
Noname manuscript No.
(will be inserted by the editor)

Mitigating Incast-TCP Congestion in Data Centers with SDN

Ahmed M. Abdelmoniem · Brahim Bensaou · Amuda James Abu

the date of receipt and acceptance should be inserted later

Abstract In data center networks (DCNs), the pres-

ence of long lived TCP flows tends to bloat the switch

buffers. As a consequence, short-lived TCP-incast traf-

fic suffers repeated losses that often lead to loss recov-

ery via timeout. Because the minimum retransmission

timeout (minRTO) in most TCP implementations is

fixed to around 200ms, interactive applications that of-

ten generate short-lived incast traffic tend to suffer un-

necessarily long delays waiting for the timeout to elapse.

The best and most direct solution to such problem

would be to customize the minRTO to match DCNs de-

lays, however, this is not always possible; in particular

in public data centers where multiple tenants, with var-

ious versions of TCP, co-exist. In this paper, we propose

to achieve the same result by using techniques and tech-

nologies that are already available in most commodity

switches and data centers and that do not interfere with

the tenant’s virtual machines or TCP protocol. In this

approach, we rely on the programmable nature of SDN

switches and design an SDN-based Incast Congestion

Control (SICC) framework that uses an SDN network

application in the controller and a shim-layer in the host

hypervisor to mitigate incast congestion. We demon-

strate the performance gains of the proposed scheme

via real deployment in a small-scale testbed as well as

ns2 simulation experiments in networks of various sizes

and settings.

Ahmed M. Abdelmoniem∗ E-mail: amas@cse.ust.hk
Brahim Bensaou E-mail: brahim@cse.ust.hk
Amuda James Abu E-mail: ajabu@cse.ust.hk
Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
∗Corresponding Author. The source code, simulation and ex-
periments is available at https://ahmedcs.github.io/SICC/

This paper is an extended version of [4].

Keywords Congestion Control · Data Center Net-

works · Incast · Software Defined Networking · TCP.

1 Introduction

Driven by the popularity of cloud computing, public

data center network (DCNs) abound in applications

that generate a large number of traffic flows, with vary-

ing characteristics and requirements, that range from

large groups of barrier-synchronized, short-lived, time-

sensitive flows, to long-lived, time-insensitive, through-

put inclined flows. For example, often traffic flows that

originate from partition-aggregate applications (e.g., web

query, map-reduce and so on) fall into the first category,

due to time constraints imposed on them by the need

for interactivity. In contrast, traffic flows that originate

from backups and virtual machine migration, often fall

into the second category. In the sequel we refer to the

former as mice flows and to the latter as elephants. Re-

cent studies [10, 16, 28] show that in practice elephant

flows take the lion’s share of the traffic volume in DCNs,

nevertheless, such networks teem with many more mice

flows.

DCNs are structured to provide a high bandwidth

with low latency, as such, unlike in the Internet, the

traffic “inertia”1 in such networks is small, thus, the

amount of buffer space required to absorb bursts of

traffic is also small. As a consequence, DCNs mostly

use Ethernet switches with small buffers (instead of

routers) to interconnect their servers. However, in the

1 We define the traffic inertia of a flow as the worst case
amount of traffic that the flow can inject in the network before
congestion can be detected. This is typically the maximum
amount of traffic that could be lost before the loss is detected
and recovery is invoked.

2 Ahmed M. Abdelmoniem et al.

presence of such small buffers, the sudden surge of syn-

chronized incast-TCP flows still results in severe con-

gestion events. In particular, in the presence of ele-

phants the shared buffer is bloated, leaving little room

for the incoming synchronized small flows. TCP was not

designed to deal with such complex congestion events,

as it is agnostic to the latency requirements of mice

flows, as well as to the composite nature of the applica-

tion data (i.e., the existence of many synchronize flows

that contribute to the same application). Therefore it

does not handle them effectively as shown in many re-

cent works [7, 8, 11, 28, 29].

Recent works in [1, 3, 7, 18, 27, 28] represent the typ-

ical set of approaches used to addressed this issue. Many

such works adopt an end-to-end TCP-AQM as a means

of maintaining a small queue in the switches, ensuring

thus a high throughput for elephants while maintain-

ing enough empty buffer space to absorb mice burst ar-

rivals. For instance, DCTCP [7] modifies TCP reaction

to ECN marks to cut the congestion window (cwnd) in

proportion to the number of marks received per RTT,

and the marking in the switch is done based on the in-

stantaneous buffer occupancy. Identifying the difficulty

of imposing a standard TCP on the VMs in public Data

Center (DC), in our earlier work we proposed RWNDQ

[3], a switch-based fair allocation scheme that does not

need to change TCP. Instead, in our scheme, the switch

calculates a flow fair share and modifies the advertised

receiver window (rwnd) upon congestion build up, to

impose this fair share on all the sources regardless of

their nature (mice or elephants). Both approaches in-

volve modification of either the TCP stack in the guest

VMs for the former or the switch software in the latter.

This makes them less appealing for immediate deploy-

ment in large DCNs due to additional restrictions and

cost they impose.

Software Defined Networking (SDN) [5, 13, 21] was

recently adopted as a router and switch design approach

that separates the control functions from the data-path,

outsourcing the former to a dedicated central controller(s)

with a global-view of the network state. OpenFlow [19]

is currently the dominant standard interface between

the controller and the data-path. This approach en-

ables rich network control functions (such as routing,

security, admission control and so on) to be easily im-

plemented and deployed on top of the network oper-

ating system in the SDN controller, as a simple appli-

cation software. To avoid modifying the TCP stack or

the switch, in this paper, we invoke the programming

ability of SDN switches to design an SDN-based incast-

TCP congestion controller (SICC) that consists of an

SDN network application in the SDN controller and a

shim-layer in the host server hypervisor.

1.1 Motivation and Objectives

A good solution to the incast congestion problem should

be appealing to both the tenant and the cloud opera-

tor. Hence, we argue that modifying the TCP proto-

col and/or the hardware switching logic can only be

applied to small scale private data centers. In particu-

lar, in most public cloud services, tenants rent virtual

machine (VM) instances and can upload their own op-

erating system images to their VMs. In addition, ten-

ant can modify/fine-tune their protocol stack as needed

to achieve better performance. In contrast, modifying

the switch hardware is feasible from the cloud provider

perspective, however, it remains unappealing as it is

a costly alternative. Therefore, in our design approach,

our target is to emerge with a solution that encompasses

the following principles: (R1) Effectiveness (i.e., the so-

lution must effectively handle the problem of incast con-

gestion by significantly improving the flow completion

time (FCT) of mice flows, without degrading dramat-

ically the throughput of elephant flows); (R2) Scala-

bility (i.e., the solution must avoid modifying the TCP

sender/receiver protocol, nor alter the hardware switch);

and finally, (R3) Simplicity and Practicality (i.e., the

solution must be immediately and easily deployable via

simple software patches in existing DCNs that support

SDN).

