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Abstract. Nearest neighbor searching is the problem of preprocessing a set of n point points in d-
dimensional space so that, given any query point q, it is possible to report the closest point to q rapidly.
In approximate nearest neighbor searching, a parameter ε > 0 is given, and a multiplicative error
of (1 + ε) is allowed. We assume that the dimension d is a constant and treat n and ε as asymptotic
quantities. Numerous solutions have been proposed, ranging from low-space solutions having space
O(n) and query time O(log n +1/εd−1) to high-space solutions having space roughly O((n log n)/εd )
and query time O(log(n/ε)).

We show that there is a single approach to this fundamental problem, which both improves
upon existing results and spans the spectrum of space-time tradeoffs. Given a tradeoff parameter
γ , where 2 ≤ γ ≤ 1/ε, we show that there exists a data structure of space O(nγ d−1 log(1/ε))
that can answer queries in time O(log(nγ ) + 1/(εγ )(d−1)/2). When γ = 2, this yields a data
structure of space O(n log(1/ε)) that can answer queries in time O(log n + 1/ε(d−1)/2). When
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γ = 1/ε, it provides a data structure of space O((n/εd−1) log(1/ε)) that can answer queries in time
O(log(n/ε)).

Our results are based on a data structure called a (t, ε)-AVD, which is a hierarchical quadtree-based
subdivision of space into cells. Each cell stores up to t representative points of the set, such that for
any query point q in the cell at least one of these points is an approximate nearest neighbor of q. We
provide new algorithms for constructing AVDs and tools for analyzing their total space requirements.
We also establish lower bounds on the space complexity of AVDs, and show that, up to a factor of
O(log(1/ε)), our space bounds are asymptotically tight in the two extremes, γ = 2 and γ = 1/ε.
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1. Introduction

Nearest neighbor searching is a fundamental computational problem, having wide-
ranging applications in areas such as knowledge discovery, pattern recognition,
machine learning, data compression, and information retrieval. A set S of n points
is given in some metric space X , and the task is to preprocess these points so that,
given any query point q ∈ X , the point of S nearest to q can be reported quickly.
Efficient exact solutions are known for only very limited cases, and this has led to
interest in approximation algorithms. Given a point q, let NNq(S) be the distance
from q to its nearest neighbor in S. For a real parameter ε > 0, we say that a point
p ∈ S is an ε-nearest neighbor (ε-NN) of q if the distance from p to q is at most
(1 + ε)NNq(S).

There are a number of common formulations under which this problem has
been considered. In traditional computational geometry, the space is R

d , real d-
dimensional space, for some constant d under the Euclidean norm. It is common
to treat ε as an asymptotic quantity of secondary importance to n. Other formula-
tions treat the dimension d as an asymptotic quantity [Indyk and Motwani 1998;
Kushilevitz et al. 2000; Panigrahy 2006] and seek solutions having no exponen-
tial dependence on d. Yet others assume that the points are drawn from a general
metric space. The metric space is usually assumed to possess some growth limiting
property, such as having constant doubling dimension [Clarkson 1999; Karger and
Ruhl 2002; Krauthgamer and Lee 2004, 2005; Cole and Gottlieb 2006; Har-Peled
and Mendel 2006; Arya et al. 2008b].

In this article, we focus on the first formulation. While more restrictive than
the others, there are nonetheless many applications of nearest neighbor searching
in Euclidean spaces of relatively low dimensions (e.g., ranging from 2 to 10) in
areas as diverse as computer vision, robotics, solid modeling, and computational
physics. In such cases, the geometric structure of the underlying space can be
exploited to achieve the best asymptotic performance (subject to the assumption
of fixed dimension). The principal complexity issues involve determining the best
relationships between query time and the space of the data structure. Since n is
the primary asymptotic quantity, the goal is to achieve dependencies on n in the
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space and query time that are linear and logarithmic, respectively. Subject to this,
the objective is to minimize factors depending on ε. In multidimensional spaces,
distances tend to concentrate about their mean value [Beyer et al. 1999; François
et al. 2007], and hence accuracy is important, and consequently ε-dependencies are
often the dominant terms in query times [Arya et al. 1998].

We build upon many years of research on the design of data structures for ε-NN
searching in low-dimensional Euclidean space. Arya et al. [1998] proposed a bal-
anced quadtree-like partition tree, the BBD tree, which achieves O((1/ε)d log n)
query time with O(n) space. Various improvements were proposed by others, in-
cluding Bespamyatnikh [1996], Duncan et al. [2001], and Chan [2002, 2006], the
best of which offers a query time of O(log n + 1/εd−1) with O(n) space. While
these structures are optimal with respect to space, the ε-dependencies in query time
are far from optimal. Classical results on approximating convex bodies by poly-
topes suggest that it should be possible to reduce ε-dependencies to O(1/ε(d−1)/2)
[Dudley 1974; Bronshteyn and Ivanov 1976]. Clarkson [1994] first demonstrated
the relationship, and subsequently Chan [1998] strengthened Clarkson’s results.
Har-Peled [2001] proposed a still faster method based on generalizing the locus
method, in which a geometric query problem is reduced to point location in an
appropriate subdivision of space. For example, it is well known that exact nearest
neighbor queries can be reduced to point location in the Voronoi diagram of the
point set S [de Berg et al. 2000]. Har-Peled’s approach involves creating a hierar-
chical subdivision of space by a balanced quadtree-like structure. Each cell of this
subdivision stores a representative point of S, which is an ε-nearest neighbor of
any query point in the cell. This suggests the name approximate Voronoi diagram,
or AVD. Using an AVD to answer ε-NN queries reduces to point-location in this
subdivision, which is solved by a simple descent of the tree. Har-Peled showed that
queries can be answered in time O(log(n/ε)) with space O((n/εd)(log n) log(n/ε)).
The space bound was improved by Sabharwal et al. [2006] to O((n/εd+1) log(1/ε)).
The AVD approach provides much lower query times than the above methods, but
with significantly higher ε-dependencies in space.

An interesting commonality among all the above results is that, ignoring log
factors, the product of space and query time is roughly the same in each case. That
is, if we let Mε(n) and Tε(n) denote the space and query time, respectively, of these
methods, the relationship Mε(n)Tε(n) = O(n/εd−1) nearly holds in each case, in
spite of the fact that significantly different methods have been used. This suggests
that this is the “correct” complexity relationship to expect. This raises the question
of whether there is a single approach to ε-NN searching that admits a space-time
tradeoff throughout the performance spectrum and while achieving this space-time
relationship.

In this article, we achieve this objective and more. First, we present a unified
approach to ε-NN searching that spans the spectrum of space-time tradeoffs. Sur-
prisingly, we show that the apparently “correct” relationship between space and
query time suggested by all the above results is not just wrong, but very wrong. In
particular, our approach achieves a relationship that (ignoring log factors) satisfies
Mε(n)T 2

ε (n) = O(n/εd−1). Put differently, for any c ≥ 1, if we reduce space by a
factor of 1/c, the increase in query time that we suffer is not O(c), but only O(

√
c).

Our approach is based on a generalization of Har-Peled’s AVD structure. We also
present lower bounds on the time and space complexity of ε-NN searching based
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on AVDs, and we demonstrate that our constructions are (up to logarithmic factors)
asymptotically optimal in the extreme cases of the tradeoff spectrum.

