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Augmented Vessels for Quantitative Analysis of
Vascular Abnormalities and Endovascular Treatment
Planning

Wilbur C. K. Wong* and Albert C. S. Chung

Abstract—Endovascular treatment plays an important role
in the minimally invasive treatment of patients with vascular
diseases, a major cause of morbidity and mortality worldwide.
Given a segmentation of an angiography, quantitative analysis of
abnormal structures can aid radiologists in choosing appropriate
treatments and apparatuses. However, effective quantitation
is only attainable if the abnormalities are identified from the
vasculature. To achieve this, a novel method is developed, which
works on the simpler shape of normal vessels to identify different
vascular abnormalities (viz. stenotic atherosclerotic plaque, and
saccular and fusiform aneurysmal lumens) in an indirect fashion,
instead of directly manipulating the complex-shaped abnormal-
ities. The proposed method has been tested on three synthetic
and 17 clinical data sets. Comparisons with two related works
are also conducted. Experimental results show that our method
can produce satisfactory identification of the abnormalities and
approximations of the ideal post-treatment vessel lumens. In
addition, it can help increase the repeatability of the measurement
of clinical parameters significantly.

Index Terms—Angiography, augmented vessel, endovascular
treatment planning, quantitative analysis, vessel tracking.

I. INTRODUCTION

NDOVASCULAR treatment is a therapy performed inside
Evessels with the assistance of two-dimensional (2-D)
angiography and micro-catheters. It plays an important role
in minimally invasive treatments of patients with vascular
diseases [1]. Vascular disease is one of the major causes of mor-
bidity and mortality worldwide, particularly cerebrovascular
diseases, such as intracranial aneurysms, carotid stenoses and
arteriovenous malformations. In a clinical review [2], it was
found that approximately 3.6%—-6% of the general population
are suffering from intracranial aneurysms. As such, diagnostic
imaging scientists are seeking new technologies aimed at pro-
viding a more reliable diagnostic evaluation for endovascular
treatments and therapeutic assessment of vascular diseases
with three-dimensional (3-D) angiographic information. Mag-
netic resonance angiography (MRA), computed tomography
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angiography (CTA), and 3-D rotational angiography (RA) are
examples of these technologies.

Vascular segmentation of 3-D angiographies can provide pa-
tient-specific 3-D vascular models. This is very useful in en-
dovascular treatment planning [3]. Nevertheless, even if a vas-
cular model is obtained, measuring the clinical parameters of
interest still remains a problem. In particular, measuring the
neck width and dome height of a cerebral aneurysm! are the
most difficult tasks. These measurements, however, would be
easier to take if the aneurysmal sac is demarcated from its parent
arteries. Interactive or automatic quantitative analyzes on the
lesion would then become feasible, because the pathological
structures could be processed exclusively. The estimation of
Guglielmi detachable coil’s (GDC) size and shape could be
obtained from simple morphological operations (opening and
closing) or complex algorithms like deformable models [6] that
are applied to the detached sac volume. In the case of arterial
coarctation, if the volume of atherosclerotic plaque that causes
the stenosis is estimated, a best-fitting stent for an endovascular
recanalization can then be deduced from the plaque dimensions.

The identification of abnormal vascular structures would also
help angle selection for optimal working projections.2 With
the knowledge of the shape and orientation of an aneurysmal
neck, the method proposed by van der Weide et al. [8], which
is based upon minimizing the area of the aneurysmal neck in
projected images, could be used for the angle selection. Once
the aneurysmal lumen is demarcated, another more advanced
choice would be the one developed by Wilson ez al. [9] in which
the optimal working angle is determined via a minimization
of the area of overlaps between adjoining vessels and the sac.
Similar techniques could be developed for selecting the optimal
working angle in an endovascular recanalization if the volume
of atherosclerotic plaque is estimated.

Nonetheless, little work has been done on the identifi-
cation of abnormal vascular structures in angiographies. In
the literature, only a few authors have suggested methods to
detach aneurysmal lumens from vasculatures. Wilson et al.
[9] suggested using the distance map of an aneurysmal sac
center to determine the aneurysmal volume. They identified
and excluded high-intensity regions in the distance map, and

IAn aneurysm is a localized abnormal dilation of a blood vessel. The neck
width and the dome height of a cerebral aneurysm are important information
for selecting proper apparatus (such as micro-balloons [4]) and can help predict
immediate outcomes of an occlusion with Guglielmi detachable coils (GDC)
(51

2The aim of optimal working angle selection is to seek a clear view of a
stenotic lumen or an aneurysmal sac and its neck so as to avoid foreshortening of
the lesions and overlapping with other objects in their 2-D angiograms [7]—[9].
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inpainted the resultant empty regions by interpolation between
neighboring low-intensity regions. Then all voxels that lie
within the distances in the inpainted map from the sac center
are classified into the aneurysmal volume. McLaughlin and
Noble [10] determined aneurysmal voxels as the voxels that
are closest to an aneurysmal mesh identified by a user with the
seed and cull algorithm. These two algorithms, however, have
difficulty giving satisfactory results on wide-neck3 saccular
aneurysms and fusiform aneurysms, as is shown in Section I'V.