To achieve these objectives, we adopt a triangular

approach where the OpenFlow enabled switches report

their statistics to the controller, the controller estimates

the extent of congestion and notifies the hypervisors to

quench the TCP sources that contribute to such con-

gestion. This can be done via programming in SDN,
by implementing an SDN control application (to esti-

mate congestion and notify the hypervisors) and a shim

layer in the hypervisor modules to actually apply traffic

control underneath the VMs.

1.2 Summary of Contributions

1. We explore the prospect of using SDN paradigm to

design congestion control schemes for data center

networks.

2. We develop an easily deployable SDN framework

that handles incast congestion event via coopera-

tion among the SDN controller and the end-host

hypervisors.

3. We implement the proposed framework and evalu-

ate its performance via simulation and in real testbed

experiments.

Mitigating Incast-TCP Congestion in Data Centers with SDN 3

2 Related Work

Recent years have seen an increasing activity in the

design of congestion control mechanisms for DCNs. In

general, these works fall into one of four categories:

1. Sender-based protocols: in [27], it is observed

that there is a mismatch between the standard TCP

retransmission timer in the hosts and the actual

round-trip times (RTTs) experienced in DCNs. Mod-

ifying the sender TCP stack to use high-resolution

timers was thus proposed to enable TCP timeout

detection with microsecond timer granularity. The

so-called DCTCP [7] proposed to modify TCP con-

gestion window adjustment function to react pro-

portionally to the congestion level. RED-AQM pa-

rameters are tuned to enforce a small ECN-marking

threshold to achieve a small queue length. Both ap-

proaches can achieve small delays for mice traffic

but require modifications of the TCP sender and

receiver algorithms as well as fine tuning of RED

parameters at the switches for DCTCP.

2. Receiver-based protocols: ICTCP [28] was pro-

posed as a modification to TCP receiver to handle

incast traffic. ICTCP adjusts the TCP receiver win-

dow proactively, before packets are dropped. The

experiments with ICTCP in a real testbed show

that ICTCP can almost curb timeouts and achieves

a high throughput for TCP incast traffic. Unfortu-

nately, ICTCP does not address the impact of buffer

bloating issues caused by the co-existence of ele-

phants in the same buffer as mice. Furthermore, it is

effective only if the incast congestion happens at the

destination node, and finally it also requires changes

to the TCP receiver algorithm.

3. Switch-assisted protocols: in [1–3], we have pro-

posed AQM schemes to regulate TCP sending rate

with minor modifications to the DropTail AQM.

RWNDQ [1, 3] tracks the number of established

flows to calculate a fair share for each flow and up-

dates the TCP receiver window in the ACK to feed-

back this explicit share to TCP sources. IQM [2]

in contrast monitors the TCP connection setup and

tear-down events at the switch to forecast the immi-

nence of possible incast congestion and resets the re-

ceiver window of the reverse path ACKs to 1 MSS to

quench elephants and as a result make room for the

forthcoming incast traffic. Both schemes are shown

to curb timeouts for incast traffic and achieve a high

throughput for elephant traffic, however, both re-

quire switch software modification.

4. SDN-based: SDTCP [18] involves the SDN con-

troller in monitoring in-network congestion messages

triggered by OpenFlow switches and select currently

active elephant flows. The controller sets up Open-

Flow rules at the switches to decrease the sending

rate of elephants by rewriting the TCP receive win-

dow of ACKs. The experiments conducted in an em-

ulation environment (Mininet) shows almost zero

loss for TCP incast without major effect on the

goodput of the elephants. However, the proposed

modifications and congestion notification messages

from the switches are unrealistic unless they are im-

plemented by modifying the switches. In another

work, OTCP [15] addresses the problem of incast

congestion by means of computing and adjusting

certain environment-specific congestion control pa-

rameters based on centrally available network prop-

erties.

3 The Proposed Methodology

Volley of
N SYN Q(Ti) Q(Ti+1) < Q(Ti)+N*x MSS

Ti Ti+1

Fig. 1: SICC Idea Rationale

The basic idea behind the proposed SICC frame-

work is illustrated in Fig.1. Considering the buffer oc-

cupancy at an outgoing port of a switch, assuming that

mice flows are short-lived, they will mainly contribute

to the queue variation in the switch port buffer, in con-

trast, the persistent queue length is mostly due to the

contribution of elephant flows. As a result, denoting

Q(Ti) the persistent queue at round i of duration Ti
(e.g., RTT i), the arrival of a volley of N new TCP

connections (indicated by the arrival of N TCP SYN

packets) would lead the queue at period Ti+1 to be no

more than Q(Ti) +N ∗ x ∗MSS bytes, where x is the

initial window size of TCP. To control congestion, one

may simply inhibit the congestion window and rely on

flow control whenever Q(Ti+1) is expected to exceed

the buffer size. For instance, during such events each

flow might be allowed to send only 1 MSS per RTT.

To ensure a high link utilization, flow control is turned

off whenever the queue drains enough, reaching a given

low threshold, upon which the sources recover the use of

their already acquired congestion window sizes. The un-

derlying principle with this approach is to achieve fair-

ness in the short terms among ongoing flows (mice and

4 Ahmed M. Abdelmoniem et al.

VMs

Hypervisor

Bottleneck Port

Long-lived
Flow

New
Flows

...

...

SYN

SYN

SYN

Incast
ON/OFF

Se
t

Fo
rw

ar
d

. R
u

le
s

G
et

 Q
u

eu
e

St
at

s.

SDN
Controller

..
.

Bottleneck

Control

Data

C
o

py
 S

Y
N

/F
IN

 R
u

le

Fig. 2: A high level view of SICC framework compo-

nents’ interactions which forms some form of a closed-

loop control cycle.

elephants) whenever a salvo of mice flows is starting.

As mice are expected to be short-lived, knowing that

the persistent queue is mainly due to elephants, flow

throttling is deactivated once the queue drops below

the threshold, hence meeting requirement (R1) above.

In principle, regardless of the TCP variant, the TCP

source sending rate is determined by the sender window

swnd = min(rwnd, cwnd), where rwnd and cwnd, are

the advertised receiver window and the current con-

gestion window respectively. Since cwnd is normally at

least equal to 2 MSS, setting rwnd in incoming TCP

ACKs to 1 MSS during incast congestion will have the

immediate effect of throttling all the ongoing flows.

The direct effect of this is to ensure short term fair-

ness among all the flows during the incast period. This

can be easily implemented as a switch-based algorithm

to avoid modifying the TCP source/receiver, however

the cost of changing all the switches is prohibitive. In-

stead, and to meet requirement (R2), the SDN con-

troller, being aware of flow arrivals and thus the possible

incast events, controls when the end host hypervisor is

to rewrite rwnd field in the incoming TCP ACK head-

ers. SDN also provides much useful statistics on the

ongoing number of flows and the queue occupancy for

each switch port. Noticing that all the rewriting happen

in the hypervisor below the VMs and that rwnd pro-

cessing is universal to all TCP implementations, our

framework is obviously transparent to the TCP variant

deployed inside the VM. In addition during the incast

period when our controller is in the incast mode, all

flows regardless of the TCP-flavor in use receive the

same share of bandwidth.