2. Results

Recall that we are given an n-element point set S ∈ R
d . Given a positive real

ε ≤ 1/2 and an integer t ≥ 1, we can generalize Har-Peled’s structure [Har-Peled
2001] by defining a (t, ε)-approximate Voronoi diagram (or (t, ε)-AVD) of S to
be a subdivision of space into cells, where each cell w is associated with a subset
of at most t representatives of S, such that for any point q ∈ w , at least one of
these representatives is an ε-nearest neighbor of q with respect to S. As in Har-
Peled [2001], the cells of our AVD are the leaves of a balanced quadtree-like data
structure (see Section 3.2 for definitions), and so queries can be answered in time
O(log n′ + t), where n′ is the number of cells of the AVD. The total space of an
AVD is proportional to the sum over all the cells of the number of representatives
per cell. As we will show, the efficiencies arise because allowing for a small number
of additional representatives per cell results in a more than proportional decrease
in the total space.

First, we present a basic AVD construction. In addition to S and ε, the construction
algorithm is given a tradeoff parameter γ , where 2 ≤ γ ≤ 1/ε. We show that there
exists a (t, ε)-AVD, where t = O(1/(εγ )(d−1)/2), that can answer ε-NN queries
in time O(log(nγ ) + t). Letting m denote the quantity nγ d log(1/ε), the total
space of the AVD is O(m), and (ignoring log factors) it can be constructed in time
O(m/(εγ )(d−1)/2) (see Theorem 8.4). At one extreme, when γ = 2, this yields a
data structure of space O(n log(1/ε)) that can answer queries in time O(log n +
1/ε(d−1)/2), thus achieving query times as good as those of Clarkson [1994] and
Chan [1998] but with nearly linear space. At the other extreme, γ = 1/ε, this
provides a data structure of space O((n/εd) log(1/ε)) that can answer queries in
time O(log(n/ε)).

If we ignore logarithmic factors, we have

Mε(n) = O(nγ d) and Tε(n) = O(1/(εγ )(d−1)/2),

and hence, Mε(n)T 2
ε (n) = O(nγ /εd−1). This is close to, but not exactly equal to,

the relationship we desire. We present an enhanced AVD construction, called the
bisector-sensitive construction, which achieves the same query time while improv-
ing the space complexity to O(nγ d−1 log(1/ε)). In the extreme case of γ = 1/ε,
the space is reduced to O((n/εd−1) log(1/ε)). (See Theorem 9.9 for details.)
This result is superior to the AVD-based solutions of both Har-Peled [2001] and
Sabharwal et al. [2006]. Ignoring log factors, the resulting structure satisfies the
desired relationship Mε(n)T 2

ε (n) = O(n/εd−1).
Finally, we establish lower bounds on the space complexity of AVDs. Our lower

bound model is both simpler and more general than that of our upper bounds. We
assume that cells are fat axis-aligned rectangles (not necessarily based on quadtree
boxes), which are allowed to overlap one another (not necessarily disjoint). Also,
our lower bound model does not make any assumptions about the existence of
a search structure to locate the cell containing the query point. The exact bound
is given in Theorem 10.5, but the principal observation is that, up to a factor of
O(log(1/ε)), our space bounds are asymptotically tight in the two extremes, γ = 2
and γ = 1/ε.
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Our approach is based on a number of enhancements to the AVD structure as
proposed by Har-Peled. As mentioned above, the only fundamental change to the
structure is allowing multiple representatives per cell. Query processing is still very
simple: descend the tree to locate the query point and return the closest represen-
tative. This apparently minor extension leads to a much richer and more complex
array of options for the construction and analysis of the AVD: how to select the
representatives, how best to decompose space to minimize the total space of the
structure, and how to analyze the resulting space. In order to answer these questions,
we develop a characterization of the AVD in terms of certain separation properties
between the cells and the points of S. Intuitively, as the separation increases, more
cells are needed but with fewer representatives per cell.

Our preliminary papers [Arya and Malamatos 2002; Arya et al. 2002] explored a
number of different approaches to building and analyzing AVDs (including a con-
struction based on deterministic sampling, a cell construction involving quadratic
growth rates, and a more complex analysis based on two separation properties). In
this article, we have made a number of enhancements and simplifications. We have
pared down the relatively complex combination of tools to just two key constructs.
The first is a space analysis technique, called spatial amortization, which we use to
prove that the basic construction leads to nearly optimal space complexity. The sec-
ond is the aforementioned bisector-sensitive construction, which is used to achieve
our best space bounds. We have also enhanced the lower bound techniques presented
in these earlier papers so that, rather than bounding the number of cells, we bound
the more meaningful quantity of total space. This enhancement has necessitated the
development of more powerful tools for analyzing packing properties involving fat
axis-aligned rectangles with respect to nonorthogonal linear subspaces of various
dimensions.

The rest of the article is organized as follows. In Section 3, we begin with a
review of two background concepts, the well-separated pair decomposition and
BBD trees, which will be used throughout the article. Next, in Section 4 we present
a high level overview of the AVD, its construction, and correctness. Section 5
provides the necessary geometric preliminaries to understand separation proper-
ties and their role in approximate nearest neighbor searching. Next, Section 6
presents the basic AVD construction. This is followed by Sections 7 and 8, which
respectively present the method of spatial amortization and the space analysis of
the basic AVD construction. The resulting AVD is slightly suboptimal with re-
spect to space, and in Section 9, we present the bisector-sensitive construction,
which produces our best space bounds. Finally, in Section 10, we present our
lower-bound results and contrast them with the upper bounds of the preceding
sections.

3. Preliminaries

As mentioned in the introduction, we assume that the dimension d is a fixed constant.
We treat n, ε, and γ as asymptotic quantities. To make this distinction clearer, we
use the term constant throughout to refer to any fixed quantity (which may depend,
even exponentially, on dimension), and we use parameter to refer to real-valued
quantities that may depend on ε and γ . To avoid specifying the many real-valued
constants that arise in our constructions and analyses, we will often hide them using
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asymptotic notation. For positive real α, we use the notation O(α) (respectively,
�(α)) to mean a quantity whose value is at most (respectively, at least) cα for an
appropriately chosen constant c. Similarly, �(α) refers to a quantity whose value
lies in the interval [c1α, c2α] for some appropriately chosen constants c1 and c2. To
avoid special annotation when α is very small, we take log α to mean max(1, log α)
when it is used in asymptotic expressions.

We assume that the set S of points has been scaled and translated to lie within a
ball of radius ε/11 placed at the center of the unit hypercube [0, 1]d . This allows
us to ignore query points lying outside the unit hypercube, since (as we shall show
later in Lemma 5.3) any point of S is an ε-approximate nearest neighbor to such a
query point.

Let x and y denote any two points in R
d . We use ‖xy‖ to denote the Euclidean

distance between x and y and xy to denote the segment joining x and y and −→xy
to denote the vector y − x . Given sets u, w ⊂ R

d we let dist(u, w) denote the
minimum (or more accurately the infimum) distance between any two points of the
sets. If either set is empty, dist(u, w) = ∞. We use dist(x, w) to mean dist({x}, w).
Note that NNx (w) and dist(x, w) have the same formal meanings, but the former is
usually used when w is a finite set of points. Given a finite point set S and region
w , we define an ε-representative set for w with respect to S to be a subset R ⊆ S
such that for all q ∈ w , NNq(R) ≤ (1 + ε)NNq(S).