In this paper, we develop a novel approach to identifying a
variety of vascular abnormalities, viz. stenotic atherosclerotic
plaque, and saccular and fusiform aneurysmal lumens from vas-
culatures on a unified framework. We take a very different ap-
proach as compared with other published methods. Instead of
manipulating the pathological structures with sophisticated al-
gorithms, we identify the abnormalities by explicitly modeling
their opposite, i.e., normal vessels. As compared with the com-
plex shape of the abnormal lumens, our method works on the rel-
atively simpler shape of normal vessels. The abnormal vascular
structures are then determined as the complement of the approx-
imated normal vessels. For instance, an aneurysmal lumen is
seen as the surplus volume in the vasculature in respect to the
normal vessel model, whereas the absent volume in a stenotic
lumen is an estimate of the atherosclerotic plaque volume.

We refer to this normal vessel model as the “augmented
vessel.” The term “augmented” is borrowed from the termi-
nology “augmented reality,” which refers to the technology that
integrates computer-generated objects into real-world environ-
ments [11]. Our augmented vessels are computer-generated
vessels aimed at estimating a portion of post-treatment vessel
lumens under conditions that either 1) a stent successfully re-
stores the width of a stenotic lumen which is comparable to the
widths of normal lumen segments that are proximal and distal
to the coarctation, 2) an aneurysmal sac is completely packed
with GDC, or 3) an aneurysmal lumen is occluded perfectly by
stent grafts [12]. Those conditions are regarded as clinically
ideal, since the post-treatment vessel lumens approximated
are very similar to normal lumens. It is perceived that such
approximation does not take hemodynamics of vasculature
into account. We are neither aiming at producing accurate
modelings of post-treatment lumens that are hemodynamically
stable nor approximating actual lumens after endovascular
treatments. Instead, our goal is to identify the volumes of
abnormal vascular structures (based on normal counterparts)
so as to ease measurement of clinical parameters, make the
measurements more consistent yet less subjective and, as a
result, allow endovascular treatment planning to be facilitated.

The rest of the paper is organized as follows. The proposed
method is described in Section II, followed by several imple-
mentation issues in Section III. Experimental results on syn-
thetic and clinical data sets are presented in Section IV. An in
vivo study and its findings are given in Section V. Finally, dis-

3Sanders et al. suggested using a sac-to-neck ratio to access the success rate
of a Guglielmi detachable coil (GDC) occlusion of an aneurysm [4]. This ratio
is defined as the diameter of an aneurysmal sac divided by the diameter of the
sac opening. An aneurysm with a sac-to-neck ratio of 2.0 or more is optimal
for GDC occlusion, whereas a sac-to-neck ratio nearing 1.0 suggested that the
lesion is a wide-neck aneurysm which is more difficult or may be impossible to
treat with GDC occlusion.
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cussions and the conclusion are presented in Sections VI and
VII, respectively.

II. DESCRIPTION OF THE METHOD

For the purpose of this study, we assume that a topologically
and morphologically correct vascular segmentation (i.e., with
no holes and cavities) is available. Without loss of generality,
the segmentation is represented in a binary image volume with
voxel label equals one for the vessel lumen class and zero for the
background class. Throughout this paper, augmented vessels are
constructed with reference to this vascular segmentation.

In this section, we begin by describing the construction of
augmented vessels, which consists of two major phases: 1) de-
termination of vessel widths and centerlines (Section II-A); 2)
production of an explicit vascular surface model (Section II-B).
We then present demarcation of aneurysmal sacs and volume es-
timation of stenosis atherosclerotic plaque in terms of a simple
set operation in Section II-C.

A. Vessel Widths and Centerlines

In this paper, we focus on images that contain arteries. In
order to model all possible vasculatures found in clinical data
sets, a generic-enough model is required such that the model
can be molded into the imaged vessels ranging from simple
lumen segments to complex n-way branching junctions. As
such, we employ the most intuitive and commonly used vessel
model found in the literature—circular cross-sectional tube
[13]-[18]—to initiate the construction of augmented vessels:
a tube is used to model a single lumen segment; and multiple
tubes are required in the case of an n-way branching vascular
junction.

1) Determination of Vessel Widths and Centerline
End-Points: In this simple initialization model, the widths
(2 x radius of local circular cross sections) of a tube and the
location of the tube centerline are the only attributes subject
to change. A user is requested to select two points in a 3-D
space to define the end-points per tube centerline which is used
to initiate the construction of augmented vessels. They should
be selected at disease-free portions of vessels of interest such
that the tube centerline either passes by a saccular aneurysmal
lumen or passes through a fusiform aneurysmal or a stenotic
lumens. The circles in Fig. 1 are possible centerline end-points
selected by a user in disease-free regions of two aneurysmal
cases and a stenotic case.

The widths of the tube along the centerline are then deter-
mined by using the linear interpolation between the local vessel
widths at the two selected points. The reason for imposing such
a hard constraint on the tube widths is that we need a strong
shape prior to restrict the morphology of the augmented ves-
sels in a pathological region. Otherwise, we may have an overfit
initialization model that is molded to a complicated patholog-
ical lumen (e.g., a poststenotic dilated lumen [19], an asym-
metrically dilated aneurysmal lumen and a coarctation), if the
tube widths are allowed to vary out of the range bounded by the
end-points’ local vessel widths.

2) Representation of Vessel Centerline: The tube centerline
is modeled using an open parametric zero-tension cardinal
spline. Compared with the conventional open B-splines [9],
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Fig. 1. Possible end-points selected by a user, their corresponding estimated
centerlines and ridges in Euclidean distance (ED) maps of (a) a saccular
aneurysmal lumen, (b) a fusiform aneurysmal lumen and (c) a stenotic lumen.
The portion toward the far end of the lumen from the dotted straight line
denotes the disease-free region. The components are labeled: 1, a blood vessel
wall; 2, an arterial lumen; 3, a ridge in an ED map; 4, an estimated centerline;
5, a user selected end-point. Also, notice the differences between the estimated
centerlines and the ridges in the ED map.

