The
hierarchical attribute matching mechanism for elastic registra-
tion (HAMMER) algorithm proposed by Shen and Davatzikos
in [14] uses the geometric moment invariant (GMI) feature as
voxel signature, and the robust image registration algorithm pro-
posed by Yang et al. [15] represents the anatomical properties
of each voxel by using the SIFT features.

There are two main challenging issues in nonrigid image reg-
istration. The first issue is that intensity similarity may not be
necessarily equivalent to anatomical similarity in the image reg-
istration process. As pointed out in [16], using intensity distribu-
tions alone cannot fully characterize the anatomical differences
between different tissues. Therefore, it is necessary to design ef-
fective anatomical region descriptor for defining signatures for
each voxel. The second issue is that interferences such as un-
expected volume rotation and monotonic gray-level bias fields
generally exist during the imaging acquisition process. As such,
the registration algorithm should be also robust against such in-
terferences. As stated in [14], rotation invariance is a desired
property for feature-based registration methods. Additionally, as
pointed out in [17], the registration algorithm may prefer to align
the bias fields between the template and subject images, instead
of aligning their anatomical structures if the registration algo-
rithm is not robust against bias fields. Noise in the input images
can also degrade the performance of registration algorithms, as
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pointed out in [18]. The effect of noise is usually overcome by
using filtering techniques during the registration procedure to
suppress the noise information contained in the input images.

Therefore, we are motivated to propose a new feature-based
nonrigid image registration method. The proposed method is
based on a new anatomical region descriptor, namely, uniform
spherical region descriptor (USRD). This paper is an exten-
sion of our initial work from [19] and [20]. The USRD en-
codes the anatomical information around each voxel, and it is
rotation and monotonic gray-level transformation invariant. The
USRD is integrated with the Markov random field (MRF) la-
beling framework to drive the registration process in this paper.
The energy function of the MRF framework is optimized via
the -expansion algorithm. The proposed method is evaluated
in two different ways in this paper. First, the USRD feature
is directly compared with other image features by using the
Fisher separation criteria (FSC) [21] for registration task. The
features for comparison are as follows: 1) voxel intensity used
in free-form deformation (FFD) [22] and Demons [23]; 2) the
GMI feature used in HAMMER [14]; 3) local-histogram-based
feature (LHF) used in an extension of HAMMER [24]; and 4)
the symmetric Alpha-stable filtered-based features used in [25].
Second, the proposed method has been also compared with five
state-of-the-art registration approaches on both the simulated
and real 3-D databases obtained from BrainWeb and Internet
Brain Segmentation Repository (IBSR) based on the final reg-
istration accuracy under different conditions. It is shown that
the proposed method achieves the highest registration accuracy
among all the compared methods.

II. USRD

Here, we introduce the new image region descriptor, namely,
the USRD. The USRD is a 2-D joint histogram consisting of
two kinds of features: 1) the uniform spherical structure pattern
(USSP) and 2) the uniform gradient spherical pattern (UGSP).
The USSP and the UGSP encode the first- and second-order
voxel information, respectively. We will also describe the USSP
and the UGSP in detail and analyze their properties. Finally, we
will show how to use the USRD to extract rotation and mono-
tonic gray-level transformation invariant features from the input
images.

A. USSP

The USSP feature is motivated from the idea of local bi-
nary patterns (LBPs) proposed in [26], which is an image fea-
ture originally designed for 2-D texture classification [26]. The
USSP is a 3-D region descriptor that encodes the first-order
image voxel interaction information. It also preserves the rota-
tion and monotonic gray-level transformation invariant proper-
ties of LBPs.

Given input image , for each voxel , spherical neigh-
borhood centered at with radius is defined. samples
are taken on the surface of . In this paper, the deterministic
incremental grid sequence sampling method proposed in [27] is
adopted as the sampling method, which is uniform and compu-
tationally efficient.

For each sample on the surface of , it is converted to
binary number by comparing its intensity to the intensity of
voxel , which is expressed by

if
if

(1)

where denotes the intensity of sample , and denotes the
intensity of the center voxel of .

Based on (1), the definition of the basic spherical structure
pattern (BSSP) is given as follows.

Definition 1: The BSSPs are the binary thresholded spherical
surfaces obtained by (1) for each voxel .

The BSSP is monotonic gray-level transformation invariant
as monotonic gray-level transformation does not alter the
relative intensity differences between the center pixel and the
neighboring pixels. Therefore, the binary label assigned to
each neighboring pixel remains the same before and after the
monotonic gray-level transformation; thus, the BSSP remains
the same. Therefore, we have the following property of the
BSSP.

Property 1: BSSPs are monotonic gray-level transformation
invariant.

Therefore, the BSSP is robust against the monotonic gray-
level bias fields, which commonly exist in brain magnetic reso-
nance (MR) images; its occurrence histogram can be served as
the signature for each voxel. However, there are many types of
BSSPs that can make the histogram of BSSPs too sparse to re-
liably reflect the anatomical properties of input images. There-
fore, only a subset of BSSPs is considered, namely, the USSP,
which represents fundamental image structures. The USSP is
defined as follows.

Definition 2: The USSPs are BSSPs that have at most two
continuous regions of “0”s and “1”s.

For example, Fig. 1(a) is a USSP as it has only one contin-
uous region of “1”s. Fig. 1(b) is also a USSP as it has one con-
tinuous region of “0”s and one continuous region of “1”s. How-
ever, Fig. 1(c) is not a USSP as it has more than two continuous
regions of “0”s and “1”s.