We denote by b(x, r ) a closed ball of radius r centered at x , that is, b(x, r ) =
{y : ‖xy‖ ≤ r}. For a ball b and any positive real γ , we use γ b to denote the ball
with the same center as b and whose radius is γ times the radius of b, and b to
denote the set of points that are not in b.

Next, we briefly review two concepts that will play an important role in our con-
structions: well-separated pair decompositions and balanced box-decomposition
trees.

3.1. WELL-SEPARATED PAIR DECOMPOSITIONS. Let S be a set of n points in
R

d . We say that two sets of points X and Y are well separated if they can be enclosed
within two disjoint d-dimensional balls of radius r , such that the distance between
the centers of these balls is at least σr , where σ > 2 is a real parameter called
the separation factor. If we consider joining the centers of these two balls by a
line segment, the resulting geometric shape resembles a dumbbell. (See Figure 1.)
The balls are the heads of the dumbbell. Define the length of a dumbbell to be the
distance between the centers of the balls, and the center of the dumbbell to be the
midpoint of these two centers.

A well-separated pair decomposition (WSPD) of S is a set

PS,σ = {(X1, Y1), . . . , (Xm, Ym)}
of pairs of subsets of S such that (i) for 1 ≤ i ≤ m, Xi and Yi are well separated,
and (ii) for any distinct points x, y ∈ S, there exists a unique pair (Xi , Yi ) such that
either x ∈ Xi and y ∈ Yi or vice-versa. We say that the pair (Xi , Yi ) separates x
and y. Callahan and Kosaraju [1995] have shown that we can construct a WSPD
containing O(σ dn) pairs in O(n log n + σ dn) time. For each pair, their construc-
tion also provides the corresponding dumbbell. (An example of a well-separated
pair decomposition and the associated dumbbells is shown in Figure 1.) In many
instances, we will be interested in just the dumbbells themselves, not the points
they enclose. For this reason, we will sometimes consider the WSPD to be a set
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FIG. 1. A well-separated pair decomposition.

FIG. 2. A dumbbell and Lemma 3.1.

of O(σ dn) dumbbells. To avoid adding more notation, we will use the letter P to
refer both to a well-separated pair and its associated dumbbell. It will be clear from
context which is intended.

In all of our constructions the separation factor σ will be a constant (independent
of ε), and we will assume that σ > 4. Such a separation factor has the useful
property that, given any dumbbell, the distance between any two points in different
heads is strictly greater than the distance between two points in the same head. The
following additional observations are easy consequences of the triangle inequality
(see Figure 2).

LEMMA 3.1. Consider the dumbbell for well-separated pair P = (X, Y ) with
separation factor σ > 4. Let � be P’s length (the distance between its dumbbell
centers), and let z be P’s center. Then for any x ∈ X and y ∈ Y we have:

(i) �/2 < ‖xy‖ < 3�/2.
(i i) �/4 < ‖xz‖ < 3�/4 (and same bounds hold for ‖yz‖).

3.2. BOX DECOMPOSITION AND BBD TREES. Let [0, 1]d denote a unit hyper-
cube in R

d . A quadtree box [Samet 1990] is defined recursively to be either the
unit hypercube or a hypercube obtained by splitting any quadtree box into 2d equal
parts. We define the size of a quadtree box to be its side length. It is easy to see
that any two distinct quadtree boxes are either disjoint or one is contained inside
the other.

There are a number of data structures derived from a recursive quadtree-based
decomposition of space. One problem that arises with quadtrees in their simplest
form is the potential for arbitrarily long trivial sequences of splits. This is typically
handled by path compression, as is used in the compressed quadtree [Har-Peled
2008]. Here we will use a variant of this structure called a box-decomposition tree
(or BD tree) [Arya et al. 1998]. This is a 2d-ary tree in which each node is associated
with a region of space called a cell, which is the difference of two quadtree boxes,
an outer box and an (optional) inner box. The root of the tree is associated with a
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FIG. 3. A set of quadtree boxes and the decomposition induced by the structure’s leaves. (The outer
and inner boxes and tree structure are not illustrated.)

unit hypercube. The cell associated with any node is partitioned into disjoint cells,
which are associated with the children of the node. We define the size of a cell to
be the same as the size of its outer box.

The BD tree need not be balanced, meaning that its depth may be asymptotically
as large as the number of nodes. A centroid decomposition [Bent et al. 1985;
Frederickson 1997] can be applied to the BD tree in order to produce a balanced
structure whose height is logarithmic in the number of leaves. (See, e.g., Arya
et al. [1998] and Har-Peled [2008].) One implementation of this idea is based
on an alternation of splitting with a centroid-like shrinking operation to generate a
balanced tree, called the balanced box-decomposition tree (or BBD tree) [Arya et al.
1998]. However implemented, such a structure satisfies the following properties,
which we refer henceforth as BBD properties. (Justifications are given below.)

(i) (Construction from Point Sets). Given a set S of n points in the d-dimensional
unit hypercube, it is possible in O(n log n) time to construct such a structure
having space O(n) such that each leaf node contains at most one point of
S. In addition, we may assume that each internal node of the tree stores a
single point of S that lies within the corresponding cell (assuming such a point
exists).

(ii) (Construction from Quadtree Boxes). Given a collection U of n quadtree
boxes in the d-dimensional unit hypercube (see Figure 3(a)), it is possible
in O(n log n) time to construct such a structure with O(n) nodes such that the
subdivision induced by its leaves is a refinement of the subdivision induced
by the quadtree boxes in U (see Figure 3(b)).

(iii) (Packing Properties). Consider any BBD tree in d-dimensional space. Any
subset of its cells that intersect a ball of radius r , such that these cells have
pairwise disjoint interiors and are each of size at least s, has cardinality at most
O((1 + r/s)d).

(iv) (Point Location). Given either of the structures of (i) or (ii), it is possible to
determine the leaf cell containing an arbitrary query point q ∈ R

d in O(log n)
time.

(v) (Range Sketching). Given an n-element point set S, a quadtree box is said to
be nonempty if it contains at least one point of S. The construction provided
in part (i) has the property that, given a ball b and size parameter s, it is
possible to compute the nonempty quadtree boxes of size s that overlap b in
time O(log n + t), where t is the number of nonempty boxes overlapping the
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FIG. 4. (a) Separation properties and (b) helpers (white points) and representatives (black).

ball 2b. At the same time, it is possible to return an arbitrary point of S from
within each such box.

(vi) (Approximate Nearest Neighbor Queries). Given the structure of property (i)
and given a real parameter ε > 0, it is possible to answer ε-nearest neighbor
queries for the set S in time O((1/ε)d log n).

Properties (i), (iii), (iv), and (vi) are proved by Arya et al. [1998]. We can establish
(ii) by a simple adaptation of the BBD-tree construction presented there. Let SU
denote the set of at most 2dn points consisting of the vertices of the boxes of U (see
Figure 3(c)). Apply the recursive BBD-tree construction of Arya et al. [1998] to SU
with the modification that the decomposition ceases when there are no points in the
interior of the current cell. (Thus, the points of SU reside only along the boundaries
of the leaf cells.) Property (v) follows by a modification of the approximate range
searching algorithm presented by Arya and Mount [2000] and is proved formally
by da Fonseca [2007] and Arya et al. [2008a].