[13], cardinal splines have the advantage of being able to
pass through the knots, which makes the representation more
intuitive in subsequent approximation of the vessel centerlines.
A cardinal spline fragment between the ith and (7 + 1)th knots
is defined as follows:

(u—1i)? Tro _—2 1 1 P;
- | (w=1)? -3 3 -2 -1 P
Ciit1(u) = (u— 1) 0 0 1 0 P’;
1 1 0 0 o0 Py
(D

P'; =(1—5) (PuminG+1,8-1) — Pumax(0,j-1)) 2
where v € R, 7 < uw < ¢+ 1 is a parametric variable. P; and
P,11 denote the ith and (¢ + 1)th knots, respectively. N is the
total number of knots. The notation P’; denotes the tangent at
point P ; and is approximated using (2). In this paper, we set s =
0 to ensure that the spline fragments are joined smoothly at each
corresponding knot. The complete cardinal spline composed by
the individual fragments is, therefore, described as

Cu=Cjjuu), forj<u<j+l ()

where j EN,0<jJ< N —-2and0<u <N —1.

3) Approximation of Vessel Centerline: The approximation
of the vessel centerline is treated as a spline registration problem
under a fixed end boundary condition [20]. We solve the regis-
tration problem using the active contour models, Snakes [21].
Our cardinal splines have two types of parameters, intrinsic and
extrinsic parameters. The intrinsic parameters include the model
constraint functionals and image functional, whereas the ex-
trinsic parameters define the search space of the registration.

The model constraint functionals are length penalty, tensile
and flexural strengths. The length penalty acts as a soft con-
straint to avoid redundant tortuousness. The tensile and flexural
strengths control the resistance of the spline to stretching and
bending deformations, respectively. The image functional, pri-
marily for anatomy penalty, poses a strong constraint on the
registration such that the tube centerline at the final equilib-
rium state follows the trajectory of vessels of interest. Unlike
the commonly used image functionals, such as those based on
intensity gradient magnitude [13], [16]-[18], [22], [23], ours is
distinctive. It takes volumetric information into account, instead
of lumen boundaries, to encourage large volumetric overlap be-
tween the tube and the vascular structures. This allows the es-
timated centerline outside the confines of a narrowed lumen
which can help identification of stenotic asymmetry (a useful in-
formation in a clinical diagnosis [24]), as depicted in Fig. 1(c).

Our energy functional to be minimized is defined as follows:

c__.CpC C C C C C C
E =Y Etensile—}_’}/f Eﬂexural—i—’yl Elength+ Ya Eanatomy

~~ ~~
model constraint functionals image functional

“)
where

Egnsile: /|Cu|2du (5)

C
Efgaxuralz /|Cuu|2du (6)

C
Elcc:ngth: /|Cu|du (7)

C
Eacnatomy = /1 - V(C)du. ®)

C

The weights 7€ control the inferences of the individual energy
functionals E€, C is the abbreviation for the spline C(u), | -
| is the [*>-norm operator and V(C) € [0,1] denotes a scalar
function which returns the areas of the circular cross section of
the tube at C(u) that are occupied by the vascular structures in
the percentage. The solid lines labeled as 4 in Fig. 1 are possible
vessel centerlines estimated using our method.

The search space of this minimization problem is the Carte-
sian coordinates of all movable knots (i.e., all the knots, except
Py and Py _1). Unlike the works done by Wilson et al. [9]
and Frangi er al. [13], we do not assume the number of knots
(also known as order) in the spline is fixed (i.e., single-order).
A multi-order (MO) approach similar to the multi-resolution
B-spline mesh illustrated in [25] for free-form MRI registra-
tion is adopted. The order of cardinal splines is automatically
determined in a coarse to fine fashion. Instead of doubling the
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number of knots at the next higher order (finer) level as proposed
in [25], we increase one knot at each higher level. Therefore,
comparing with the previous works (i.e., [9] and [13]) done, our
approach is more generic and novel. One might suggest to take
the single-order approach so as not to overcomplicate the vessel
centerline approximation. Later in experiments on a clinical data
set, we demonstrate that such approach can easily get trapped
at local optimum, especially when the order of splines is high
(>2 movable knots). However, if the order is low (<2 movable
knots), splines may suffer from low degree of freedom (DOF)
and, hence, are unable to model portions that exhibit relatively
high curvature. The implementation of this minimization proce-
dure is presented in Section III-B.

B. Explicit Vascular Surface Model

To construct the augmented vessels, determining the widths
and the centerlines of the vessels are necessary but not sufficient.
We also need to define an explicit closed surface to represent
the augmented vessel lumen boundaries. This explicit surface
plays an important role in identification of the abnormal vascular
structures.

In the demarcation of an aneurysmal lumen, for instance, the
augmented vascular surface acts like a 3-D “cookie cutter” that
crops the vascular structure, analogous to dough, into two parts,
“cookie dough” and “wasted dough” (see Fig. 2(a) and the small
figure on the lower right corner of Fig. 2(b), the partitions la-
beled 2a and 2b are contributed to the “wasted dough” and the
partition labeled 3 is the “cookie dough”). The “cookie dough”
is an estimate of a portion of the vessel lumen in the region of
interest after a perfect endovascular embolization. The “wasted
dough,” on the other hand, consists of the suspected aneurysmal
lumen labeled 2a and the regions of no interest labeled 2b. After
this partitioning, the suspected aneurysmal lumen can be easily
selected in the “wasted dough.”