The USSP has some important physical meanings with
respect to the fundamental image structures. For example,
Fig. 1(a) demonstrates that there is a dark spot at the center
voxel. Fig. 1(b) shows that there is an edge along the boundary
of the “0”s and “1”s regions. To further demonstrate that the
USSP indeed has dominant proportions among all the BSSPs,
Fig. 2 shows the percentages of the USSP among all the
BSSPs of the 20 real 3-D image volumes obtained from IBSR1

with different values of radius and numbers of neighboring
samples . It is shown that the USSPs of most of the images
have over 80% proportions among all the BSSPs with different
values of and . Therefore, it is reflected that USSPs have
dominant proportions among all the BSSPs. Another interesting
observation is that, when is fixed, the proportion of USSPs of
each image is similar with different values of . On the other
hand, when is fixed, the proportion of USSPs of each image

1http://www.cma.mgh.harvard.edu/ibsr/.
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Fig. 1. (a) Example of a USSP: It has only one continuous region of “1”s. (b) Example of a USSP: It has two continuous regions of “0”s and “1”s. (c) Non-USSP:
It has more than two continuous regions of “0”s and “1”s.

Fig. 2. Proportions of USSPs (in percentage) among all the BSSPs with dif-
ferent values of radius � and number of neighboring samples � .

with different values of varies. The reason is that controls
the scales of interest. Patterns at different scales of interest
with respect to the center voxel represent different shapes
and structural configurations; thus, the proportions of USSPs
vary with respect to . The number of neighboring voxels

represents how accurate is the representation of the shape
characterized by the pattern (i.e., how many voxels are sampled
from the pattern). As long as the shape remains unchanged,
increasing the value of will not change the uniform property
of the pattern if sufficient number of samples is drawn from
the pattern. Therefore, it is shown that when is fixed, the
proportion of USSPs of each image is similar with different
values of .

Algorithm 1 presents the procedure of determining whether
an input BSSP is a USSP or not. The breadth first search (BFS)
in Operation 2 takes time, and Operation 3 also takes

time. Other operations take constant time. Therefore, Al-
gorithm 1 can be completed in time, which is a linear time
process. Since the USSP is a subset of BSSP, it is also mono-
tonic gray-level transformation invariant; thus, we have prop-
erty 2 below.

Algorithm 1: Determining whether a BSSP is a USSP

Input: A BSSP with radius and neighboring voxels on
the surface.

Output: true or false (whether the input is a USSP or not).

1.Randomly select a neighboring voxel on the surface of the
input BSSP

2.Find the largest connected component starting from based
on its binary digit using the BFS; set a flag for each voxel
belonging to that largest connected component

3.FOR each unflagged neighboring voxel with binary digit

4. IF

5. Return false

6. END IF

7.END FOR

8.Return true

Property 2: The USSP is monotonic gray-level transforma-
tion invariant.

In this paper, the ID of each kind of USSP is determined as the
area of the “0”s region of the USSP (i.e., the number of the “0”
digits on the surface of the USSP). All the nonuniform BSSPs
are considered as a single type of pattern. Such ID assignment
makes the USSP feature rotation invariant because no matter
how the image rotates, the area of the “0”s region remains the
same. Thus, we have property 3 as follow.

Property 3: The ID assignment of the USSP based on the area
of the “0”s region on the surface of the USSP makes the USSP
feature rotation invariant.

It should be noted that considering the percentage of the “0”s
region on the surface of the USSP may be also served as an
alternative ID assignment method for the USSP. However, it re-
quires an additional quantization step to convert the percentage
value to a specific histogram bin number to construct the USSP
histogram.
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After specifying the rotation invariant ID assignment method
of the USSP, we can now use the histogram of the USSP as fea-
tures to represent each voxel. Algorithm 2 describes how to ex-
tract rotation and monotonic gray-level transformation invariant
USSP features as signatures for each voxel.

Algorithm 2: Calculate the rotation-invariant USSP feature
for each voxel

Input: Input image , local cubic square window for each
voxel, USSP radius , and the number of neighboring samples

.

Output: Vector image , each voxel is represented by a USSP
signature.

1.FOR each voxel

2. center at

3. Initialize a new feature histogram,

4. FOR each voxel

5. Calculate its corresponding BSSP with parameters
and

6. Determine whether is a USSP or not using
Algorithm 1

7. IF is a USSP

8. Number of “0”s in

9.

10. ELSE

11.

12. END IF

13. END FOR

14. Normalize such that

15.

16. END FOR

17. Return

The multiresolution analysis can be achieved in Algorithm
2 by using different values of radius to calculate the USSP
feature histograms and then concatenate all the USSP feature
histograms into a single global feature histogram.

B. UGSP

Here, the UGSP is introduced, which represents the
second-order voxel-wise interaction information as the com-
plement with the USSP.

The UGSP considers the gradient orientations of the neigh-
boring voxels. Suppose for input image , for each voxel ,
spherical neighborhood centered at with radius is de-
fined. samples are taken on the surface of . Let de-
note the image gradient of the th sample on

the surface of . Then, a rotation-invariant orientation measure
is defined for each neighboring voxel , which is the angle

between the orientation of , and the direction of .
can be calculated by

(2)

where and denote the magnitudes of and
, respectively.

The measure of is invariant to image rotation because no
matter how the images rotate, the relative angle between
and the direction of remains the same.

After calculating for each neighboring voxel , is
assigned with a label by uniformly partitioning the angle space
into four subspace regions. Such operation can be expressed by

if
if
if
if .

(3)

Then, similar to the definition of BSSP introduced in
Section II-A, the basic gradient spherical pattern (BGSP) is
defined as follows based on (2) and (3).

Definition 3: The BGSP is the labeled spherical surface ob-
tained from the original spherical neighborhood centered at the
reference voxel by using (2) and (3).

The BGSP also has the monotonic gray-level transformation
invariant property. As the monotonic gray-level transformation
affects the absolute gradient magnitude of each neighboring
voxel, the gradient orientation remains the same.

Then, following the same line of the USSP, we also consider a
subset of BGSP, namely, the UGSP. Before we define the UGSP,
we first define the term “uniform region.”

Definition 4: Uniform region is the area on the surface of the
BGSP where all the voxels belonging to this area have the same
label defined in (3).