Throughout, we use the following notation. Given a cell w , let sw denote the size
of w , let rw = sw d, and let bw be the ball of radius rw whose center coincides with
the center of w’s outer box. (Observe that w ⊆ bw .)

4. Overview

Before presenting the details of our AVD structure, we present a high-level overview
of the structure and its derivation. Let S be a set of n points in R

d , and let 0 < ε ≤ 1
be the approximation parameter. Constructing an AVD reduces to the problem of
computing a sufficiently refined subdivision of space such that, for any cell of
the subdivision, there exists a suitably small ε-representative set. To achieve this,
the cells should satisfy certain separation properties with respect to S. Consider the
subdivision of space induced by the leaves of a BBD-tree decomposition. Let w be
an arbitrary cell of the subdivision. Let b be a ball, called the outer ball, centered
about w that is larger than w’s diameter by some appropriate expansion factor. We
shall show that space-time tradeoffs can be achieved by adjusting this factor, but
for now it is convenient to assume it is a constant (see Figure 4(a)). Suppose that all
the points of S lie outside of b. We will show that, irrespective of the distribution or
number of points of S around b, it is possible to identify a subset of representatives
of size O(1/ε(d−1)/2). (This quantity will generally depend on the expansion factor.)

We can compute these representatives as follows. First, we place O(1/ε(d−1)/2)
points uniformly on a concentric sphere located roughly midway between the
boundaries of w and b, which we call the helpers of w . We compute the nearest
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FIG. 5. (a) Inner-ball separation properties and (b) final representatives.

neighbor of each helper or, in general, a sufficiently close approximate near-
est neighbor (see Figure 4(b)). (This idea was introduced earlier by Chan and
Snoeyink [1995] in a context unrelated to AVDs.) These neighbors constitute the
cell’s representatives.

Of course, we cannot produce a subdivision in which all the cells have no points
within their outer ball. (The points have to be somewhere!) But we can make due
with more general separation properties. Clearly we can tolerate a single point of S
lying within w , since we can simply add it as a representative. Also, we will allow
b to contain an arbitrary number of points of S provided that they can be enclosed
within a ball b′, called the inner ball, such that an expansion of b′ does not intersect
w (see Figure 5(a)). For our purposes, it will suffice to take the expansion factor for
the inner ball to be �(1/ε). (Note that this is distinct from the outer-ball expansion
factor mentioned above.) Because of the high degree of separation between b′ and
w , it suffices to take just one representative from this cluster in order to determine
the approximate nearest neighbor of any query point lying within w . The final set
of representatives consists of the single representative from the inner ball and the
set of representatives from outside b (see Figure 5(b)).

The question remains of how to generate the cells of the BBD-tree subdivision to
achieve these separation properties. Our approach is to construct a well-separated
pair decomposition (WSPD) of S with a sufficiently large constant separation factor
(which does not depend on ε). The number of pairs in such a decomposition is O(n).
Consider any well-separated pair, and let � denote the distance between the centers
of the two heads of the associated dumbbell (see Figure 6). We will use this pair
to fragment the surrounding region of space into sufficiently small quadtree boxes.
This is done in concentric layers. We consider a sequence of balls centered about
the associated dumbbell of exponentially increasing radii

〈
�, 2�, 4�, . . . , �( 1

ε
)�

〉
and cover each ball of radius r with a collection of quadtree boxes of side length
�(r ). Note that boxes generated from different pairs may overlap each other. By a
simple packing argument, the number of boxes generated for each well-separated
pair is O(log(1/ε)). We repeat this for all the O(n) pairs of the WSPD.

We compute a BBD tree whose leaf-level subdivision is a refinement of these
boxes. By BBD property (ii) this tree has size O(n log(1/ε)). By the methods men-
tioned earlier, we compute and store the O(1/ε(d−1)/2) representatives for the leaves
of the associated tree. The resulting structure is the desired AVD. In Section 6, we
show that the resulting AVD satisfies the aforementioned separation properties.
Ignoring the small O(log(1/ε)) factor for now, the resulting structure has O(n)
nodes and total size O(n/ε(d−1)/2). In order to answer ε-approximate nearest neigh-
bor queries, we locate the leaf cell containing the query point in time O(log n) and
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FIG. 6. Construction of the AVD.

then compute its closest representative in time O(1/ε(d−1)/2), which yields a total
query time of O(log n + 1/ε(d−1)/2).

The O(n/ε(d−1)/2) space bound that this simple analysis provides is quite weak. It
can be shown that (if the representatives are chosen with some care) the total space is
only O(n log(1/ε)). In Section 7, we prove this through a charging technique, which
we call spatial amortization. Here is a short intuitive description. Suppose that a
cell requires a large number of representatives. This will be evident by the fact that
there are many points at roughly the same distance from the cell, and further these
points will be spatially well distributed about the cell. Such a collection of points
will give rise to a proportionately large number of well-separated pairs of significant
length in the vicinity of the cell. In spatial amortization, each well-separated pair
applies a charge to certain cells lying in its vicinity. We show that this can be done
so that every cell receives at least as many charges as it has representatives, and
furthermore, this can be achieved with only O(log(1/ε)) charges per well-separated
pair. Since there are O(n) pairs in the WSPD, it follows that the total number of
charges, and hence the total number of representatives, is O(n log(1/ε)), which is
much smaller than the naive worst-case bound. (See Section 7 for further details.)

For the sake of simplicity, this overview has ignored the issue of space-time
tradeoffs. One nice feature of our AVD construction is that it lends itself easily to
providing tradeoffs between space and query time. Recall the outer-ball expansion
factor introduced earlier. We have assumed it to be a constant thus far, but it can
be meaningfully increased up to O(1/ε). Increasing its value results in more cells,
but with fewer representatives per cell. In the extreme case, we need only one
representative per cell, but the number of cells grows to O((n/εd) log(1/ε)). (See
Theorem 8.4 for a complete specification of the space-time tradeoffs.) As the outer-
ball expansion factor increases, this bound on the number of cells is suboptimal
in that it carries an additional factor of 1/ε in the extreme. Our lower bounds
of Section 10 indicate that the number of cells in the limiting case should be
O(n/εd−1), rather than the roughly O(n/εd) bound given above. What is the source
of this inefficiency? Our construction decomposes the space around each well-
separated pair (X, Y ) in a uniform manner. Intuitively, the quadtree boxes of the
decomposition arise from a need to ascertain whether the approximate nearest
neighbor lies in X or in Y . This suggests that we only need to generate those boxes
whose nearest neighbor in X is roughly at the same distance as its nearest neighbor
in Y , that is, those points lying near the Voronoi bisector of X and Y . Since X
and Y are well separated, the bisector is a relatively smooth (d − 1)-dimensional
polyhedral manifold, and hence the number of boxes needed to cover it grows as
1/εd−1 rather than 1/εd . This suggests a more efficient construction algorithm,
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FIG. 7. Concentric γ -separation.

which is sensitive to the location of this bisector. This construction is presented in
Section 9.

In Sections 5 through 9, we present the AVD constructions and analyses, which
we have just outlined. Finally, in Section 10, we present lower bounds on the
complexity of AVDs.