To meet requirement (R3), i.e., simplicity, instead of

tracking individual flow states to estimate accurately

the queue length in the next interval, the SDN con-

troller uses rough estimates by simply counting the ac-

cumulated number N of TCP segments with a SYN-

ACK bit, deducting the number of TCP segments with

the FIN bit set; in the worst case, this estimate results

in a conservative estimate of the predicted queue length.

Without loss of generality, in the sequel we will consider

the value of the initial TCP congestion window (x) to

be 1 MSS.

Fig. 2 shows the detailed protocol interactions among

the different modules residing on the controller, switches

and end-hosts as follows: 1) The controller uses a mon-

itoring module/application to track and extract infor-

mation (e.g., the window scaling option) from incoming

SYN/FIN. This is done by setting SYN-copy rules in

all ToR switches in the data center. 2) The controller

uses a warning module/application to predict immi-

nent incast congestion events based on SYN/FIN ar-

rival rates and the current queue length. In case of pos-

sible congestion, incast ON/OFF special messages are

directed to the involved senders’ VM addresses. 3) The

hypervisor or virtual switch (vswitch) SICC monitor-

ing module intercepts such messages; upon receipt of

incast ON message destined to a certain VM, all incom-

ing ACK packets for that VM are intercepted and their

rwnd values are rewritten, until an incast OFF mes-

sage is received later or the average duration of typical

mice (short-lived) flows is exceeded. 4) SDN switches

only need to be programmed with a Copy-to-Controller

rule for SYN/FIN packets, the controller will set out a

rule at the DC SDN-switches to forward a copy of any

SYN/FIN packet through the south-bound API (Open-

Flow) protocol interface.

SDN
Controller

Set Copy SYN/FIN
to Controller Rule

ToR
switches

Set
Forwarding rules

Data Center

Incast
ON/OFF Warning

Servers

Fig. 3: A full SICC-based data center deployment with

relations among end-hosts, switches and the controller.

Fig. 3 illustrates a possible deployment scenario of

our proposed SICC framework in a SDN based data

centers. All the switches in the DC are SDN-enabled.

Mitigating Incast-TCP Congestion in Data Centers with SDN 5

The controller controls all the switches in the data cen-

ter and is by default responsible for setting the forward-

ing rules in the switches of the data center. The con-

troller sets the necessary rules in all the Top of Rack

(ToR) switches to intercept any TCP SYN segments.

As a result, the controller is able to track TCP connec-

tions and pin-down their paths by setting new forward-

ing rules (or merging them into existing aggregates) in

the DCN switches. By also intercepting the FIN seg-

ments in the ToR switches, the controller is also able

to withdraw routing rules from the switches as neces-

sary. In addition the end-hosts’ hypervisors/vswitches

are patched to receive and process the incast warning

messages originating from the central controller.

4 SDN-based Incast Congestion Control

The main variables and parameters used in the SICC

framework are described in Table 1. Notice that T ,

DM , α1 and α2 are system parameters as described

in Table 1.

Table 1: Variables and Parameters used in SICC frame-

work by the SDN network application and the hypervi-

sor shim-layer

Parameter name Description
T The controller monitoring interval
α1 Queue threshold to turn OFF Incast
α2 Queue threshold to turn ON Incast
DM Average duration for mice flows to finish

List Objects Description
SW List of the controlled SDN switches

SW PORT List of the ports on the switches
PORT DST List of destinations reachable though port
DST SRC List of destinations and source pairs

Q Average length of the output queue q
B buffer size on the forward path
WS Window scale of source-destination pair
M Maximum segment size of source-destination pair
γ The new predicted traffic after incast arrival
β Coarsely estimated differential of new connections
κ Boolean true if incast is ON
IW The dominant initial congestion (e.g., 10 MSS)

4.1 SDN Network Application for Incast Detection

The network application communicates with the cen-

tral controller via the north-bound API in order to set

OpenFlow rules at OpenFlow-enabled switches in the

data center. These rules instruct the switches to for-

ward a copy of any SYN or FIN packets to the SICC

application for further processing. In most cases, TCP

SYN packets contain optional TCP header fields with

useful information (e.g., maximum segment size and re-

ceiver window scaling value). Such information is stored

in source-destination-based hash tables to be used by

the SICC application. Typically, the controller probes

regularly for switch port statistics over a fixed interval

which SICC uses to calculate a smooth weighted mov-

ing average of the queue occupancy. Hence, the SICC

application can predict possible congestion events using

the following algorithm:

Algorithm 1: SICC Application Algorithm

1 Function Packet Arrival(P, src, dst)
2 if SY N bit set(P) then
3 β ← β + 1;
4 M [src][dst] ← P.tcpoption.mss;
5 W [src][dst] ← P.tcpoption.wndscale;

6 if FIN bit set(P) then
7 β ←MAX(0, β − 1);

8 Function Incast T imeout Handler
9 forall sw in SW do

10 forall p in SW PORT do

11 Q[sw][p] ← Q[sw][p]

4
+ 3×Q[sw][p]

4
;

12 γ ← β[sw][p] × IW + Q[sw][p];
13 if now − κ[sw][p] >= DM then
14 if q[sw][p] ≤ (α1 ×B) then
15 forall dst in PORT DST do
16 forall src in DST SRC do
17 msg ← “INCAST OFF”;
18 send msg to src;

19 if β > 0 and γ ≥ (α2 ×B) then
20 forall dst in PORT DST do
21 forall src in DST SRC do
22 msg ← “INCAST ON”;
23 msg ← msg + W [src][dst];
24 msg ← msg + M [src][dst];
25 send msg to src;

26 β[sw][p]← 0;

27 Restart Incast detection timer T ;

The SICC network application shown in Algorithm 1

is an event-driven mechanism that implements two ma-

jor event handlers: packet arrivals and incast detection

timer expiry to trigger incast on or off messages to the

involved sources.

1. Upon a packet arrival: if the SYN bit is set for es-

tablishing a new TCP connection, then the current

value of β for the switch port is incremented and the

options information of the source VM are extracted

from the TCP headers (i.e., the window scaling and

the maximum segment size). Otherwise, if this is a

packet with the FIN bit set then the current value

of β for the switch port is decremented.

2. Incast timeout handler: γ indicates the minimal

number of extra bytes that will be introduced into

6 Ahmed M. Abdelmoniem et al.

the network by the β new and existing connections.

Typically each new connection starts by sending an

initial congestion window (i.e., IW) worth of pack-

ets into the network while existing ones will main-

tain the same persistent (average) queue occupancy

built over the course of their activity. If the buffer

is expected to overflow in the next interval due to

the additional traffic introduced by the new connec-

tions, then a fast proactive action must be taken

to make room for the forthcoming possible incast

traffic. The controller immediately sends to the hy-

pervisor(s) of the senders involved in the conges-

tion situation a message to raise up their incast flag

(INCAST-ON). In contrast, if the buffer occupancy

is seen to drop below the incast safe threshold (i.e.,

20% of the buffer size) or the time since the in-

cast ON exceeds the expected activity time of mice

flows, then the controller sends to the involved hy-

pervisor(s) a message to lower down their incast flag

(INCAST-OFF).