Then, the UGSP is defined as follows.
Definition 5: UGSPs are BGSPs whose surfaces can be cov-

ered by at most two uniform regions.
It should be also noted that there is a tradeoff if we increase or

decrease the number of partitions for the angle space specified
in (3). If fewer partitions are considered, then the discriminant
power of the gradient spherical pattern may be lower as the di-
vision of angle space becomes rougher. However, if the angle
space is divided into too many subspace regions, the UGSP fea-
ture will be more sensitive to noise, and the histogram of the
UGSP features will become more sparse as it is more difficult
for a BGSP to be a UGSP when the number of possible labels
to represent the angle space is increased. Based on the experi-
mental results, it is found that dividing the angle space into four
regions is a good choice given such tradeoff.

Algorithm 3 presents the procedure of determining whether
a BGSP is a UGSP or not. It is similar to Algorithm 1, which
determines whether a BSSP is a USSP or not, except that in
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Algorithm 3, two neighboring voxels are considered to be con-
nected if and only if they have the same label calculated by (3).

Algorithm 3: Determining whether a BGSP is a UGSP

Input: A BGSP with radius and neighboring voxels on
the surface.

Output: true or false (whether the input is a UGSP or not).

1.Initialize all the neighboring voxels as unflagged.

2.IF any neighboring voxel in the input BGSP does not have
gradient information

3. Return false

4.END IF

5.FOR to 2

6. IF all the neighboring voxels are flagged

7. Break;

8. ELSE

9. Randomly select an unflagged neighboring voxel
on the surface of the input BGSP.

10. Find the largest connected component starting
from based on its label using the BFS; set a flag for
each voxel belonging to that largest connected component. Two
neighboring voxels and are considered to be connected
if and only if .

11. END IF

12.END FOR

13.IF all the neighboring voxels are flagged

14. Return true

15.ELSE

16. Return false

17.END IF

The ID assignment method for the UGSP is designed as fol-
lows: First, determine whether the input BGSP is a UGSP or not
using Algorithm 3. If the input BGSP is a UGSP, then the size
of each uniform region and can be calculated by Algo-
rithm 3. The ID of the UGSP is based on the size of the largest
connected component of the UGSP (e.g., ;
and are calculated by operation 10 in Algorithm 3; and
and denote the sizes of and , respectively).

C. Combining the USSP and the UGSP as the USRD Feature

As discussed in the previous sections, the USSP and the
UGSP represent the first- and second-order voxel-wise interac-
tion information, respectively. Therefore, intuitively, the USSP
and the UGSP can provide complementary information, which

motivate us designing the USRD feature. The USRD is the 2-D
joint histogram of the USSP and UGSP features.

The procedure of extracting the USRD feature as signatures
for each voxel is given in Algorithm 4.

Algorithm 4: Calculate the USRD feature for each voxel

Input: Input image , local cubic square window for each
voxel, radius parameter , and the number of neighboring
samples .

Output: Feature image , each voxel is represented by a
USRD signature.

1.FOR each voxel

2. center at

3. Initialize a new 2-D feature histogram,

4. FOR each voxel

5. Calculate its corresponding BSSP with
parameters and ; determine whether is a USSP with
Algorithm 1

6. Calculate its corresponding BGSP with
parameters and ; determine whether is a UGSP with
Algorithm 3

7. IF is a USSP

8. Number of “0”s in

9. ELSE

10.

11. END IF

12. IF is a UGSP

13. Size of the largest connected component
in

14.

15. ELSE

16.

17. END IF

18.

19. END FOR

20. Normalize
such that

21.

22.END FOR

23.Return

The robustness of the USRD against bias field is demon-
strated in Fig. 3. Fig. 3(a) is an image slice obtained from
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Fig. 3. (a) Original image without bias field. (b) Type B bias field of 40% inhomogeneity obtained from BrainWeb. (c) Resulting image after applying the bias field
in (b) to the original image in (a). (d) Intensity histogram of [green rectangle region in (a)] ROI in the original image. (e) Intensity histogram of [green rectangle
region in (c)] ROI in the bias field distorted image. (f) The USRD feature of ROI in the original image. (g) The USRD feature of ROI in the bias field distorted
image. (h) The absolute value of the USRD feature difference of (f) and (g).

BrainWeb2 without any bias field distortion. Fig. 3(b) is the
Type B bias field with 40% inhomogeneity, which is also
obtained from BrainWeb. Fig. 3(c) is the resulting image after
applying the bias field shown in Fig. 3(b) to the original image
in Fig. 3(a). The green rectangle denotes the region of interest
(ROI), where features are extracted from it. Fig. 3(d) and (e)
are the voxel intensity histograms calculated from the ROI
of images in Fig. 3(a) and (c), respectively. Fig. 3(f) and (g)
are the USRD features (the 2-D histogram) extracted from the
ROI of images in Fig. 3(a) and (c), respectively. It is shown in
Fig. 3(d) and (e) that the intensity histograms of ROI before and
after bias field distortion are significantly different from each
other. For the USRD features, as shown in Fig. 3(f) and (g),
it is visually shown that they are very similar to each other
before and after bias field distortion, except a slight difference,
which can reflect the robustness of the USRD feature. To
better visualize the similarity of the USRD feature shown in
Fig. 3(f) and (g), we also calculate the absolute values of the
USRD feature differences shown in Fig. 3(f) and (g), and the
resulting difference map is shown in Fig. 3(h). It is shown in
Fig. 3(h) that most of the entries are diminished (i.e., zero or
closed to zero), which illustrates the similarity of the USRD

2http://www.bic.mni.mcgill.ca/brainweb/.

feature shown in Fig. 3(f) and (g) before and after the bias field
distortion.