5. Separation and Approximate Nearest Neighbors

An important and recurring theme in the study of AVDs is the notion that in any
subdivision of space, say one generated by the leaf cells of a BBD tree, the greater
the degree that a cell is separated from the points in its environment the more
concisely and/or the more accurately its approximate nearest neighbor information
can be encoded. In this section, we quantify these relationships formally. First,
we define the principal notion of separation, which will be applied throughout our
article in order to bound the number of nearest neighbor representatives. Consider
two sets X, Y ⊂ R

d , and two positive real parameters β, γ ≥ 1. Recall that given
a ball b, γ b is the ball concentric with b whose radius is larger by the factor γ .
We say that X is concentrically γ -separated from Y if X can be enclosed within a
d-dimensional ball bX such that γ bX ∩ Y = ∅ (see Figure 7). Note that X and Y
need not be discrete sets, and may themselves be geometric regions, such as balls
or quadtree boxes.

Recall that an ε-representative set for a region u with respect to a set of points S
is a subset R ⊆ S such that for all q ∈ u, NNq(R) ≤ (1+ε)NNq(S). Our first result
bounds the number of nearest neighbor representatives needed when the query and
data points are concentrically separated. The result is symmetrical in the sense that
query points and data points may be placed either in the inner ball or outside the
outer ball. The proofs of the lemmas of this section are rather technical and are
presented later in Appendix A.

LEMMA 5.1 (CONCENTRIC BALL LEMMA). Let c > 0 be a constant, and let
0 < ε ≤ 1 and γ ≥ 1 + c be two real parameters. Let S be a set of points in R

d .
Let b1 and b2 be two balls in R

d such that b1 is concentrically γ -separated from
b2. Then there exist subsets R1, R2 ⊆ S each consisting of at most

O

((
1 + 1√

εγ

)d−1
)

points such that

(i) R1 is an ε-representative set for b1 with respect to S ∩ b2, and
(ii) R2 is an ε-representative set for b2 with respect to S ∩ b1.
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Note that the number of representatives needed to answer any query is a function
of only ε, γ , and the dimension, and is independent of the size of S. If γ is �(1/ε),
the above lemma implies that O(1) representatives suffice. The following result
shows that if γ is sufficiently large then a single representative suffices.

LEMMA 5.2 (SINGLE-REPRESENTATIVE CONC. BALL LEMMA). Let 0 < ε ≤ 1
and γ ≥ 11/ε be two real parameters. Let S be a set of points in R

d . Let b1 and b2

be two balls in R
d such that b1 is concentrically γ -separated from b2.

(i) Let px be an (ε/2)-nearest neighbor of any point x ∈ b1. Then, {px} is an
ε-representative set for b1 with respect to S ∩ b2.

(ii) Let p be any point of S ∩ b1. Then, {p} is an ε-representative set for b2 with
respect to S ∩ b1.

This lemma allows us to dispense with the easy case of a query point that is
very far from the point set S. If S lies within a ball b1 of diameter ε/11 at the
center of unit hypercube, then any query point q that lies outside the unit cube lies
outside a ball b2 of unit diameter inscribed within the hypercube. Clearly, b1 is
concentrically (11/ε)-separated from b2. By Lemma 5.2(ii), any point of S can be
used as an ε-approximate nearest neighbor of q. Thus, we have the following.

LEMMA 5.3. Let 0 < ε ≤ 1 be a real parameter, let b be a ball of diameter
ε/11 located at the center of the unit hypercube [0, 1]d . Given a finite point set
S ⊂ b, any single point of S is an ε-representative set for the complement of the
unit hypercube with respect to S.

6. Basic AVD Construction and Separation Properties

In this section we describe our basic method for constructing an approximate
Voronoi diagram (AVD). Later, in Section 9, we will modify this basic construction
to produce the best space and time tradeoffs. Let S be an n-element point set in
R

d that has been scaled to lie within a ball of diameter ε/11 at the center of the
unit hypercube. By Lemma 5.3, queries outside the unit hypercube are trivial to
answer, and so henceforth it suffices to consider only query points lying within the
unit hypercube. Recall from Section 4 that a key idea is to generate a subdivision
whose cells satisfy certain separation properties with respect to the points of S.
These separation properties will enable us to store a sparse set of nearest neighbor
representatives to handle the query points lying within each cell. In this section, we
define these separation properties and show that it is possible to construct a BBD
tree whose leaf cells satisfy these properties. Because it is often desirable to provide
additional control of the degree of separation, we provide two parameters, β and γ .
These control the degree of separation with the inner and outer balls, respectively.
(In all the constructions of this article β = O(1/ε), but we present our constructions
in general because AVDs are useful in other applications of geometric retrieval.)

Recall that, given a leaf cell w of a BBD tree, sw denotes its size (its side length),
and bw denotes an enclosing ball of radius rw = sw d centered about w . Throughout,
we let m(n, d, γ, β) = nγ d log β be the function that provides the asymptotic upper
bound on the number of cells of the subdivision. When n, d, γ , and β are clear
from context, we will just present this as m.
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FIG. 8. Basic AVD separation properties.

LEMMA 6.1 (BASIC SEPARATION PROPERTIES). Consider real parametersβ ≥
2 and γ ≥ 2. Let S be a set of n points in R

d , and recall that m = m(n, d, γ, β) =
nγ d log β. It is possible to construct a BBD tree T with O(m) nodes, where each
leaf cell w satisfies at least one of the following three properties:

(i) S ∩ γ bw = ∅, and hence bw is concentrically γ -separated from S (see
Figure 8(i)).

(ii) |S∩w | = 1, and bw is concentrically γ -separated from S\w (see Figure 8(ii)).
(iii) There exists a ball b′

w such that S ∩ γ bw ⊆ b′
w and b′

w is concentrically
β-separated from w (see Figure 8(iii)).

In time O(m log m), we can construct T with the following information stored
at the nodes. For each leaf cell w, if it satisfies (ii) we store the point S ∩ w, and if
it satisfies (iii) we store the ball b′

w and a single point of S lying within this ball.

Before giving the proof, we present the construction algorithm for the desired
BBD tree T . As mentioned above, our construction depends on two parameters
β and γ (which generally depend on ε), and there are two constants c1 and c2
(which do not depend on ε). The specific values of the constants will become
apparent from the proof of Lemma 6.1. To avoid explicit reference to powers of 2
for box sizes, we will use the convenient shorthand “quadtree boxes of size s” to
mean “quadtree boxes of size 2�log s�.” Such boxes have side lengths ranging from
s/2 to s.

We begin by computing a well-separated pair decomposition P for S using any
constant separation factor σ > 4. For a fixed well-separated pair P ∈ P , let � and
z denote its length and center, respectively. (Recall that these are the respective
length and center of the line segment joining the centers of P’s dumbbell heads.)
Next, compute a set of quadtree boxes U(P) as follows. For 0 ≤ i ≤ �log(c1β)�,
let bi (P) denote the ball centered at z of radius ri ← 2i�. Let B(P) denote the
resulting set of balls. These balls involve radius values ranging from � to �(β�).
For each such ball bi (P), let Ui (P) be the set of quadtree boxes of size ri/(c2γ )
that overlap the ball (see Figure 6 in Section 4). Let U(P) denote the union of all
these boxes over all the O(log β) values of i .