4.2 Hypervisor Window Update Algorithm

At the end-host, the hypervisors or the vswitches are

patched and modified to process any incoming incast

ON/OFF raw messages coming from the SDN applica-

tion. The newly added function implements the receiver

window rewriting to 1 MSS on the incoming ACK seg-

ments whenever incast in ON. To reach the appropriate

hypervisor/vswitch, the controller uses the VMs IP ad-

dress as destination, however, to prevent the hypervisor

from delivering such controller messages to the VMs,

the Ethernet frame is tagged with one of the unused

(experimental) Ethernet types to indicate that the mes-

sage carried in the frame is not a TCP/IP packet but

rather an incast ON or OFF message. The hypervisor

implements the following algorithm to act upon arriv-

ing messages from the controllers. Algorithm 2 handles

three type of incoming packets: incast ON, incast OFF

and TCP ACK packets as follows:

1. Incast ON: If the received packet is identified as

an “Incast ON” from the payload of the Ethernet

frame. Then the hypervisor sets in the VM-to-VM

table the incast flag field (i.e., κ) to ON for this

source and destination pair. Then, the hypervisor

extracts and updates the relevant information in the

flow table about the destination (i.e., the window

scale shift exponent and the maximum segment size)

to be able to update the receiver window field upon

ACKs arrival.

2. Incast OFF: If the received packet is identified as

an “Incast OFF”, then the hypervisor resets the in-

Algorithm 2: SICC Hypervisor Algorithm

1 Function Packet Arrival(P, src, dst)
2 if INCAST ON MSG(P) then
3 κ[src][dst] ← True;
4 WS[src][dst] ← P.wndscale;
5 M [src][dst] ← P.mss;

6 if INCAST OFF MSG(P) then
κ[src][dst] ← False ;

7 if ACK bit set(P) then
8 WNDScaled ← M [src][dst] >>

WS[src][dst];
9 if κ[src][dst] and rwnd(P) > WNDScaled

then
10 rwnd(P) ← WNDScaled;
11 Recalculate Internet Checksum for P;

cast flag (to OFF) and stops ACK rewriting for this

source-destination pair.

3. TCP ACK: If the received packet is identified as an

incoming TCP ACK segment, the hypervisor checks

if the incast flag for the corresponding source and

destination pair is on, and starts rewriting the re-

ceiver window field to 1 MSS shifted by the window

scale factor of this source-destination pair.

Setting the receive window of the ACKs to a conser-

vative value of 1 MSS, will ensure to some extent that

short query traffic flows (i.e., those of size 10-100KB)

will not experience packet drops at the onset of the

transfer (when loss recovery via three duplicate ACK is

not possible) and hence will not incur the waiting time

for retransmission timeout. In addition, the incast flag

is cleared as soon as the queue length drops below a pre-

determined threshold and/or the number of RTTs for

mice to finish has expired, enabling thus elephant flows

to re-use their existing congestion window values (that

was simply inhibited by the receiver window rewriting)

and thus restore their sending rate.

4.3 Practical Aspects of SICC Framework

SICC framework can maintain a very low in-network

loss rate during incast events and enables the switch

buffer to absorb sudden traffic surges while maintain-

ing a high utilization. Therefore, it can cope well with

the co-existence of mice and elephants, especially with

the introduction of scalable control approaches in SDN

platforms [17]. SICC adopts a proactive recovery ac-

tions in face of the forecast incast congestion. As soon

as the incoming traffic gives indication of overflowing

the buffer, the receive window is shrunk to a conserva-

tive 1 MSS. Furthermore the new window is equally and

temporally applied to all ongoing flows that contribute

Mitigating Incast-TCP Congestion in Data Centers with SDN 7

to the congestion event, meaning that all flows, mice or

elephants, will receive an equal treatment during incast

periods, which is one of the original goals of congestion

control in general.

Notice that SICC is a very simple mechanism di-

vided among the DC controllers and the hypervisor or

vswitch with very low complexity and can be integrated

easily in any network whose infrastructure is based on

SDN. In addition, the window update mechanism at

the hypervisor is so simple that it only requires an

O(1) processing per packet. The additional computa-

tional overhead is insignificant for hypervisors running

on DC-grade servers. SICC can also cope with Internet

checksum recalculation very easily and efficiently after

header modification, by applying the following straight-

forward one’s-complement add and subtract operations

on three 16-bit words: Checksumnew = Checksumold+

rwndnew − rwndold [25]. This also takes O(1) per mod-

ified packet. In addition, since SICC is designed to deal

with TCP traffic only, adding two rules to OpenFlow

switches to forward a copy of SYN and FIN packets are

simple operation in an SDN/OpenFlow based setup.

The new rules will be a simple wildcard filter match-

ing over all fields except for TCP flags which do not

require per-flow information tracking at the switches,

this completely conforms with the recent OpenFlow 1.5

specification [22]. Last but not least, to avoid any poten-

tial mismatch between predicted congestion in a switch

buffer and actual congestion experienced in another

switch buffer due to possible route changes, the forward

and backward routes can be pinned down easily along

the same path by the SDN controller; (notice that, un-

like in wide area Internet, such route changes are very

highly unlikely to happen in DCs due to path stickiness

and the reliance on switches rather than routers.)

5 Simulation and Performance Analysis

We have tested the performance of SICC via simulation

in various network topologies of different scales, then

to further test the practical feasibility of SICC we have

implemented it in a small testbed. In this section, we

report the results from our simulation study, and delay

the implementation results to the next section.

We carried out several simulations in which we com-

pared the performance of TCP/SICC to that of i) TCP

with RED AQM, with ECN marking enabled; ii) the

RWNDQ algorithm [2], that modifies the switch algo-

rithm to achieve fairness; and iii) the DCTCP algo-

rithm [7], that modifies/replaces the TCP protocol in

the VM. In general, in SICC, the value of α1 should

be chosen to reflect the level of buffer occupancy that

signals the drainage of the queue after incast; as such,

in our simulations, we set the value of α1 to 20% of the

buffer size. In contrast, the value of α2 should be cho-

sen to signal the possible buffer overflow; hence, in the

simulations and experiments, we set the value of α2 to

100% of the buffer size. In addition, T should be set to

a value larger than the end-to-end average RTT; conse-

quently, if not otherwise stated, T was set to 1ms, or 10

times the RTT. DCTCP parameters were set according

to the recommendations in [7], with K = 15 packets

for 1Gbps links and K = 65 packets for 10Gbps links.