The discriminant power of the USRD feature can be also
visualized by the feature difference map. Fig. 4(a) is a skull-
stripped input image obtained from BrainWeb. The voxel high-
lighted with the green cross denotes the reference voxel whose
USRD feature signature is compared with all the other voxels’
USRD feature signatures by subtracting the reference voxel’s
USRD signature to other voxels’ USRD signatures and take the
L1 norm. Fig. 4(b) is the corresponding color-coded difference
map, where blue color denotes high similarity, whereas red color
denotes low similarity. To better visualize the similarity map
at the ventricle areas where the reference voxel is located, the
ROI highlighted by the red square in Fig. 4(b) is zoomed in and
shown in Fig. 4(c).

In the next section, the FSC will be adopted to quantitatively
compare different types of features.

III. FEATURE DISCRIMINANT POWER COMPARISON

USING THE FSC

Here, different types of features are directly compared by the
Fisher separation protocol with respect to their discriminative
power.
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Fig. 4. (a) Skull-stripped input image obtained from BrainWeb. The reference voxel is highlighted with the green cross. Please refer to the electronic version of
the paper to identify the green cross more easily. (b) The color-coded difference map calculated by comparing the USRD feature signature of the reference voxel
in (a) with all the other voxels in the input image, where blue color denotes high similarity and red color denotes low similarity. (c) The zoomed-in window of the
region of interest highlighted with the red square in (b).

A. Formulation of the Fisher Separation Protocol

The FSC protocol can be summarized as follows. Let de-
note the input image, which is segmented into classes of tis-
sues. Let denote the feature vector of the th voxel be-
longing to the th tissue and denote the number of voxels
belonging to the th tissue. Then, the mean feature vector of each
tissue class can be calculated by using the following:

(4)

where denotes the mean feature vector of the th class of
tissue.

The FSC aims to find a 1-D projection of the feature vectors in
order to maximize the distance between two clusters of different
classes. Such projection can be expressed by the following [25]:

(5)

where and are the mean feature vectors of two different
classes obtained by (4). is the inverse of the pooled covari-
ance matrix. The pooled covariance matrix is defined by (6),
where denotes the covariance matrix for class . is the
feature vector of voxel , where belongs to tissue classes 1 or
2. is the projected value of onto the 1-D space using the
FSC. The projection expressed by (5) maximizes the FSC func-
tion defined by (7), i.e.,

(6)

(7)

where and denote the variances of the projected feature
vectors of classes 1 and 2, respectively. and are the pro-
jected mean feature vectors of classes 1 and 2, which are calcu-
lated by

(8)

The larger the value of (7), the higher the discriminant power
the feature has.

In this paper, five types of features are compared. They
are as follows: 1) voxel intensity; 2) the GMIs feature used in
HAMMER [14]; 3) the LHF used in the extension of HAMMER
[24]; 4) the symmetric Alpha stable filtered-based fea-
tures in [25]; and 5) the proposed USRD feature. In order to
observe the performance of each component of the USRD, we
also evaluate the USSP and UGSP features individually. For
clarity purpose, we briefly describe the four different features
for comparison in the following sections.

B. GMI Feature

The GMI feature is derived based on the 3-D regular moments
defined in

(9)

where denote the 3-D coordinates of the voxel
under consideration. It is also assumed that the center of the
coordinate system has been shifted to in (9). The
order of the 3-D regular moment is determined by .
The integration is defined within a sphere with radius , where

denotes the scale of interest. denotes the
membership function for each tissue (i.e., gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) in this
paper). GMIs feature with different orders can be derived from
the 3-D regular moments.

C. LHFs

The LHF is proposed in the extension of HAMMER [24],
which does not require the segmentation results. For each voxel

of the input image, a spherical neighborhood with radius
is first defined. Then, the intensity histogram inside this
spherical neighborhood is calculated. After obtaining , the
regular geometric moment is calculated as follows:

(10)
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TABLE I
MEAN VALUES OF THE FSC FUNCTION IN (7) FOR DIFFERENT KINDS OF TISSUE PAIRS: GM AND WM, GM AND THE CSF, AND WM AND THE CSF OF VARIOUS

FEATURES OF THE 20 IMAGE VOLUMES OBTAINED FROM BRAINWEB WITHOUT ANY BIAS FIELD DISTORTION

TABLE II
MEAN VALUES OF THE FSC FUNCTION IN (7) FOR DIFFERENT KINDS OF TISSUE PAIRS: GM AND WM, GM AND THE CSF, AND WM AND THE CSF OF VARIOUS

FEATURES OF THE 20 IMAGE VOLUMES OBTAINED FROM BRAINWEB UNDER THE BIAS FIELD DISTORTION CONDITION

where is an integer denoting the order of the regular geometric
moment, and denotes the occurrence frequency of inten-
sity in histogram . In LHF [24], ranges from 0 to 2. Fol-
lowing the same setting in [24], the regular moment is combined
with the response value of the Canny edge detector to serve as
the voxel feature signature.

D. Symmetric Alpha-Stable Filtered-Based Features

The symmetric Alpha stable features are extracted by
passing the input images through the filter banks [25]. The
3-D filter can be expressed by [25]

(11)
where is the zero-mean kernel defined by

(12)

where and are defined by (13) and (14), respectively, as

(13)

(14)

In (11), is the coefficient controlling the heaviness of the tail of
kernels. is the scale parameter similar to the variance of

the Gaussian kernel. denote the 3-D frequency compo-
nents in the Fourier domain. is the center
frequency. and together represent the orientation in the 3-D
frequency domain, where and .
satisfy the following: 1) ; 2) ;
and 3) . In this paper, the parameter settings of the

filters follow the same setting in [25].

E. Feature Discriminant Power Comparison With the FSC

Here, we first test the basic discriminant power of different
kinds of features. Table I lists the FSC function’s values of each
pair of tissues obtained by using different types of features of
the 20 image volumes obtained from BrainWeb, without any
bias field distortion. Three radii values of the USRD were used
to achieve the multiresolution analysis, i.e., , ,
and , with the number of neighboring samples

for each radius. Obviously, the simplest feature is the voxel
intensity alone, and therefore, it can be served as the baseline.