This process is performed for each well-separated pair ofP . LetU = ⋃
P∈P U(P)

denote the union of all the boxes. To complete the construction, we apply BBD
property (ii) to construct a BBD tree T storing all these boxes.

LEMMA 6.2. This BBD-tree construction runs in O(m log m) time and gener-
ates O(m) nodes.
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FIG. 9. Proof of AVD separation properties.

PROOF. For each well-separated pair P ∈ P and for each i , we first consider the
number of quadtree boxes that overlap the ball bi (P) of radius ri in the construction.
Since the boxes are of size ri/(c2γ ), by a simple packing argument the number of
overlapping quadtree boxes is

O

((
1 + ri

ri/(c2γ )

)d
)

= O(γ d).

Since the number of balls for each well-separated pair is O(log β), the total number
of boxes in U(P) is O(γ d log β).

The total number of well-separated pairs is O(n), and thus |U | = O(nγ d log β).
Recalling our definition of m above, |U | = O(m). By BBD property (ii) the number
of nodes of T is O(|U |) = O(m), and it can be constructed in time O(m log m).

In addition to T , we construct a standard BBD tree TA for S, called the auxiliary
tree. It will be applied here and later in Section 7 for the purposes of preprocessing.
By BBD property (i), TA has O(n) space and can be constructed in O(n log n)
time. By BBD property (vi), we can use TA to compute the 1-approximate nearest
neighbor of the center of each leaf cell in T . (The distance is within factor 2 of the
nearest neighbor.) Each such computation takes O(log n) time, so the total time for
this step is O(m log n) = O(m log m). We can now prove Lemma 6.1.

PROOF OF LEMMA 6.1. We have just shown that the BBD tree T resulting from
the above construction satisfies the size and construction time bounds. It suffices to
show that for all suitably large constants c1 and c2, T possesses the stated separation
properties. Let w be any leaf cell of T , and let x ∈ S be a 1-approximate nearest
neighbor of the center of w . If x /∈ 2γ bw , then since x is a 1-approximate nearest
neighbor, it follows that there is no point of S in γ bw , and so (i) holds. Thus, we
assume henceforth that x ∈ 2γ bw .

If x is the only point of S in 2γ bw , then either x ∈ w , implying that (ii) holds, or
x /∈ w , implying that (iii) holds for any sufficiently small ball centered at x . (This
ball need not intersect γ bw .) Let us assume therefore that x is not the only point of
S in 2γ bw . Let y be the point of S ∩ 2γ bw that is farthest from x . Let r ′

w = ‖xy‖,
and let b′

w be the ball of radius r ′
w centered at x (see Figure 9). Clearly, any point

of S ∩ γ bw is contained within b′
w .

It suffices to show that b′
w satisfies separation property (iii). To this end, consider

the dumbbell P ∈ P that separates points x and y. Let � denote the length of this
dumbbell, let z denote its center, and let L = dist(z, w). Throughout, we will make
use of the following inequalities, which follow from Lemma 3.1 and the fact that
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σ > 4:

‖xz‖ < �, � < 2‖xy‖, and � >
‖xy‖

2
.

We distinguish two cases, based on the relationship between L and �:
Case 1. (L > c1β�) We will show that separation property (iii) holds. By the

triangle inequality

dist(x, w) ≥ L − ‖xz‖ > c1β� − � > (c1β − 1)
‖xy‖

2
= c1β − 1

2
r ′

w .

Since β ≥ 2, for all sufficiently large constants c1 this exceeds βr ′
w , which implies

that b′
w is concentrically β-separated from w .

Case 2. (L ≤ c1β�) We will show that this case cannot occur, since otherwise the
dumbbell P would have caused w to be split, contradicting the assumption that it
is a leaf cell. Since x , y, and w are all contained in the ball 2γ bw whose center lies
within w , we have both dist(x, w) ≤ 2γ rw , and � < 2‖xy‖ ≤ 2(4γ rw ) = 8γ rw .
Thus, by the triangle inequality, we have

L ≤ ‖xz‖ + dist(x, w) < � + 2γ rw < 8γ rw + 2γ rw = 10γ rw .

Because L ≤ c1β�, it follows from our construction that there is a ball of B(P)
that overlaps w . Let b denote the smallest such ball, and let r denote its radius.
By the construction we have r ≤ max(�, 2L). Since our construction generates all
quadtree boxes of size r/(c2γ ) that overlap b, it follows that sw ≤ r/(c2γ ). Thus,
we have

rw = sw d ≤ rd
c2γ

≤ max(�, 2L)d
c2γ

<
(20γ rw )d

c2γ
= 20rw d

c2
.

Choosing c2 ≥ 20d yields the desired contradiction.
Thus, we have shown that each leaf cell w of T satisfies either separation property

(i), (ii), or (iii). If (ii) applies we store the point x with w . If (iii) applies, we have
shown that there exists a ball b′

w centered at x that satisfies (iii). For computational
purposes (since we do not know the exact locations of the points of S ∩ γ bw ) it
suffices to let b′

w be the largest ball centered at x that is concentrically β-separated
from w . If this ball lies entirely outside γ bw , we degenerate to satisfying separation
property (i). Otherwise, we store the resulting ball and the point x with w . Given
w and x this can be done in O(1) time, which completes the proof.

Now that we have shown that the leaf cells of T satisfy the basic separation
properties, it is also useful to observe that each such cell is not too far away from its
closest point of S. This fact will be useful in bounding the distance to the nearest
neighbor of any point of the cell. Intuitively this follows because for each leaf cell
that is created there is a well-separated pair in the vicinity that induced its creation.

LEMMA 6.3. The BBD tree of Lemma 6.1 satisfies the property that there exists
a constant c > 1 such that for any leaf cell w of this tree the ball cγ bw contains at
least one point of S.

PROOF. Let v be the quadtree box that has twice the size of w and contains w .
Note that some dumbbell P ∈ P must generate a quadtree box u that is smaller and
contained within v , because otherwise there would be no need to refine v further.
Let b ∈ B(P) be a ball responsible for generating u (see Figure 10). Let z and r
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FIG. 10. Proof of Lemma 6.3.

denote the center and radius of b, respectively. Recall from our construction that b
overlaps u and su ≥ r/(2c2γ ). Thus, dist(z, u) ≤ r ≤ 2c2γ su .

Let � denote the length of dumbbell P . Since each head of P must contain at
least one point of S, it follows from Lemma 3.1 that there is a point p ∈ S such
that ‖pz‖ < 3�/4 < �. Recalling that the radius of the smallest ball in B(P) is �,
we have ‖pz‖ < r . Thus, by the triangle inequality,

dist(p, u) ≤ ‖pz‖ + dist(z, u) < r + r = 2r.

Since both w and u are contained in v , the distance between the center of w and any
point of u is at most the diameter of v , which is bounded above by svd = 2sw d =
2rw . Thus, the distance between the center of w and p is at most

2rw + dist(p, u) < 2rw + 2r ≤ 2rw + 4c2γ su .

Since su ≤ sv/2 = sw = rw/d and γ ≥ 2, this quantity is at most (1 + 4c2/d)γ rw .
It follows that the ball cγ bw contains p for any constant c ≥ 1 + 4c2/d.

In order to apply the basic AVD for the purposes of answering ε-approximate
nearest neighbor queries, it suffices to compute an ε-representative set for each leaf
cell. For now we present a simple, albeit space-inefficient, construction.