We used the network simulator ns2 v2.35 [20], which

we extended with the flow control receive window pro-

cessing, to implement SICC. For DCTCP we used a

patch available online for ns2 v2.35 from the authors

[6]. For proper operation, the ECN-bit capability was

enabled in the switch and TCP sender/receiver. Unless

otherwise stated, the minRTO was set to 200ms (which

is the default in Linux TCP implementations), the IP

data packet size to 1500 Bytes, and the buffer size to

83 packets (or 125 KBytes).

5.1 Single-Rooted Tree Topology

First, we used a single-rooted (dumbbell) topology with

1Gb/s links and an average RTT of 100µs and ran the

simulation for a period of 5 sec. Using mixes of 80 mice

and elephant FTP flows, we simulated three scenar-

ios, to mimic synchronized incast traffic competing with

long-lived flows. In the first scenario, we simulated an

elephant-to-mice ratio of 1:3 (i.e., 20 elephants and 60

mice) which is the ratio reported from private data cen-

ters in [7, 10]. In the second scenario, we increased the

considered a ratio of 1:1. Then in the third scenario, we

increased further the share of elephants to 3:1, in order

to examine how SICC would respond when the network

is highly loaded with long-lived (background) traffic. In

all experiments, while the elephant flows sent at their

allowed speed, without interruption, for the whole du-

ration of the simulation, mice flows were set to have

a finite supply of 10 KBytes data each. After finishing

their transfers quickly, mice flows close their connec-

tions and reopen new ones at the beginning of each sec-

ond. This resulted in a situation where the continuous,

bulky, buffer-bloating elephants traffic is superimposed

with 5 epochs of bursty incast traffic arrivals. To ensure

that a relatively tight synchronization existed among

mice flow arrivals in each incast epoch, we set the flows

to start randomly within an average inter-arrival time

of one packet transmission time.

For mice flows we report the CDFs of the Average

FCT (AFCT), the cumulative packet drops experienced

by mice flows, and the 99th-percentile of the FCT for

8 Ahmed M. Abdelmoniem et al.

10
0

10
1

10
2

10
3

10
4

AVG Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP SICC RWNDQ DCTCP

(a) Average FCT for mice

0 5 10 15 20 25 30
Total Mice Drops

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(b) Mice packet drops

TCP SICC RWNDQ DCTCP
0

200

400

600

800

1000

1200

1400

A
V
G

 R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

1303.0

542.0

7.0

461.0

(c) Average 99th% FCT

Fig. 4: Performance of mice flows for TCP, SICC, RWNDQ and DCTCP in 1:3 ratio scenario.

mice flows only. Note that, the lower the values the bet-

ter the performance. These results are shown in Fig. 4

for the 1:3 scenario, Fig. 5 for the 1:1 scenario and Fig. 6

for the 3:1 scenario. For elephant flows, we essentially

report their goodput; and the results for the three sce-

narios are grouped in Fig. 7.

In the 1:3 scenario, Fig. 4a show that SICC can

improve on average the flow completion time of mice

flows compared to both TCP and DCTCP, and also

(not shown here) the variance of the AFCT is improved

compared to TCP and is in the same range as (slightly

worse than) that achieved by DCTCP. This is expected

as DCTCP’s parameters are fine tuned for this par-

ticular ratio of mice to elephants. Being switch based,

RWNDQ reduces further the AFCT and its variance

due to its responsiveness and agility in setting the fair-

share of the flows. Fig. 4b shows the total cumulative

mice packet dropped at the bottleneck link during the
5 epochs. The figure gives the insight that SICC helps

mice to achieve faster AFCT by reducing the frequency

of packet drops, thus allowing TCP to avoid the huge

penalty imposed by the minRTO. Finally, Fig. 4c shows

the average (99th-percentile) of the completion time

over the 5 epochs. Clearly SICC helps TCP to achieve a

considerably faster FCT even on the tail giving an ad-

vantage for applications that generate co-flows without

the need for a fully fledged complex scheduling mecha-

nism as proposed in the literature (e.g., [12]).

In the 1:1 and the 3:1 scenarios, we replace the CDF

of mice packet drops with the CDF of the standard devi-

ation of mice FCT. Essentially, both Fig. 5a and Fig. 6a

show similar improvements as before in terms of AFCT.

Furthermore, Fig. 5b and Fig. 6b show that the SD of

the FCT is better than that of TCP and is similar to

or even better than that of DCTCP. Finally, as shown

in Fig. 5c and Fig. 6c, the FCT improvement in SICC

touches the great majority of mice flows, compared to

DCTCP. this is due to SICC’s ability to quench ele-

phant flows temporarily during incast reducing thereby

the frequency of mice packet drops. We notice in the

highly loaded 3:1 scenario that DCTCP performs the

worst (close to or even worse than TCP). Being switch-

based, RWNDQ still gives the best performance.

Elephant Flows Performance: Fig. 7 clearly shows

that in all three scenarios, SICC does not degrade the

performance of elephant flows as it improves that of

mice. SICC has nearly no impact on the achieved good-

put compared to TCP. This can be attributed to the

fact that SICC only intervenes temporarily during in-

cast activity and its ability to restore immediately after

the original sending rate of elephant flows.

5.2 Fat-tree Datacenter Topology

To study SICC in a topology similar to those used in

real data centers, we created a fat-tree like topology, as

shown in Fig. 8, with 1 core, 2 aggregation, and 3 ToR

switches. Each ToR switch connects to 48 servers with

1Gb/s link each. Each aggregation switch connects to

each of the ToR switches with a 5Gb/s link and finally

the core switch connects to each of the two aggrega-

tion switches with a 10Gb/s link. Such setup results

in an over-subscription ratio of 1:24 at the ToR level

(which is a moderate value by todays real DCs stan-

dards, where it is reported to reach up to 1:80). The

one way propagation delay for each link is 25µs and the

minRTO in the VM is still 200ms. In this scenario, the

elephant traffic patterns are as follows: Rack1 to Rack3,

Rack2 to Rack3 and Rack3 to Rack1. In contrast, to

generate mice flows, we set the servers in Racks 1, 2

and 3 to host the worker tasks that send their results

back to the aggregation server in rack 3, over 5 epochs

during the simulation.

Mitigating Incast-TCP Congestion in Data Centers with SDN 9

10
0

10
1

10
2

10
3

10
4

AVG Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP SICC RWNDQ DCTCP

(a) Average FCT for mice

10
-2

10
-1

10
0

10
1

10
2

10
3

Response Time SD (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(b) AFCT SD for mice

TCP SICC RWNDQ DCTCP
0

200

400

600

800

1000

1200

A
V
G

 R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

1132.0

405.0

7.0

615.0

(c) Average 99th% FCT

Fig. 5: Performance of mice flows for TCP, SICC, RWNDQ and DCTCP in 1:1 ratio scenario.

10
0

10
1

10
2

10
3

10
4

AVG Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP SICC RWNDQ DCTCP

(a) Average FCT for mice

10
-2

10
-1

10
0

10
1

10
2

10
3

Response Time SD (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(b) AFCT SD for mice

TCP SICC RWNDQ DCTCP
0

200

400

600

800

1000

1200

1400

A
V
G

 R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

1045.0

404.0

8.0

1301.0

(c) Average 99th% FCT

Fig. 6: Performance of mice flows for TCP, SICC, RWNDQ and DCTCP in 3:1 ratio scenario.