It is shown in Table I that all the features outperform the base-
line (i.e., using intensity alone) because they have larger FSC
value, which means that they have higher discriminant power
than using intensity alone. The GMIs feature used in HAMMER
[14] has higher discriminant power than the LHF feature used
in the extension of HAMMER [24] as the GMIs include the
prior segmentation information of input images. The fea-
ture [25] has even higher discriminant power than the GMIs fea-
ture. If the two components of the USRD (i.e., USSP and UGSP)
are individually used, they are comparable to the MRO
feature. If the complete USRD feature is used, it has the highest
discriminant power among all the compared features. Therefore,
the complementary property of the USSP and the UGSP is also
implied.

Then, we evaluate the robustness of different kinds of features
against bias fields. There are three types of bias fields provided
by BrainWeb. Each image is applied with a bias field by the fol-
lowing procedure: First, the type of the bias field is determined
by randomly selecting from the three types of bias fields; then,
the image volume is applied with the selected bias fields with
40% inhomogeneity (intensity nonuniformity). Table II lists the
FSC values of different kinds of features under the bias field dis-
tortion condition.

It is shown in Table II that the FSC values of different kinds of
features for each pair of tissues drop, as compared with Table I,
due to the bias field distortion. The robustness of the proposed
feature is reflected in Table II, and even for the USSP and UGSP
features, they individually outperform all the other compared
features. When the USSP and the UGSP are combined to form
the USRD feature, the discriminant power is even higher.

IV. MRF LABELING FRAMEWORK AS THE

DEFORMATION MODEL

Here, we briefly describe the MRF labeling framework,
which is adopted as the deformation model in this paper.

The fundamental form of the MRF energy function can be
expressed by

(15)

where is the data term and is the smoothness
term. denotes the set of voxels, and is the neighborhood
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system used in . The six-connected neighborhood system is
used in this paper. is the energy function associated with
the data term, and is the energy function associated
with the smoothness term.

By quantizing the deformation space, the registration
problem can be transformed to the MRF labeling problem.
A discrete set of labels is defined. Each
label corresponds to displacement vector .
Assigning voxel with label corresponds to moving to a
new position by displacement vector . The quantization step
proposed in [28] is adopted, where each voxel can be displaced
off the original position bounded by a discretized window

of dimension , in this paper
.

The energy function associated with the data term is
defined based on the USRD features as

(16)

where is the template image, is the subject
image, and and are the USRD feature images
of and , respectively, at the current iteration
calculated by Algorithm 4. denotes the Jensen–Shannon
divergence measure [29] defined by [29]

(17)

where and are two probability distributions with
and is the Kullback–Leibler divergence

function.
The smoothness energy function is defined by the

piecewise truncated absolute distance as

(18)

where is a constant represents the maximum penalty.
The smoothness term defined in (18) enforces the smooth-

ness constraint on the deformation field to avoid the folding
and crossing effects that do not exist in realistic deformation
fields, which plays a similar role to diffeomorphic transforma-
tions [30], [31]. A typical deformation field generated by the
proposed method is given in Fig. 5; it is shown that the defor-
mation field is smooth, and no folding occurs.

The -expansion algorithm [32] is applied to minimize the
energy function defined in (15).

V. EXPERIMENTAL RESULTS

Here, we evaluate the proposed method by performing
nonrigid image registration experiments on both the simulated
database obtained from BrainWeb and the real 3-D database
obtained from IBSR. The proposed method is also compared

Fig. 5. Typical deformation field obtained by using the proposed method. It is
shown that the generated deformation field is smooth and does not have folding
effects, which preserves the topology of the anatomical structures.

with five state-of-the-art registration algorithms. They are as
follows: 1) the FFD algorithm [22]; 2) Demons algorithm
[23]; 3) HAMMER [14]; 4) the extension of HAMMER [24]
based on LHF; and 5) the symmetric Alpha-stable
filtered-based method [25].

In all the experiments, subvolume window size was set to
, and the number of neighboring samples was set

to 80 in Algorithm 4. Three radii values of the USRD were used
to achieve the multiresolution analysis, i.e., , ,
and . The 3-D displacement window used in this paper
was . The maximum penalty pa-
rameter defined in (18) was set to 15. Moreover, affine regis-
trations were first applied to register the subject images to the
template image before conducting the nonrigid image registra-
tion. All the experiments were run on a 3-GHz duo core central
processing unit 2-GB random access memory computer.

A. Experiments With Simulated Database

Here, the proposed method is evaluated on the simulated 3-D
brain database from BrainWeb. Twenty image volumes were ob-
tained from BrainWeb, with size voxels for each
volume. The segmentation result of each image is also provided
by BrainWeb; each image is segmented into three classes of tis-
sues (i.e., GM, WM, and CSF). One of the images was used as
the template image.

Before performing registration, the skull of each input image
was removed as it is a required step for some of the methods
compared in this paper, such as HAMMER [14] and the exten-
sion of HAMMER [24]. The skull-stripping process was accom-
plished by using the software Brainsuite version 2 obtained from
USC3.

Fig. 6 shows the resulting reconstructed average brain images
obtained via different approaches. For comparison purpose, the
template image is also shown in Fig. 6(a). It is shown that the av-
erage brain images obtained via the proposed method preserve
most of the details of the template image, particularly in the ven-
tricular and cortical regions. In Fig. 6, significant differences are
highlighted with green circles.

3http://brainsuite.usc.edu/.
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Fig. 6. Reconstructed average brain images of the proposed method, LHF [24], HAMMER [14], FFD [22], Demons [23], and ��� filter-based method [25] for
the simulated data sets. The template images are also provided for reference purpose. Regions with significant differences are highlighted with green circles. Note
that the skulls have been removed in the preprocessing step. (a) Template. (b) USRD. (c) LHF. (d) HAMMER. (e) FFD. (f) Demons. (g) ���.