In the case of the volume estimation of stenotic atheroscle-
rotic plaque, the explicit surface has its intuitive physical
meaning. It represents an inflated balloon catheter in balloon
angioplasty, as shown in Fig. 2(c). The spaces that are not
occupied by the vascular structures inside the explicit closed
surface may correspond to the atherosclerotic plaque [i.e.,
the partitions labeled 5 in the small figure on the lower left
corner of Fig. 2(c)]. The suspected plaque volume can then be
identified and selected manually with ease. Thus, estimation of
the atherosclerotic plaque volume becomes feasible.

1) Surface Representation and Initialization: The aug-
mented vascular surface is represented as a vector-valued
parametric function

S(u,v) = [w(u,v), y(u,v), z(u,v)]" )

where v and v are parametric variables. It is initialized as a
closed surface Sg that represents the augmented vessels’ mor-
phological shape (i.e., composition of circular cross-sectional
tubes) explicitly. Details of the initialization are presented in
Section III-C.

2) Surface Matching: Although, arteries have thicker walls
that help retain the lumen boundaries more-or-less circle around
the vessel centerlines [26], the cross-sectional shape can still
deviate from that being perfectly circular. Hence, the circular
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Fig. 2. Explicit vascular surface models. An analogy between cookie cutter/
doughs and explicit vascular surface model/vessel lumens in the demarcation
of an aneurysmal lumen: (a) cookie cutter labeled 1, waste dough labeled 2,
and cookie dough labeled 3; and (b) explicit vascular surface model labeled 1,
aneurysmal lumen labeled 2a (a part of the “wasted dough”), regions of no in-
terest labeled 2b (parts of the “wasted dough”) and augmented vessels labeled
3 (“cookie dough”). (c) Intuitive physical meaning of an explicit vascular sur-
face model in the volume estimation of stenotic atherosclerotic plaque, an in-
flated balloon catheter in balloon angioplasty. Label 4, vascular structures in the
pretreatment vascular segmentation; and label 5, approximated atherosclerotic
plaque (absent vascular structures). (d) Cross-sectional shapes of an aneurysmal
lumen and its parent vessel lumen. The shape of the parent vessel lumen deviates
from a circular cross-sectional tube. The estimated aneurysmal lumen labeled
2a is overestimated if the initial surface model S¢ labeled 6 is used to “cut” the
vascular structure.

cross-sectional tube representation is too primitive to approx-
imate the arterial lumens in clinical data sets. As depicted in
Fig. 2(d), it is very likely that the obtained aneurysmal lumen is
overestimated (label 2a), if the initial surface model Sy (label
6) is used to “cut” the vascular structure.

To avoid such overestimation, we need to make fine adjust-
ments on Sg by matching it to the nearby lumen boundaries in
the vascular segmentation. The surface matching is performed in
an energy minimization based nonrigid registration framework.
The augmented vascular surface S is a floating surface, which
freely deforms (in a global sense) into a reference surface M,
the lumen boundaries in the segmentation. In order to homoge-
nize the representation of the two surfaces (i.e., the deformation
medium), the lumen boundaries are explicitly represented by the
iso-surface obtained from the Marching Cubes algorithm [27].

Although the deformation is globally free-form, we do im-
pose local constraints. These constraints dictate the evolution
of S such that it has an affinity with the nearby lumen bound-
aries (boundaries of the parent vessel lumen) but not the distant
counterparts (e.g., the aneurysmal and stenotic lumen bound-
aries). We propose two novel external energy functionals to im-
pose those constraints. They are snap functional and anti-col-
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Fig. 3. Energy values of the snap and the anti-collapse functionals. Left
column: the snap energy (at z = 0) of a point whose nearest point on M is
[8,14,0]T when R = 12 in different values of p, (a) p = 0.1 and (c) p = 10.
Right column: the anti-collapse energy (at = = 0) of a point whose initial
position is [8, 14,0]T when 1y = [—1/v/2,1/+/2,0]T in different values of
r,(b) r = 10 and (d) r = 0.1.

lapse functional. These two functionals are very different from
the classical functionals proposed in the literature on deforma-
tion models [21], [28]-[31], such as the functionals built upon
negative intensity, negative intensity gradient magnitude, inten-
sity gradient vector and contour/surface curvature. Our snap and
anti-collapse functionals are defined on geometric displacement
fields of S to M and Sy, respectively. This allows embedding
shape priors into the deformation regardless of the represen-
tation of the deformable model (see Section VI-A for the dis-
cussion on model representation). Classical tensile and flexural
functionals are also employed for surface regularization.

3) Snap Functional: The snap functional favors S to stick to
M. This alleviates the unrealistic shape of Sy and gives a better
modeling of the lumen boundaries in the vascular segmentation.
It is defined as

ES . = / 3 pdudv (10)

snap ~

where s

—ndispg(S)
&S {ndisM(S) +pxe », forndisy(S) <R )

snap 0, otherwise
1D

The symbol S in the integrand is shorthand for S(u,v),
ndisp (S) returns the shortest Euclidean distance (ED) from
S(u,v) to M, p is a positive nonzero constant that controls the
energy drop rate around the minimum (i.e., ndisp (S) = 0). A
smaller p gives a more abrupt decrease in the snap energy as
ndisp (S) approaches zero and, hence, increases the strength
of the snap constraint. R is a positive constant that defines a
circular snap range, outside which the energy vanishes. In other
words, it controls the sensitivity of S toward M (the sensitivity
is proportional to the value of R) and plays an important role
in discouraging S to stick to the distant lumen boundaries. The
left column of Fig. 3 shows the snap energy (at z = 0) of a
point whose nearest point on M is [8, 14, 0]T when R = 12 in
different values of p.