20 30 40 50 60 70 80 90
Average Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(a) 1:3 elephant-to-mice ratio

0 10 20 30 40 50 60 70
Average Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(b) 1:1 elephant-to-mice ratio

0 10 20 30 40 50 60
Average Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(c) 3:1 elephant-to-mice ratio

Fig. 7: Performance of elephant flows for TCP, SICC, RWNDQ and DCTCP.

Fig. 9 shows the results for this scenario. We can

see clearly that SICC is able to improve incast flows

FCT compared to TCP and DCTCP with nearly no

impact on the elephants throughput CDF. As expected

RWNDQ outperforms all schemes. The reduced FCT is

mainly due to the reduced packet drops of short-lived

mice flows.

We ran the simulation again, this time in a larger

data center setup with 3 aggregation and 6 ToR switches

(i.e., 6 Racks) leading to a network of (6 × 28) 288

servers. Elephant flows were established from Rack(1,2)

to Rack(3,4), Rack(3,4) to Rack(5,6) and Rack(5,6) to

Rack(1,2). Fig. 10 shows the results. SICC and RWNDQ

can improve TCP’s performance and both achieve bet-

10 Ahmed M. Abdelmoniem et al.

Rack 1 Rack 2 Rack 3

Aggregation

Core

ToR

Aggregator
Server

Fig. 8: A fat tree topology connecting 145 servers.

ter performance than DCTCP in a larger over-subscribed

data center. The improvement is mainly due to the re-

duced mice packet drops and hence the average number

of failed flows for SICC is reduced as shown in the leg-

end of Fig. 10a.

5.3 Sensitivity of SICC to the monitoring interval

To study the sensitivity of SICC to the duration of the

monitoring interval T , we repeated the simulation of the

single-rooted topology with 1:3 elephant-to-mice ratio.

We considered values of T equal to 1, 2, 10, 20, 25, 30,

50, and 100 times the RTT value of 100 µs.

Fig. 11 shows for mice flows, the CDF of the AFCT,

the CDF of the SD of the FCT and the CDF of the 99th-

percentile and for elephant flows, the CDF of average

goodput. Fig. 11d implies that SICC’s monitoring in-

terval does not affect the achieved goodput of TCP but

it would affect the efficiency of SICC’s incast detection

ability. Fig. 11a, 11b and 11c show that SICC can still

achieve a good performance, even with a monitoring

interval 25 times longer than the RTT in the network.

This analysis suggests that a value of ≈ 1-25 RTT in

the network would be sufficient. In typical data centers,

with a minimum RTT of 200-250µs, this translates to

reading the queue occupancy once every 4-7ms which

seems to be an acceptable probing interval for SDN con-

trollers. This justifies the choice of a monitoring interval

of 10 times the RTT in the previous simulations.

We also did a sensitivity analysis through multiple

simulations (not shown here) on the values of α1 and

α2 parameter, we found that SICC is not sensitive to

these values. This is expected because the choice of the

parameters α1 and α2 only affects at which point the

incast flag is turned ON and OFF. And, since the buffer

sizes of the switches in data centers are small, a slight

change in these thresholds from the recommended set-

tings adds only a fraction of a few microseconds to the

time at which the incast flag is set to ON/OFF.

5.4 System Overhead

In terms of bandwidth overhead, we can simply quantify

the amount of bytes for communicating the queue size

information from the SDN switches to the controller(s).

Assume we have a network consisting of 1000 switches

(with 48 ports per switch) and 1 controller and assum-

ing a probing interval of 5ms then the payload message

of size ≈ 48port×2bytes
queuesize plus the 54 bytes for TCP, IP and

Ethernet headers yields a 150 bytes message per switch.

In total, for the 1000 switches the controller would re-

ceive 150 KBytes every 5ms, which translates into a

bandwidth 240 Mbit/s. We believe this is reasonable

bandwidth utilization for the communication overhead

between the switches and the controller with respect to

the performance gain for the majority of incast flows in

data centers. In addition, in most current SDN setups,

control plane signaling is out-of-band [24].

6 Testbed implementation of SICC framework

We further investigated the implementation of SICC as

an application program integrated with the Ryu SDN

controller [26], for experimentation in a real-testbed.

SICC was implemented in python programming lan-

guage as a separate applications to run along with any

python-based SDN controller. We also patched the Ker-

nel data-path modules of Open vSwitch (OvS) [23] with

the window update functions described in Section 4.2.

We added the update function in the processing pipeline

of the packets that pass through the data-path of OvS2.

In a virtualized environment, OvS can process the traf-

fic for inter-VM, intra-Host and inter-Host communica-

tions. This is an efficient way of deploying the window

update function on the host at the hypervisor/vswitch

level by only applying a patch and recompiling the run-

ning kernel module, making it easily deployable in to-

day’s production DCs with minimal impact on the traf-

fic and without any need for a complete shutdown.

6.1 Testbed Setup

For experimenting with our SICC framework, we set

up a testbed as shown in Fig. 12. All machines’ inter-

nal and the outgoing physical ports were connected to

the patched OvS on the end-hosts. We have 4 racks

where rack 1, 2 and 3 were assigned the sender role and

2 Typical the throughput of internal networking stack is
50-100Gb/s. This is fast enough to handle tens of concurrent
VMs sharing a single or several physical links. Hence, the
window update function added to the vswitch would not hog
the CPU nor affect the achievable throughput.

Mitigating Incast-TCP Congestion in Data Centers with SDN 11

0.0 0.5 1.0 1.5 2.0
Average Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(a) Average FCT for mice

TCP SICC RWNDQ DCTCP
0

200

400

600

800

1000

1200

1400

1600

1800

99
%

 A
VG

 R
es

po
ns

e
Ti

m
e

(m
s) 1641

1283

924

1642

(b) Average 99th% FCT

0 2 4 6 8 10 12 14
Mice Data Drop (# of pkts)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(c) Mice packet drop

0 50 100 150 200 250 300 350 400
Thoughput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(d) AVG elephant goodput

Fig. 9: Performance of TCP, SICC, RWNDQ and DCTCP in small fat-tree topology of 144 servers.