TABLE III
MEAN VALUES OF � AND STANDARD DEVIATIONS OF THE TISSUES OF GM, WM, AND CSF WITH DIFFERENT METHODS ON THE BRAINWEB DATABASE WITHOUT

ANY BIAS FIELD DISTORTION. BR DENOTES BEFORE REGISTRATION. THE HIGHEST VALUES OF � ARE BOLDED FOR EACH TISSUE

TABLE IV
MEAN VALUES OF � AND STANDARD DEVIATIONS OF THE TISSUES OF GM, WM, AND CSF WITH DIFFERENT METHODS ON THE BRAINWEB DATABASE UNDER

THE BIAS FIELD DISTORTION CONDITION. BR DENOTES BEFORE REGISTRATION. THE HIGHEST VALUES OF � ARE BOLDED FOR EACH TISSUE

In order to quantitatively evaluate the registration accuracy,
we also adopt the tissue overlapping measure function proposed
in [33] as the evaluation function. It is defined by

(19)

where and denote the regions of a specific type of tissue
of the template and warped subject images. Of course, more
sophisticated measure functions can be also used such as the
function proposed in [34].

Table III lists the values of in (19) for different approaches.
To investigate the individual performance and complementary
properties of the two components of the USRD, i.e., USSP and
UGSP, the values of by individually using the USSP and the
UGSP are also reported.

It is shown in Table III that the proposed method has the
largest value of among all the compared methods. Addi-
tionally, the final registration results of different approaches
matched with the findings in Section III via the FSC protocol
(FFD and Demons are both intensity-based approaches).

We also calculated the registration accuracy of different
methods under the bias field distortion condition. The bias
field distorted images were obtained similar to Section III. The
values of in (19) for different approaches under the bias field
distortion condition are listed in Table IV.

It is shown in Table IV that under the bias field distortion
condition, the proposed method still maintains the highest reg-
istration accuracy among all the compared methods. Therefore,
the registration accuracy and robustness of the proposed method
are strongly implied.
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TABLE V
MEAN VALUES OF � AND STANDARD DEVIATIONS OF THE TISSUES OF GM, WM, AND CSF WITH DIFFERENT METHODS ON THE BRAINWEB DATABASE

AFTER APPLYING THE INTENSITY STANDARDIZATION PROCESS ON THE BIAS FIELD DISTORTED IMAGES. BR DENOTES BEFORE REGISTRATION. THE HIGHEST

VALUES OF � ARE BOLDED FOR EACH TISSUE

Fig. 7. Reconstructed average brain images of the proposed method, LHF [24], HAMMER [14], FFD [22], Demons [23], and ��� filter-based method [25] for
the real 3-D data sets. The template images are also provided for reference purpose. Regions with significant differences are highlighted with green circles. (a)
Template. (b) USRD. (c) LHF. (d) HAMMER. (e) FFD. (f) Demons. (g) ���.

TABLE VI
MEAN VALUES OF � AND STANDARD DEVIATIONS OF THE GM, WM, AND CSF FOR DIFFERENT METHODS ON THE IBSR DATABASE. BR DENOTES BEFORE

REGISTRATION. THE HIGHEST VALUES OF � ARE BOLDED FOR EACH TISSUE

Moreover, in recent years, it is found that intensity standard-
ization as a preprocessing step also plays an important role to
help establish more reliable anatomical correspondence [13],
[35]. In this paper, we also study the registration performance
of different approaches after performing the intensity standard-
ization step. The values of in (19) for different approaches
after the intensity standardization process are listed in Table V.

It is shown in Table V that the tissue overlapping ratios of
different approaches are generally higher after performing the
intensity standardization procedure, which reflects the effective-
ness of the intensity standardization to help establish more re-
liable anatomical correspondence, as stated in [13]. It is also
shown that the tissue overlapping ratios obtained by the pro-
posed method still maintain the highest among all the compared
methods. Thus, the ability to establish more reliable anatomical
correspondences of the proposed method is strongly implied.

The average computation time for the proposed method to
register one pair of input images for the BrainWeb database was
around 3.7 h. The average computation time to register one pair
of input images of all the compared methods is also listed as
follows: 1) FFD took 4.8 h; 2) Demons took 2.6 h; 3) LHF took
5.1 h; and 4) HAMMER took 5.4 h.

B. Experiments With Real Database

Here, we evaluate the proposed method on the real 3-D
database from IBSR. Twenty skull-stripped T1-weighted
normal subjects were obtained. Each subject is with resolution

, and the segmentation results of each subject
are also provided by IBSR. Each subject is segmented into
three classes of tissues (i.e., GM, WM, and the CSF).

Similar to Section V-A, one of the images was used as the
template; others served as the subject images. Fig. 7 shows the
reconstructed average brain images obtained by different ap-
proaches. For comparison purpose, the template image is also
shown in Fig. 7(a). It is visually shown that the resulting average
brain image obtained via the proposed method is most similar to
the template image. Therefore, the registration accuracy of the
proposed method is reflected.

The statistical measure function expressed by (19) was
also adopted to quantitatively evaluate different approaches.
Table VI lists the value of for different methods for the real
3-D database obtained from IBSR.

It is shown in Table VI that the proposed method still main-
tains the highest registration accuracy among all the compared
methods as it has the largest value of .
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TABLE VII
MEAN VALUES OF � AND STANDARD DEVIATIONS OF THE GM, WM, AND CSF FOR DIFFERENT METHODS ON THE IBSR DATABASE AFTER APPLYING THE

INTENSITY STANDARDIZATION PROCESS. BR DENOTES BEFORE REGISTRATION. THE HIGHEST VALUES OF � ARE BOLDED FOR EACH TISSUE

Fig. 8. Average tissue overlapping ratios of the proposed method by relaxing the number of continuous regions of the USRD feature on (a) the BrainWeb database
without bias field distortion, (b) the BrainWeb database with bias field distortion, and (c) the IBSR database.

Similar to Section V-A, we also study the effect of applying
the intensity standardization process before conducting regis-
tration for different registration approaches. Table VII lists the
tissue overlapping ratios of different approaches after applying
the intensity standardization procedure to the input images for
the IBSR database.