4) Anti-Collapse Functional: Though the snap functional
can avoid S marching toward aneurysmal lumen boundaries that
are relatively far away from Sy, distant diseased lumen bound-
aries seldom exist in the cases of stenosis where lumens narrow
gradually. The snap functional may drive S to the stenotic lumen
boundaries and make the augmented vascular surface collapsed.
The anti-collapse functional is, therefore, proposed as a remedy
for this problem. The form of this functional is similar to the
snap counterpart. Instead of favoring a deformation that mini-
mizes the shortest geometric distances between S and M, the
anti-collapse functional encourages the magnitude of the neg-
ative displacement (displacement is negative if its direction is
opposite to the outward surface normal) of S from S to be min-
imized. In other words, it favors S to restore its initial position
(i.e., maintain its prior shape) only when it is collapsed/shrunk.
This functional is given as

ESnti—collapse = /gsnti—collapsedU’dv (12)
S
where
£S _ [ 1AS]+ L x 71281 foriy - AS <0
anti—collapse 0, otherwise .
(13)

The vector AS equals S(u, v)—So(u, v). || is the [>-norm oper-
ator and the positive nonzero parameter r controls the rate of the
initial position restoration. The vector 7y denotes the outward
normal vector at Sq(u, v). It helps define the null energy posi-
tive displacement half-space. Thus, the anti-collapse forces do
not drive the surface ahead of its initial position or in other words
they do not help inflate/expand the surface. The right column of
Fig. 3 shows the anti-collapse energy (at z = 0) of a point whose
initial position is [8, 14, 0]T when 7y = [~1/v/2,1/v/2,0]T in
different values of r.

5) Regularization Functionals: Standard regularization
functionals, tensile and flexural, are also employed. Similar to
the spline registration presented in Section II-A-3, these two
functionals make S act like a membrane and a thin-plate to
avoid development of surface singularities. The tensile and
flexural functionals are written as

Epnsile = / Sul? + [Sy|*dudv (14)
S

Egexural = / |Suu|2 + 2|Suv|2 + |va|2dudv. (15)
S

6) Optimization Procedure: The overall energy functional to
be minimized is, therefore, given as follows (similar to EC in

“4)

S_\SpS S 1S S 1S S 1S
E _)\s Esnap+)\a Eanti—collapse—i_)\t Etensi1e+)\f Eﬂexural .

~~
regularization functionals

(16)
Due to the high dimensionality (dimension equals 3n, where n
is the number of sample points on S whose order of magnitude
is at least hundreds) of S, we take a deterministic approach to
searching for a local minimum. It is a standard approach to free-

external functionals
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form deformation problems [32]. The Lagrangian mechanics
is applied to construct a dynamical system that is dictated by
the Lagrangian ES in (16). Hence, the equilibrium state (the
matched S) is obtained as the solution to the Euler-Lagrange
equations. The motion equations for each sample points on S
are then derived using the gradient-descent method. The mo-
tion equations and their discrete representations are presented
in Section III-D.

C. Identification of Abnormalities

Once the augmented vascular surface model is constructed, itis
transformed into a binary volume in the same resolution as in the
pre-treatment vascular segmentation. Voxels enclosed by the sur-
face model are labeled as ones and the background is labeled with
zeros. Details of the transformation are outlined in Section III-E.
In this paper, we consider the two most commonly found abnor-
malities in the human arterial network: aneurysm and stenosis.
An aneurysm is a local abnormal dilation of a blood vessel, while
a stenosis is a coarctation of an arterial lumen. Although these
vascular abnormalities are very different (opposite) in terms of
their morphology, we can identify them using a simple set opera-
tion on the two binary image volumes: the pre-treatment vascular
volume and the augmented vessel volume.

These two binary volumes are referred to as sets V and A, re-
spectively, which contain only voxels in unity label. As depicted
in the small figure of Fig. 2(b), the approximated aneurysmal
volume (partition labeled as 2a) can be selected by the user from
the set (V \ A), i.e., the surplus volume (partitions labeled as 2a
and 2b) in the pre-treatment vascular volume with respect to the
augmented vessel volume. Whereas the atherosclerotic plaque
volume can be approximated from the set (A \ V), i.e., the ab-
sent vascular volume (partitions labeled as 5).

III. IMPLEMENTATION ISSUES

The proposed methodology is implemented using three cross-
platform open source C++ software libraries, the Insight Seg-
mentation and Registration Toolkit (ITK) [33], the Visualiza-
tion ToolKit (VTK) [34], and the wxWidgets (formerly known
as wxWindows) [35], for algorithmic computing, visualization
and graphical user interface programming, respectively.

A. Centerline Point Selection

As discussed in Section II-A-1, two points should be selected
from the centerline of the disease-free portion of the vessel of
interest. To assist the user in selecting those points, we present
M to the user and request the user to select two points on the sur-
face. Then two centerline points can be located by searching the
local maxima in the ED map around the two chosen points [36].
We employ the ED transformation [37] available in the VTK
[34] and a gradient-ascent strategy to find those local maxima
(i.e., the centerline points).

B. Optimization Procedure for Spline Registration

In a typical optimization procedure, the Cartesian coordinates
of all the movable spline knots (henceforth referred to as set P)
are enumerated to form a parameter vector 7 € R IP|. The opti-
mization algorithm then varies {7'to find an energy minimum in a
search domain. Nonetheless, |P| is not fixed in our case, thereby
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the dimensionality of 7'is one of the parameters to be optimized.
To solve this atypical optimization problem, we propose a novel
strategy to cope with this iteration-varying dimensionality of the
parameter vector.