Given the point set S and parameters 0 < ε ≤ 1/2 and 2 ≤ γ ≤ 1/ε, we
construct the BBD tree T described in Lemma 6.1, for β = 1/ε. The number of
nodes in this tree is O(nγ d log(1/ε)). This tree and the subdivision induced by its
leaves form the basis of the AVD. For each leaf cell w , let bw and b′

w be the balls
defined in Lemma 6.1. Since w is contained within the ball bw , by Lemma 5.1(i)
there exists an ε-representative set Ow of size O(1/(εγ )(d−1)/2) for w with respect
to S ∩ γ bw .

If either case (i) or (ii) of Lemma 6.1 holds, the desired ε-representative set Rw is
defined to be Ow ∪(S∩w). (In case (i), S∩w is empty, and in case (ii), it consists of a
single point.) Finally, if case (iii) holds, there is a ball b′

w that contains all the points
of S ∩ γ bw , and b′

w is concentrically (1/ε)-separated from w . By Lemma 5.1(ii)
there exists an ε-representative set Iw of size O(1) for w with respect to S ∩b′

w . The
representative set in this case is the union of the “outer” and “inner” representatives,
that is, Rw = Ow ∪ Iw . In any case, |Rw | = O(1/(εγ )(d−1)/2).

To answer ε-nearest neighbor queries, we first locate the leaf cell of the AVD
that contains q. By BBD property (iv), this takes time O(log(nγ d log(1/ε))) =
O(log(nγ ) + log log(1/ε)). Later in Section 8, we will see that the log log(1/ε)
term may be ignored. We then compute the distance from q to each point of Rw and
return the closest among them. Thus, the query time is O(log(nγ )+1/(εγ )(d−1)/2).
A naive analysis of the space bound is provided by taking the product of the num-
ber of cells and the maximum number of representatives per cell, which yields
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O(m/(εγ )(d−1)/2), but in the next two sections we will show how to improve the
space requirements to O(m).

7. Spatial Amortization and Representatives

As mentioned above, a naive analysis of the basic AVD construction yields a rather
weak space bound. To obtain more accurate bounds, we will need to apply a some-
what more sophisticated analysis (along with a more careful way of selecting rep-
resentatives). In this section we present such a tool, called spatial amortization,
which is based on a more careful counting of the total number of representatives.
This concept has been shown to be useful in other applications of AVDs [Arya et al.
2005, 2006, 2009], and we believe that it may be of independent interest in similar
applications of geometric approximation.

Recall from the description of Section 4 that spatial amortization is a combinato-
rial analysis tool based on a charging scheme. We begin by describing the method
in a generic setting, and in Section 8 we specialize the analysis to bound the space
and time of the basic AVD construction. Given our n-element point set S, let W
denote any collection of cells of a BBD-tree decomposition having pairwise dis-
joint interiors. As we shall see later, spatial amortization can be applied generally
to any set of geometric objects that satisfies a packing property as given in BBD
property (iii).

Let w be an arbitrary cell of W . Recall that sw denotes the size (side length) of w
and that bw is an enclosing ball centered at w of radius rw = sw d. Due to the nature of
nearest neighbor approximation, it is reasonable to assume that w’s representatives
satisfy a couple of basic properties. First, the fact that w exists implies that there
must be a well-separated pair nearby (relative to rw ) that caused w’s parent to split
(recall Lemma 6.3). Thus, there exists a parameter ρ ≥ 1 (which will depend on the
parameter γ used in the construction) such that all nearest neighbor representatives
of w lie within the expanded ball ρbw . Second, since queries need only be answered
approximately, we may generally assume that the representatives are sparse, in the
sense that they may be selected so that no more than a constant number lie within
any region of diameter O(δρrw ), for some small δ > 0 (which will depend on the
approximation factor ε). To model these constraints, we assume that we are given
two parameters ρ ≥ 1 and δ > 0, and each cell w is associated with a collection of
quadtree boxes Uw that satisfy the following conditions:

—Nonempty: Each box of Uw contains at least one point of S.
—Local: The boxes of Uw overlap the ball ρbw .
—Sparse: The boxes of Uw are of size s ′

w = δρrw . (More accurately the boxes of
Uw are of size 2�log s ′

w�.)

These boxes of Uw should not to be confused with the cells of W . Instead, think
of them as some subset of the boxes of a rectangular grid that lie within ρbw and
that contain at least one point of S (see Figure 11(a)). We will show that, for a
suitable choice of ρ and δ, the total number of representatives can be bounded
asymptotically by

∑
w∈W |Uw |. We will then apply spatial amortization to bound

this sum.
The naive approach to bounding this sum would be to first bound the worst-case

size of Uw (say, by a packing argument) and then multiply by the number of cells
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FIG. 11. Spatial amortization and Lemma 7.1.

in W . Unfortunately, this produces a bound that is far from optimal, since most
cells cannot achieve the worst case. This is where spatial amortization comes to the
rescue. First, we show that the set Uw can be identified with a roughly equal number
of dumbbells of a well-separated pair decomposition (WSPD) of S (denoted by Pw
below), where each pair separates two points whose distance is at least as large as
the size of the boxes of Uw . Next, we develop a charging scheme in which each
dumbbell of the WSPD charges a subset of cells of W so that the number of charges
received by each cell is proportional to |Uw |. Finally, we bound the total number of
such charges over all the dumbbells.

We start by showing that the process of counting quadtree boxes of Uw can be
reduced to counting an appropriate subset of dumbbells of a WSPD. Henceforth,
let P denote the set of dumbbells of a WSPD of S for some constant separation
factor σ > 4. Let Sw ⊆ S be a set of points of interest contained in the union
of the boxes of Uw such that each box of Uw contains at least one point of Sw .
We say that a dumbbell P ∈ P is useful for w if it separates some pair of points
x, y ∈ Sw such that ‖xy‖ ≥ s ′

w . Let Pw denote the set of dumbbells that are useful
for w .

LEMMA 7.1. Let P be the set of dumbbells of a WSPD for a point set S for any
constant separation factor σ > 4. Given a cell w, let Uw , Sw , and Pw be as defined
above. Then |Uw | = O(|Pw | + 1).

PROOF. We first identify a subset of points S′
w ⊆ Sw such that |Uw | = O(|S′

w |),
and the distance between any pair of points of S′

w is at least s ′
w . We start with S′

w
being empty and consider the quadtree boxes of Uw one by one. For each quadtree
box u examined, we add any one point of Sw ∩ u to S′

w and then eliminate the at
most 3d quadtree boxes in Uw that share a common boundary with u from future
consideration. We continue in this manner until all the quadtree boxes are elimi-
nated. It is clear that this process yields a subset S′

w with the properties mentioned
above. (These are the black points of Figure 11(b).)

Consider the following process for identifying a set P ′
w of useful dumbbells. At

each step, we find the dumbbell of P that separates the closest pair of points among
the remaining points of S′

w and add it to P ′
w . We then eliminate one of these two

points. We repeat this process with the remaining points until only one point of S′
w

remains. Let P ′
w denote the resulting set of dumbbells (see Figure 11(c)).

Because the closest pair is chosen at each stage, and the separation factor is greater
than 4, the dumbbell head containing the eliminated point at each stage contains no
other point from among the uneliminated points of S′

w . It follows therefore that all

Journal of the ACM, Vol. 57, No. 1, Article 1, Publication date: November 2009.