It is shown in Table VII that the registration performances
of different approaches are better after applying the intensity
standardization procedure, following the same trend present in
Section V-A. It is also shown that the proposed method still
maintains the highest tissue overlapping ratios among all the
compared methods, which demonstrate the effectiveness of the
proposed approach.

The average computation time for the proposed method to
register one pair of input images for the IBSR database was
around 2.4 h. The computation time of all the compared methods
in the IBSR database is also listed as follows: 1) FFD took 3.1
h; 2) Demons took 1.5 h; 3) LHF took 4.2 h; and 4) HAMMER
took 4.6 h.

C. Additional Experiments on Relaxing the USRD Constraints

Here, we study the effect of relaxing the number of con-
tinuous regions defined for the uniform pattern in a deeper
way. The tissue overlapping ratio measure function used in
Sections V-A and V-B is still adopted as the evaluation function,
and the average tissue overlapping ratios of GM, WM, and CSF
using different numbers of continuous regions of the proposed
USRD feature on the BrainWeb database with and without bias
field distortion and on the real 3-D IBSR database are shown
in Fig. 8(a)–(c).

It is shown in Fig. 8(a)–(c) that the registration accuracy of
the proposed USRD feature monotonically decrease on both the
databases by relaxing the number of continuous regions defined
for the uniform pattern. The main reason is that, by relaxing the
constraints on the number of continuous regions for the uniform
pattern definition, the patterns that are less informative and sen-
sitive to noise are also included in the uniform pattern group
for consideration. It leads to the degradation of the discriminant
power and saliency of the USRD feature. Therefore, the phys-
ical meaning of the uniform pattern defined in Section II and

the constraint that restricts the number of continuous regions of
uniform patterns to two are justified.

VI. CONCLUSION

In this paper, a new feature-based nonrigid image registra-
tion method has been proposed. The proposed method is based
on a new type of image feature, namely, the USRD. The USRD
has two kinds of complementary features, i.e., USSP and UGSP,
which encode the first- and second-order voxel-wise interaction
information, respectively. The USRD is rotation and monotonic
gray-level transformation invariant, which are properties that are
analyzed and proved in the paper. The USRD can be efficiently
calculated by a few voxel-wise intensity and gradient orientation
comparison operations. The USRD feature is integrated with the
MRF labeling framework for driving the registration process.
The discriminant power of the USRD feature is directly com-
pared with other widely used features for image registration by
using the FSC. It is shown that the proposed USRD feature has
remarkably high discriminant power and is more robust against
bias fields. The proposed method is evaluated on both the sim-
ulated and real 3-D image databases obtained from BrainWeb
and IBSR, respectively. Experimental results demonstrate that
the proposed method consistently has the highest registration
accuracy among all the compared methods under different con-
ditions.

REFERENCES

[1] K. Rohr, “Image registration based on thin plate splines and local es-
timates of anisotropic landmark localization uncertainties,” in Proc.
Conf. Med. Image Comput. Comput.-Assist. Intervention, 1998, pp.
1174–1183.

[2] P. Thompson and A. Toga, “A surface-based technique for warping
three-dimensional images of the brain,” IEEE Trans. Med. Imag., vol.
15, no. 4, pp. 402–417, Aug. 1996.

[3] H. Chui, L. Schultz, J. Duncan, and A. Rangarajan, “A unified feature
registration method for brain mapping,” in Proc. Inf. Process. Med.
Imag., 2001, pp. 300–314.

[4] M. Breijl and M. Sonka, “Object localization and border detection cri-
teria design in edge-based image segmentation: Automated learning
from examples,” IEEE Trans. Med. Imag., vol. 19, no. 10, pp. 973–985,
Oct. 2000.

[5] R. Gan and A. Chung, “Multi-dimensional mutual information based
robust image registration using maximum distance gradient magni-
tude,” in Proc. Inf. Process. Med. Imag., 2005, pp. 210–221.



LIAO AND CHUNG: NONRIGID BRAIN MR IMAGE REGISTRATION USING USRD 169

[6] Y. Wang and L. Staib, “Boundary finding with prior shape and smooth-
ness models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 7,
pp. 738–743, Jul. 2000.

[7] P. Roland, C. Graufelds, J. Whalin, L. Ingelman, M. Andersson, A.
Ledberg, J. Pedersen, S. Åkerman, A. Dabringhaus, and K. Zilles,
“Human brain atlas: For high-resolution functional and anatomical
mapping,” Human Brain Map., vol. 1, no. 3, pp. 173–184, 1993.

[8] S. Liao and A. Chung, “Multi-modal image registration using the
generalized survival exponential entropy,” in Proc. Conf. Med. Image
Comput. Comput.-Assist. Intervention, 2006, pp. 964–971.

[9] P. Saha, “Tensor scale: A local morphometric parameter with applica-
tions to computer vision and image processing,” Comput. Vis. Image
Understanding, vol. 99, no. 3, pp. 384–413, Sep. 2005.

[10] P. Saha, H. Zhang, J. Udupa, and J. Gee, “Tensor scale-based image
registration,” in Proc. SPIE Med. Imag., 2003, pp. 314–324.

[11] L. Nyul, J. Udupa, and P. Saha, “Incorporating a measure of local scale
in voxel-based 3-d image registration,” IEEE Trans. Med. Imag., vol.
22, no. 2, pp. 228–237, Feb. 2003.

[12] U. Bagci and L. Bai, “Automatic best reference slice selection for
smooth volume reconstruction of a mouse brain from histological
images,” IEEE Trans. Med. Imag., vol. 29, no. 9, pp. 1688–1696, Sep.
2010.

[13] U. Bagci, J. Udupa, and L. Bai, “The role of intensity standardization
in medical image registration,” Pattern Recognit. Lett., vol. 31, no. 4,
pp. 315–323, Mar. 2010.