Algorithm 1 Optimization with Iteration-Varying Dimension

1: k<0, B, < 40

2: Cy < SPLINE(P,, 0, Py,)

3: repeat

4: k< k+1

5: Pp <= {Cio1(i/(k+ )i e N, 1<i<k},st|Pe|=k
6: pi. < ENUMCOORD(P}), s.t. pi € R3*

7: {Ex,pi} < OPTIMIZE(pi), s.t. pi € R

8: P} < REVENUMCOORD(p¥), s.t. |Pi| = k
9: Cy < SPLINE(P,,P;,Py,)

10: until £, > Ey 4

11: Return Cyx_q

1) Optimization With Iteration-Varying Dimension: Our
strategy is given in Algorithm 1. The variable k is an iteration
counter, F, stores the energy obtained at the kth iteration, Cy
is the spline obtained after the kth optimization, P, and Py, are
the two points selected by the user and SPLINE(-) returns a
spline generated using the knots in the argument list. Py, is the
set of k& movable knots before the kth optimization, these knots
are sampled evenly from the spline obtained in the previous
iteration. ENUMCOORDY(-) returns a vector p;. € R3* which
is the enumeration of the Cartesian coordinates of the points in
the given set. OPTIMIZE(-) performs the optimization based
on the parameter vector pj, and returns a tuple which consists of
the minimum energy value obtained at the kth iteration and the
corresponding parameter vector p_i. REVENUMCOORD(+)
reverses the operation of ENUMCOORDY(+). This produces a
set of knots P, from p_i after the kth optimization.

In summary, the algorithm deforms the spline beginning with
a single movable knot and performs the optimization iteratively
with increasing the number of knots until the minimum energy
stops decreasing.

2) Stochastic Optimizer: In this paper, we use the (1 +
1)-Evolution Strategy (ES) for the optimization. It is a special
type of the Evolutionary Algorithms, kinds of stochastic opti-
mizers, with both the population size and number of children
generated equal one [38]. The (1 + 1)-ES has an automatic
step size and provides search direction adaptation. It supports
parameters with different scaling and has the ability to step
out of nonoptimal minima. Therefore, this strategy can give
the spline registration problem with a long capture range. One
might suggest to use a deterministic optimizer, for instance,
gradient descent method, to register the splines because of its
absolute repeatability and computational cheapness. We show
later experimentally that a gradient descent method gets easily
trapped at local minima and, even worse, if the step size is not
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carefully set, it jumps to a nearby local minimum whose energy
value is higher than the initial one. Due to these potential prob-
lems, we prefer to use (1 4+ 1)-ES in this paper. Nonetheless,
if absolute repeatability is an important issue, a deterministic
optimizer could be applied and if it fails, resort to (1 4+ 1)-ES.

3) Energy Functional Calculation: The weights vC in (4)
are assumed to be independent of the spline C, i.e., they are kept
constant throughout the registration (Y€ = +.). The derivatives
in (5)—(7) can be calculated analytically since we have a closed
form of C [see (1) and (2)]. The first- and second-order deriva-
tives are expressed as

00t _ (30, 32 o(u—i) 1 0]AP (7)
ou
and

9*Ciit1(u) ;

TCal _fou—i) 2 0 AP (8

respectively, where A and P are the second 4 x 4 matrix and
third column vector on the right-hand side of (1).

The function V(C) in (8) is approximated with a circular
neighborhood (CN) system [39] [see Fig. 4(a)]. The CN system
is composed of concentric circles with the outermost circle’s
radius equals the local tube radius. The area between two con-
secutive circles is known as a layer. To be more precise, the ra-
dius of the ith circle equals (i/L) X Rc(u), where L defines
number of layers,2 € N, 1 < ¢ < L, Rc(u) denotes the tube
radius at C(u) and the first layer is defined by innermost circle.
These concentric circles are aligned on a plane with its normal
vector parallel to the tangent of C. We sample each concentric
circle with .S evenly distributed samples. Since the vessel voxels
are labeled as ones while the background voxels are labeled as
zeros, we determine the vascular structure occupied area in per-
centage by computing the weighted average label value (a value
€ [0, 1]) at the sample points within the CN system as follows:

19)

L S i
V(C) = w, (sz} ) .
=1

Weights w; account for the area difference between samples
at different layers. They are calculated from the area ratios of
each pair of consecutive layers. The area of the ith layer equals
(m(i)? — w(i — 1)?). Therefore, the area ratio r; of the ith layer
to the (7 + 1)th layer is expressed as follows:

r— { mO S =2 fori=1,2,..., L—1

1, for: =L
(20)
The weights w; are then calculated as follows:
L
w; = H TE 1)
k=i

In other words, w; denotes the area ratio of the ith layer to the
outer layer (i.e., Lth layer whose wy = 1). Label value of the

(a) (b)

Fig. 4. Circular neighborhood (CN) system. (a) CN system is composed of
concentric circles (label 1 is the center) with the outermost circle’s (labeled as
2) radius equals the local tube radius. The area between two consecutive circles
is known as layer (layers labeled 3 and 4 are the outermost and innermost layers,
respectively). (b) Sample points’ locations in a CN system with L = 3 and
S = 8. A sample point on the second layer is labeled as 5.

jth sample point at the ith layer is denoted by v;;. The label
values are evaluated by the linear interpolation in a continuous
space of each layer, or mathematically, on a circle with radius
((i = 0.5)/L) x Rc(y) at the sample points of the ith layer.
Fig. 4(b) shows sample points’ locations in a CN system with
L = 3 and S = 8 for better illustration. For instance, a unity
average label value represents a 100% vessel occupied area.