0.0 0.5 1.0 1.5 2.0
AVG Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP-FAIL=208

SICC-FAIL=182

RWNDQ-FAIL=159

DCTCP-FAIL=212

(a) Average FCT for mice

0 2 4 6 8 10 12 14 16 18
Mice Data Drop (# of pkts)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

TCP

SICC

RWNDQ

DCTCP

(b) AVG mice data drop

Fig. 10: Performance of TCP, SICC, RWNDQ and DCTCP in larger fat-tree topology of 288 servers.

rack 4 was assigned the receiver role. Each rack has 14

servers, however we ran the experiments on 7 of them

only. The servers are installed with Ubuntu Server 14.04

LTS running kernel version (3.16) and are connected to

the ToR switch through 1Gb/s links. The core switch

in the testbed is a software OvS switch running on an-

other server (i.e., the 8th server in one of the racks). The

servers are equipped each with a quad-port NIC which

we used for the experiments and another dual-port NIC

used for signaling and management. The OvS was setup

to enable field matching on the TCP flags [22]3. Sim-

ilarly, the VMs were installed with the iperf program

[14], to generate elephant flows, and the Apache web

server hosting a single ”index.html” webpage of size

3 The hardware switch was not used because its OF-DPA
implementation does not follow OF1.5 specifications [22]
which allows for matching on TCP flags. The support for
OF1.5 is introduced into OvS starting from version 2.3.

12 Ahmed M. Abdelmoniem et al.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
AVG Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

of RTT

TCP

1

5

10

20

25

50

100

(a) Average FCT for mice

0.0 0.2 0.4 0.6 0.8 1.0
Response Time SD (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

of RTT

TCP

1

5

10

20

25

50

100

(b) AFCT SD for mice

TCP 1 5 10 20 25 50 1000
200
400
600
800

1000
1200
1400
1600

AV
G

99
th

 %
 R

es
po

ns
e T

im
e (

ms
)

1303

526 461
542

982

12401225

1423

99th % of AVG Response Time

(c) Average 99th % FCT

0 20 40 60 80 100 120 140
Average Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of RTT
TCP
1
5
10

20
25
50
100

(d) AVG elephant goodput

Fig. 11: SICC with variable queue monitoring interval.

11.5 KByte, to generate mice flows. We setup different

scenarios to reproduce both incast and buffer-bloating

situations. The bottleneck link in the network is shown

in Fig. 12. The sending processes were created by creat-

ing multiple virtual ports on the OvS at the end-hosts

and binding an iperf or an Apache client/server process

to each vport which allowed us to create scenarios with

a large number of flows in the network. In the testbed,

the base RTT ranged from ≈200-300µs without queuing

and up to 1ms with excessive queuing, hence we set the

controller monitoring/sampling interval to a relatively

large values in ≈10-50ms.

6.2 Experimental Results

The goals of the testbed experiments are to: i) Show

that TCP can support many more connections and main-

tain high link utilization with the introduction of SICC

framework; ii) Verify whether SICC can help TCP to

overcome incast congestion situations in the network

by improving mice completion time; iii) Study SICC’s

impact on the achieved throughput of elephants.

In the first experiment, we produced a scenario with

incast and buffer-bloating using TCP NewReno. In this

scenario, we generated 7 synchronized iperf elephant

connections from each sender rack, to continuously send

data for 30s, resulting in 7 × 3 = 21 elephants sharing

the bottleneck link. Then, halfway through the experi-

ment at the 15th second, using Apache benchmark [9],

we requested ”index.html” webpage from each of the

7 web servers at each of the sending racks resulting in

7×6×3 = 126 mice flows running on the same machines

as the iperf servers. Each of the Apache benchmark

processes requested the webpage 10 times before it re-

ported different statistics over the 10 requests. We also

repeated the previous experiment but in this case us-

ing TCP cubic as the congestion control. Fig. 13 shows

that, in both cases, SICC achieves a good balance in

meeting the conflicting requirements of elephants and

mice. Specifically, Fig. 13d shows that the long-lived

elephants are not affected by SICC’s inhibition of their

sending rate for a very short period of time after which

they restore their previous rates. However, the compet-

ing mice flows benefit greatly under SICC by achieving

a smaller FCT on average with a smaller standard de-

viation compared to TCP as shown in Fig. 13d and

Fig. 13b. In addition, as SICC efficiently detects the

incast and proactively throttles the elephants, it can

Mitigating Incast-TCP Congestion in Data Centers with SDN 13

Rack 1 Rack 2 Rack 3

Core

ToR

Rack 4

Controller

Bottleneck
Control

(a) Testbed Toplogy (b) The actual testbed

Fig. 12: A real SDN testbed for experimenting with SICC framework using Ryu-Controller, OpenFlow switches

and OpenvSwitch

0.10 0.12 0.14 0.16 0.18
Average Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reno-DropTail

Cubic-DropTail

Reno-SICC

Cubic-SICC

(a) Average FCT for mice

0.00 0.04 0.08 0.12 0.16
Response Time variance (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reno-DropTail

Cubic-DropTail

Reno-SICC

Cubic-SICC

(b) SD of FCT for mice

0.1 0.2 0.3 0.4 0.5
99th % Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reno-DropTail

Cubic-DropTail

Reno-SICC

Cubic-SICC

(c) 99th % of FCT for mice

25 30 35 40 45 50 55 60 65
Elpehant Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reno-DropTail

Cubic-DropTail

Reno-SICC

Cubic-SICC

(d) AVG elephant goodput

Fig. 13: TCP-SICC vs. TCP-Droptail: 126 mice incast-like flows competing with 21 long-lived elephants

decrease the flow completion time even on the tail (i.e.,

99th percentile) as shown in Fig. 13c.

We repeated the experiment by doubling the num-

ber of iperf flows per sender leading to 7 × 3 × 2 = 42

elephants on the bottleneck. Fig. 14 shows that SICC

still achieves a reasonable performance improvement for

both TCP NewReno and TCP Cubic. Fig. 14d shows

that long-lived elephant flows are not affected by SICC.

Fig. 14a shows that mice flows still benefit under SICC

even in a situation where buffers are heavily under pres-

sured by the large number of elephants.

Even though, the experimental results show per-

formance gains, they do not show the same gains as

the simulations. This is because the simulation code in

ns2 assumes ideal and predictable system behavior un-

like the real system deployments. In the real system

many uncontrolled factors may contribute to the sys-

tem performance. For instance, we have used the soft-

14 Ahmed M. Abdelmoniem et al.

0.10 0.12 0.14 0.16 0.18
Average Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reno-DropTail

Cubic-DropTail

Reno-SICC

Cubic-SICC

(a) Average FCT for mice

0.00 0.04 0.08 0.12 0.16
Response Time variance (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reno-DropTail

Cubic-DropTail

Reno-SICC

Cubic-SICC

(b) SD of FCT for mice

0.1 0.2 0.3 0.4 0.5
99th % Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reno-DropTail

Cubic-DropTail

Reno-SICC

Cubic-SICC

(c) 99th % of FCT for mice

10 15 20 25 30 35 40 45
Elpehant Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reno-DropTail

Cubic-DropTail

Reno-SICC

Cubic-SICC

(d) AVG elephant goodput

Fig. 14: TCP-SICC vs. TCP-DropTail: 126 mice incast-like flows competing with 42 long-lived elephants

ware version of the SDN-switches (i.e., Open vSwitch)

not the hardware ones. In addition, the control net-

work connecting the controller, the end-hosts and the

switches uses old non-managed 100Mb/s switches while

the data-path uses a DC-grade 1Gb/s switched net-

work. These differences in the control and data path

speed do not exist in the simulation. Finally, the Linux

implementation of TCP contains many tweaks and added

configurations that do not exist in the ns2 implemen-

tation. Despite the performance gains differences, the

experimental results show that:

1. SICC helps in reducing mice traffic latency and main-

taining a high throughput for elephants.