[14] D. Shen and C. Davatzikos, “Hammer: Hierarchical attribute matching
mechanism for elastic registration,” IEEE Trans. Med. Imag., vol. 21,
no. 11, pp. 1421–1439, Nov. 2002.

[15] G. Yang, C. Stewart, M. Sofka, and C. Tsai, “Registration of chal-
lenging image pairs: Initialization, estimation, and decision,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 11, pp. 1973–1989,
Nov. 2007.

[16] Z. Tu, K. Narr, P. Dollar, I. Dinov, P. M. Thompson, and A. Toga,
“Brain anatomical structure segmentation by hybrid discrimina-
tive/generative models,” IEEE Trans. Med. Imag., vol. 27, no. 4, pp.
495–508, Apr. 2008.

[17] L. Dirk, S. Pieter, M. Frederik, V. Dirk, and S. Paul, “Nonrigid
image registration using conditional mutual information,” in Proc. Inf.
Process. Med. Imag., 2007, pp. 725–737.

[18] A. Souza, J. Udupa, and A. Madabushi, “Image filtering via generalized
scale,” Med. Image Anal., vol. 12, no. 2, pp. 87–98, Aug. 2007.

[19] S. Liao and A. Chung, “Non-rigid image registration with uniform
spherical structure patterns,” in Proc. Inf. Process. Med. Imag., 2009,
pp. 163–175.

[20] S. Liao and A. Chung, “Non-rigid image registration with uniform gra-
dient spherical patterns,” in Proc. Conf. Med. Image Comput. Comput.-
Assist. Intervention, 2009, pp. 696–704.

[21] A. Fisher, The Mathematical Theory of Probabilities. New York:
Macmillan, 1923.

[22] D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes,
“Nonrigid registration using free-form deformations: application to
breast MR images,” IEEE Trans. Med. Imag., vol. 18, no. 8, pp.
712–721, Aug. 1999.

[23] J. Thirion, “Image matching as a diffusion process: An analogy with
Maxwell’s demons,” Med. Image Anal., vol. 2, no. 3, pp. 243–260, Sep.
1998.

[24] D. Shen, “Image registration by local histogram matching,” Pattern
Recognit., vol. 40, no. 4, pp. 1161–1172, Apr. 2007.

[25] S. Liao and A. Chung, “Feature based non-rigid brain MR image reg-
istration with symmetric alpha stable filters,” IEEE Trans. Med. Imag.,
vol. 29, no. 1, pp. 106–119, Jan. 2010.

[26] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987,
Jul. 2002.

[27] A. Yershova, M. LaValle, and C. Mitchell, “Generating uniform incre-
mental grids on so(3) using the Hopf fibration,” in Proc. WAFR, 2008,
pp. 1–15.

[28] W. Tang and A. Chung, “Non-rigid image registration using graph-
cuts,” in Proc. Conf. Med. Image Comput. Comput.-Assist. Interven-
tion, 2007, pp. 916–924.

[29] C. Thomas and J. Thomas, Elements of Information Theory.
Hoboken, NJ: Wiley, 2006.

[30] S. Joshi and M. Miller, “Landmark matching via large deformation
diffeomorphisms,” IEEE Trans. Image Process., vol. 9, no. 8, pp.
1357–1370, Aug. 2000.

[31] M. Miller and L. Younes, “Group actions, homeomorphisms, and
matching: A general framework,” Int. J. Comput. Vis., vol. 41, no. 1/2,
pp. 61–84, Jan./Feb. 2001.

[32] B. Yuri, V. Olga, and Z. Ramin, “Fast approximate energy minimiza-
tion via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 11, pp. 1222–1239, Nov. 2001.

[33] W. Crum, D. Rueckert, M. Jenkinson, D. Kennedy, and M. Smith,
“A framework for detailed objective comparison of non-rigid registra-
tion algorithms in neuroimaging,” in Proc. Conf. Med. Image Comput.
Comput.-Assist. Intervention, 2004, pp. 679–686.

[34] J. Udupa, V. LeBlanc, Y. Zhuge, C. Imielinska, H. Schmidt, L. Currie,
B. Hirsch, and J. Woodburn, “A framework for evaluating image seg-
mentation algorithms,” Comput. Med. Imag. Graph., vol. 30, no. 2, pp.
75–87, Mar. 2006.

[35] U. Bagci and L. Bai, “Multiresolution elastic medical image regis-
tration in standard intensity scale,” in Proc. SIBGRAPI, 2007, pp.
305–312.

Shu Liao received the B.Eng. degree (first class
honors and Academic Achievement Awards) in
computer engineering, the M.Phil. degree in com-
puter science and engineering, and the Ph.D. degree
in computer science and engineering from The
Hong Kong University of Science and Technology,
Kowloon, Hong Kong, in 2005, 2007, and 2010,
respectively.

He is currently a Postdoctoral Research Fellow in
the Department of Radiology, Biomedical Research
Imaging Center, University of North Carolina,

Chapel Hill. His research interests include medical image analysis, texture
analysis, and face recognition.

Albert C. S. Chung received the B.Eng. degree
(first class honors) in computer engineering from
The University of Hong Kong, Pokfulam, Hong
Kong, in 1995 and the M.Phil. degree in computer
science from The Hong Kong University of Science
and Technology, Kowloon, Hong Kong, in 1998.

He joined the Medical Vision Laboratory, Univer-
sity of Oxford, Oxford, U.K., as a Doctoral Research
Student with a Croucher Foundation scholarship and
graduated in 2001. He was a Visiting Scientist at the
Artificial Intelligence Laboratory, Massachusetts In-

stitute of Technology, Cambridge, in 2001. He is currently an Associate Pro-
fessor with the Department of Computer Science and Engineering, The Hong
Kong University of Science and Technology. His research interests include med-
ical image analysis, image processing, and computer vision.

Dr. Chung was the recipient of the 2002 British Machine Vision Association
Sullivan Thesis Award for the best doctoral thesis submitted to a U.K. university
in the field of computer or natural vision.