Finally, the energy functionals in (5)—(8) are calculated from
the derivatives and the function V(C) with the numerical inte-
gration method, two point trapezoidal rule [40]. The series of
abscissas used is {u;|u; = ¢ x du,i € N,0 < u; < N — 1},
where N denotes the number of (both fixed and movable) spline
knots and éu is the step size in the parametric space. The step
size du should be small enough to produce good approximation
of the integration. It is worth noting that the tensile and flexural
energy functionals in (5) and (6) can be calculated analytically.
This is because the integrands are basically polynomials in de-
gree of 4 and 2, respectively. However, in order to have a consis-
tent way to calculate the overall energy functional for the spline
registration, we choose to compute them numerically together
with the other analytically nonintegrable functional integrands
in (7) and (8).

C. Initialization of Explicit Vascular Surface Model

We construct the initial augmented vascular surface Sg
from a binary volume using the Marching Cubes algorithm,
with reference to the vessel widths and centerlines determined
as described in Section II-A. The binary volume is built by
labeling voxels that are laid inside the morphological shape of
the augmented vessels with the unity label. It is accomplished
by placing solid spheres (filled up with the unity label) with
radii equal to one-half of the estimated vessel widths along each
centerline. This approach has the advantage of constructing
the augmented vessels in a complex vasculature, such as an
n-way branching junction. This is because each individual
vessel defined by the centerline and the interpolated widths
can be easily aggregated together in terms of binary volumes
by logical OR operator (treating the unity label as true and the
label zero as false).
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D. Optimization Strategy for Nonrigid Surface Registration

To minimize the energy functional £° in (16), a dynamical
system governed by the functional is constructed using the La-
grangian mechanics. To achieve this, the functional £ is refor-
mulated to a notation that is invariant to the surface parameteri-
zation. Thus, the derivation of the Euler-Lagrange equations of
motion is also independent from the representation of S.

1) The Lagrangian: After the reformulation (see Ap-
pendix I), the Lagrangian is written as follows:

3
ES = / [Z (gtse(rils)ile + gf?eii:lal) + gesxternal‘| dud'U (22)

.S d=1
where )
Efimmie =A% VS| 23)
g8 =28 [(VQS(d))Q — oM (s““)} (24)
Eternal = /\Egssnap + /\ngnti—collapso' (25)

The variable d is the dimensionality index, the symbol S in
the integrand is shorthand for S(u,v) and S(%) represents the
dth component of the vector S(u,v). The symbols V, V2, and
’H(S(d)) denote the gradient operator, the Laplacian operator,
and the determinant of the Hessian matrix of S(¥) on the para-
metric space, respectively.

2) Euler-Lagrange Equations of Motion: The Euler-La-
grange equations are then obtained using calculus of variations

—/\tsv2s + )\va4S + V(c"esxternal = 6

(26)

where V* denotes the biharmonic operator, square of the Lapla-
cian operator. The matched S is, therefore, characterized by the
equilibrium state of this dynamical system. Through using a gra-
dient-descent method, we can obtain the motion equations for
each sample points on S

S(t+§t)

=S® _ ot x VES
T

_gm o

T

external

AFVIS — AFViS — ved
——
external force
27)
where 6t is a time step and 7 is a damping coefficient. Assuming
the weights in €5, are constants, i.e., \5 = A, and \§ =

A, the gradient VES | is given as follows (see Appendix II

externa
for the derivations):

tensile force  flexural force

Vge?xternal = )\Svgssnap + )\ﬂvgfnti—collapse (28)
—ndispg (S) S — np3,(S
VS = (1) B2 g,
ndisy, (S)
A*S
((/‘S . — (1_ 77‘><‘AS‘) 30
\Y anti—collapse e X max (6, |AS|) ( )

where npj,(S) returns npy;(S) (which gives the nearest point
on M from S(u, v)) if ndisp (S) < R, otherwise the argument
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S(u,v) is returned. The constant e denotes a very small posi-
tive real number, ndis};(S) is defined as max(e, ndispg (S)) and
A*S equals AS if g - AS < 0, otherwise it equals 0.

3) Discrete Representations: In this paper, we assume the
weights A\¥ = \; and \¥ = )¢. The Laplacian and biharmonic
terms in (27) are approximated by the umbrella operator [30] at
each sample point on S, i.e., each vertex on the triangle mesh,
as follows:

A V3ZS; =M@ = Mg Z (S; —S) (31)
JEN;
AVES; =\ Y (@ — d) (32)

JEN;

where S; represents the ith vertex of the mesh and N; is the set
of neighbors of the vertex S,. We define the function ndisp (S;)
as |S; — nppg(S;)|- The nearest point on M is located using a
point locator implemented upon an octree-based spatial search
available in the VTK [34].

4) Freezing Mechanism: Theoretically, S should be kept de-
forming until it converges in a global sense. Nonetheless, it is
1) inefficient to keep moving every mesh vertex at each iteration
even when some of them have reached their equilibrium loca-
tions and 2) impractical to define a global convergent state since
the mesh vertices may jitter around their local minima. There-
fore, we propose a freezing mechanism such that the free-form
deformation can be speeded up and a convergent state can be
defined.