2. SICC handles incast events in low and high load sce-

narios without degrading the communication links

utilization.

3. SICC achieves all of this without the need for any

TCP stack and switching devices alternation.

7 Conclusion and future work

In this paper, we proposed an SDN-based congestion

control framework to support and help reduce the com-

pletion time of short-lived incast flows, that are known

to constitute the majority of flows in data centers. Our

framework mainly relies on the SDN controller to mon-

itor the SYN/FIN packets arrivals along with reading

over regular intervals the OpenFlow switch queue oc-

cupancy to infer the start of incast-traffic epochs be-

fore they start sending data into the network. SICC

was shown via ns2 simulations and testbed experiments

to improve the flow completion times for incast traf-

fic without impairing the throughput of elephant flows.

SICC is also shown to be simple, practical, and easily

deployable, meeting all its design requirements. Last

but not least, in most public data centers, it is benefi-

cial to both the operator and tenants if the congestion

control framework is deployable without making any

changes to the TCP sender and/or receiver nor replac-

ing the in-place commodity hardware switches. In this

spirit, SICC’s main contribution is to adhere to such

principle while achieving great performance improve-

ments. Further testing of SICC in an operational envi-

ronment with realistic workloads and scale is necessary.

Mitigating Incast-TCP Congestion in Data Centers with SDN 15

Acknowledgements This work is supported in part under
Grants: HKPFS PF12-16707, FSGRF13EG14, REC14EG03
and FSGRF14EG24.

References

1. Abdelmoniem, A.M., Bensaou, B.: Efficient switch-

assisted congestion control for data centers: an im-

plementation and evaluation. In: Proceedings of the

IEEE International Performance Computing and

Communications Conference (IPCCC) (2015)

2. Abdelmoniem, A.M., Bensaou, B.: Incast-Aware

Switch-Assisted TCP congestion control for data

centers. In: Proceedings of the IEEE Global Com-

munications Conference (GlobeCom) (2015)

3. Abdelmoniem, A.M., Bensaou, B.: Reconciling

mice and elephants in data center networks. In:

Proceedings of the IEEE CloudNet Conference

(2015)

4. Abdelmoniem, A.M., Bensaou, B., Abu, A.J.:

SICC: SDN-based Incast Congestion Control for

Data Centers. In:Proceedings of the IEEE In-

ternational Conference on Communications (ICC)

(2017)

5. Akyildiz, I.F., Lee, A., Wang, P., Luo, M., Chou,

W.: A Roadmap for Traffic Engineering in SDN-

OpenFlow Networks. Computer Networks 71, p.1–

30 (2014).

6. Alizadeh, M.: Data Center TCP

(DCTCP). http://simula.stanford.edu/ al-

izade/Site/DCTCP.html

7. Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye,

J., Patel, P., Prabhakar, B., Sengupta, S., Sridha-

ran, M.: Data center TCP (DCTCP). ACM SIG-

COMM CCR 40, p.63–74 (2010)

8. Alizadeh, M., Javanmard, A., Prabhakar, B.: Anal-

ysis of DCTCP: stability, convergence, and fairness.

In: Proceedings of the ACM SIGMETRICS (2011)

9. Apache.org: Apache HTTP

server benchmarking tool.

Http://httpd.apache.org/docs/2.2/programs/ab.html

10. Benson, T., Akella, A., Maltz, D.a.: Network traf-

fic characteristics of data centers in the wild. In:

Proceedings of the ACM SIGCOMM (2010).

11. Chen, W., Ren, F., Xie, J., Lin, C., Yin, K., Baker,

F.: Comprehensive understanding of TCP Incast

problem. In: Proceedings of the IEEE INFOCOM

(2015)

12. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient

coflow scheduling with varys. In: Proceedings of

the ACM SIGCOMM, pp. 443–454 (2014).

13. Feamster, N., Rexford, J., Zegura, E.: The Road to

SDN. Queue 11, 20–40 (2013)

14. iperf: The TCP/UDP Bandwidth Measurement

Tool. Https://iperf.fr/

15. Jouet, S., Perkins, C., Pezaros, D.: OTCP: SDN-

managed Congestion Control for Data Center Net-

works. In: Proceedings of IEEE/IFIP Network

Operations and Management Symposium (NOMS)

(2016)

16. Kandula, S., Sengupta, S., Greenberg, A., Patel, P.,

Chaiken, R.: The nature of data center traffic. In:

Proceedings of the ACM IMC (2009).

17. Karakus, M., Durresi, A.: A Survey: Control Plane

Scalability Issues and Approaches in Software-

Defined Networking (SDN). Computer Networks

112, p.279–293 (2017)

18. Lu, Y., Zhu, S.: SDN-based TCP Congestion Con-

trol in Data Center Networks. In: Proceedings of

IEEE IPCCC (2015)

19. Mckeown, N., Anderson, T., Peterson, L., Rexford,

J., Shenker, S., Louis, S.: OpenFlow : Enabling In-

novation in Campus Networks. ACM SIGCOMM

CCR 38, p.69–74 (2008)

20. NS2: The network simulator ns-2 project.

Http://www.isi.edu/nsnam/ns

21. Open Networking Foundation: SDN Architecture

Overview. Tech. rep., Open Networking Foundation

(2013)

22. opennetworking.org: OpenFlow v1.5 Specifica-

tion. Https://www.opennetworking.org/sdn-

resources/openflow

23. openvswitch.org: Open Virtual Switch project.

Http://openvswitch.org/

24. Panda, A., Scott, C., Ghodsi, A., Koponen, T.,

Shenker, S.: CAP for networks. In: Proceedings

of the ACM HotSDN workshop (2013)

25. Rijsinghani, A.: RFC 1624 - Computation of the

Internet Checksum via Incremental Update (1994).

Https://tools.ietf.org/html/rfc1624

26. Ryu Framework Community: Ryu: a component-

based software defined networking controller.

Http://osrg.github.io/ryu/

27. Vasudevan, V., Phanishayee, A., Shah, H., Krevat,

E., Andersen, D.G., Ganger, G.R., Gibson, G.A.,

Mueller, B.: Safe and effective fine-grained TCP re-

transmissions for datacenter communication. ACM

SIGCOMM CCR 39, p.303–314 (2009).

28. Wu, H., Feng, Z., Guo, C., Zhang, Y.: ICTCP: In-

cast congestion control for TCP in data-center net-

works. IEEE/ACM Transactions on Networking

21, p.345–358 (2013)

29. Zhang, J., Ren, F., Tang, L., Lin, C.: Modeling

and Solving TCP Incast Problem in Data Center

Networks. IEEE Transactions on Parallel and Dis-

tributed Systems 26(2), p.478–491 (2015)