Algorithm 2 Optimization with the Freezing Mechanism

1:t < 0,5 < {i|Vi,S; is a vertex of S}
2: ¢ < 0,c; < F, Vi, S, is a vertex of S
3: repeat

4: S+ « DEFORM (S®),S)

5: for all j in the set S

6 G = (8" -8+
7. if |¢;| < Q then

8 cj&=cj—1

9 if c; < 1 then

10: S =S\ {j}

11: end if
12:  else

13 ¢ <0
14:  end if
15: end for
16: t < t+ 6t
17:until§ = 0

The mechanism is outlined in Algorithm 2. ¢ is a time vari-
able, S denotes a set of indices of active vertices, the vector ¢;
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TABLE 1
PARAMETER SETTINGS OF THE PROPOSED METHOD USED IN ALL CONDUCTED EXPERIMENTS

Centerline Point Selection (cf. Section III-A)

Voxel diagonal length % | Gradient-ascent step size %
Spline Registration: (1+1)-Evolution Strategy (cf. Section III-B.2)

Spline length C Shrink factor 1.172
Growth factor 1.1 Parameter scale 1
Initial radius, 7, 2% Epsilon Tinit/2 X |Pg|
Maximum number of iteration 100

Spline Registration: Discrete Representations (cf. Section III-B.3)

Tensile weight, 5 Flexual weight, ¢ 10
Length penalty weight, 1 Anatomy penalty weight, v, 5

Step in the parametric space, éu  (|Pgx| — 1) /[C/6V] | Number of CN layers, L 3
Number of samples per layer, S 16

Surface Registration: Discrete Representations (cf. Section III-D.3)

Time step, 0t 1 Damping coefficient, 7 25
Circular snap range, R 2 x 0V Snap energy drop rate, p R/ (-2 x In(0.01))
Anti-collapse rate, 7 —2 X 1n(0.01) /6V | Tensile force weight, A 0.1
Flexural force weight, A¢ 0.2 Snap force weight, Ag 1
Anti-collapse force weight, A, 5

Surface Registration: Freezing Mechanism (cf. Section III-D.4)

Countdown initial value, F’ 10 | Net displacement threshold, Q oV/4
Surface Registration: Mesh Decimation for Speed Up (cf. Section III-D.4)

Target reduction 50% | Triangle aspect ratio 3
Transformation of Surface Model into Binary Volume (cf. Section III-E)

Target reduction 70% | Topology Preservation On

represents the net displacement vector of the ith vertex in S, ¢;
is a freezing countdown variable, F' is the initial value for the
countdown variables and S(*) denotes the deformed surface at
time ¢. The function DEFORM (S, §) moves the vertices of
S() whose indices exist in S according to the motion equations
defined in (27). The constant () defines a threshold for the net
displacement. This threshold together with the constant F' de-
fines the rate of freezing. The optimization procedure terminates
if the set of active vertices is empty. In case it does not happen,
the user can preempt it. A more elegant solution to guarantee
termination, along the same research line as in [30], is to pro-
gressively lower the weights A and A, of the external force.

Further speeding up of Algorithm 2 is possible if one reduces
the number of vertices in S, because the worst case time com-
plexity of the algorithm is O(m?), where m is the total number
of vertices in S. We employ the implementation of the decima-
tion algorithm [41] available in the VTK [34] to simplify the
mesh before the deformation.

E. Transformation of Surface Model Into Binary Volume

The augmented vascular surface model is represented as a
closed triangle mesh. The goal of the transformation is to gen-
erate a binary volume for the augmented vessels such that the
abnormalities can be identified with a simple set operation (cf.
Section II-C). We employ the VTK to convert the triangle mesh
into a stencil volume [34]. The stencil is then used to create the
desired binary volume with the voxels enclosed by the mesh la-
beled as ones and the outside voxels labeled as zeros.

It should be noted that if there exists singularities (e.g., two
points coincide and a triangle is collapsed into a line) or self-in-
tersecting patches on the surface mesh (usually developed at the
boundary of an aneurysmal sac opening), the aforementioned
procedure is very prone to unity label leakage. This is because
the stencil is built with reference to the surface normals and the

surface normals calculated at those problematic regions may not
be locally consistent.

To alleviate the possible leakage, the decimation technique
based on a quadric error metric [42] is employed to simplify
the mesh prior to the transformation. Nonetheless, the new ver-
tices introduced in the decimation algorithm may not be in close
proximity to M [42]. Therefore, we modify the algorithm so as
to force the newly introduced vertices to snap to their corre-
sponding nearest points on M that lay within the range half the
voxel diagonal length.

IV. ILLUSTRATIONS OF THE METHOD

A. Synthetic Data

We have tested the proposed method on three synthetic data
sets. The parameter settings are listed in Table I, which are
found empirically. The design of the synthetic data takes several
typical pathologies into consideration: a cerebral aneurysm at
the bifurcation of a communicating artery, an abdominal aortic
aneurysm (AAA) and a stenosis at the middle cerebral artery
(MCA). The synthetic data sets are created as follows. First,
circular cross-sectional tubes are employed to model disease-
free lumens geometrically. Then, an ellipsoid is introduced to
simulate an aneurysmal sac. In the cases of AAA and arterial
stenosis, the tube cross sections are modified to mimic an ab-
normal localized dilation along an abdominal aorta and a coarc-
tation of an artery, respectively. As a final step, the geometric
models are voxelized into binary volumes. The data sets are cre-
ated to emulate the field of view of the region of interest (6—150
mm) and the image volume (80 x 80 x 120 vox.) of typical
3-D angiographies at those anatomical sites. The voxelized syn-
thetic normal lumens