1:20 S. ARYA ET AL.

the dumbbells obtained are distinct. Thus, |P ′
w | = |S′

w |− 1. Since |Uw | = O(|S′
w |),

we have |Uw | = O(|P ′
w | + 1) = O(|Pw | + 1), as desired.

We define a charging scheme to be a process in which each dumbbell of our
WSPD P allocates a unit charge to a subset of cells of W . Recall that Pw ⊆ P is
the set of dumbbells that are useful for w . A charging scheme is valid if, for any
w ∈ W , all the dumbbells of Pw allocate a unit charge to w . (Note that a cell may
receive charges from multiple dumbbells and may receive charges from dumbbells
that are not in Pw .) It follows easily that a valid charging scheme can be used to
achieve our goal of bounding the sum of the cardinalities of Uw over all cells w , as
shown next.

LEMMA 7.2. Let � denote the total number of charges allocated to the cells
of W by a valid charging scheme. Then∑

w∈W
|Uw | = O(� + |W|).

PROOF. By Lemma 7.1, we have |Uw | = O(|Pw | + 1). Since the charging
scheme is valid, each dumbbell of Pw allocates a unit charge to cell w and so∑

w |Pw | ≤ �. Therefore,
∑

w |Uw | = O(
∑

w |Pw | + ∑
w 1) = O(� + |W|).

In order to carry out the charging analysis suggested by Lemma 7.2, a charging
scheme should be set up so that it is easy to calculate the number of cells charged
by each dumbbell. This will usually be done through a straightforward packing
argument. The following lemma provides a generic analysis of spatial amortization,
which will be applied later in a number of specific instances.

LEMMA 7.3 (BASIC SPATIAL AMORTIZATION). Let S be a set of n points in R
d ,

and let W be the leaf cells of a BBD-tree decomposition. Let ρ ≥ 1 and 0 < δ ≤ 1
be two real parameters. For each w ∈ W , let Uw be the set of nonempty quadtree
boxes of size δρrw that overlap ρbw . Then∑

w∈W
|Uw | = O

(
nρd log

1

δ
+ |W|

)
.

Note that the bound is relatively sensitive to locality, as evidenced by the ρd

term, but the dependence on sparseness is quite mild, growing only logarithmically
with δ. To better appreciate the power of spatial amortization, let us consider what
bound would be produced by a naive analysis. Since the sizes of the quadtree boxes
of Uw are smaller than the radius of ρbw by a factor of δ, it follows from a simple
packing argument that |Uw | = O(1/δd). Summing this over all the cells ofW yields∑

w∈W |Uw | = O(|W|/δd). If we were to apply this to our AVD construction (as we
will do in the next section) we would obtain a bound on |W| that is roughly O(nρd).
The resulting bound of O(n(ρ/δ)d) obtained by this naive analysis would be bigger
by a factor of roughly �(1/δd). When we apply this to our AVD construction, δ
can be as small as ε, and so this additional factor would be quite significant.

PROOF OF LEMMA 7.3. Let c1 and c2 be two constants, both assumed to be suit-
ably large. Let P be the set of dumbbells corresponding to the WSPD for S, using
any constant separation factor greater than 4. Each dumbbell P ∈ P allocates a
unit charge to some of the cells of W according to the following charging scheme,
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FIG. 12. Establishing the validity of the charging scheme of Lemma 7.3.

which we will show below to be valid. Let � denote P’s length, and let z de-
note its center. Let B(P) denote the set of balls of radii ri = 2i� centered at z,
for 0 ≤ i ≤ �log(c1/δ)�. Let bi (P) denote the ball of B(P) of radius ri , and let
Wi (P) ⊆ W be the set of cells of the BBD-tree decomposition overlapping bi (P)
that have size at least ri/(c2ρ). (The process is very reminiscent of the AVD con-
struction, illustrated in Figure 6 of Section 4.) Dumbbell P allocates a unit charge
to each of the cells of the set

⋃
bi (P)∈B(P) Wi (P).

By BBD property (iii), it follows that |Wi (P)| = O(ρd). Thus, the number of
cells charged by P is

∑
i |Wi (P)| = O(ρd log(1/δ)). Since |P| = O(n), the to-

tal number of charges allocated to all the cells of W is � = O(nρd log(1/δ)).
Thus, once we have established that this charging scheme is valid, it will
then follow from Lemma 7.2 that

∑
w |Uw | = O(nρd log(1/δ) + |W|), as

desired.
To establish validity, let Sw be the subset of points of S that lie within some box

of Uw , and recall that Pw denotes the associated set of useful dumbbells for w . We
will show that each of these dumbbells charges w . Let r ′

w = ρrw denote the radius
of ρbw , and let s ′

w = δr ′
w be the size of the quadtree boxes of Uw (see Figure 12(a)).

By definition, each dumbbell P ∈ Pw separates some pair of points x, y ∈ Sw
such that ‖xy‖ ≥ s ′

w . As before, let � denote P’s length, and let z be its center (see
Figure 12(b)).

By Lemma 3.1, it follows that �, ‖xy‖, and ‖xz‖ are all within a constant factor
of each other. Let t be an arbitrary point in w . Since both x and y lie within quadtree
boxes of size s ′

w ≤ r ′
w that overlap the ball ρbw , it follows that ‖xt‖, ‖yt‖, and

‖xy‖ are all O(r ′
w ). Therefore we have

‖zt‖ ≤ ‖xz‖ + ‖xt‖ = O(r ′
w ) = O

(
s ′

w

δ

)
.

By hypothesis, ‖xy‖ ≥ s ′
w , and since � is within a constant factor of ‖xy‖ we have

‖zt‖ = O(�/δ).
Therefore, for any suitably large constant c1, the largest ball of B(P) contains t ,

and so w is eligible to be considered for charging. To see that it will be charged, let
r denote the radius of the smallest ball b ∈ B(P) that contains t . If b is the smallest
ball of B(P), then its radius is �, which we have shown to be O(r ′

w ). Otherwise,
because the ball radii grow by factors of 2 we have r ≤ 2‖zt‖ = O(r ′

w ). Recalling
that r ′

w = ρrw = ρsw d and that P allocates a charge to all cells of W overlapping
b that have size at least r/(c2ρ), it is clear that, for sufficiently large c2, w must
receive a charge from P . This completes the proof.
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We observe as well that with the aid of the auxiliary BBD tree TA for S (recall
the comments made just after the proof of Lemma 6.2) we obtain the following
computational result.

LEMMA 7.4. Given the same conditions as in Lemma 7.3 and the auxiliary
BBD tree TA for the points of S, we can compute the nonempty quadtree boxes Uw
for all w ∈ W and an arbitrary point of S from each such box in time

O
(

nρd log
1

δ
+ |W| log n

)
.

PROOF. By BBD property (v), for each w ∈ W we can compute Uw and an
arbitrary point within each box of Uw in time O(log n + tw ), where tw is the number
of nonempty quadtree boxes of size δρrw that overlap the factor-2 expansion of
ρbw . We can bound

∑
w∈W tw in exactly the same way we bounded

∑
w∈W |Uw |

in Lemma 7.3 (since all that has changed is the doubling of the radius of ρbw ,
which only alters the constant factors). The time bound given in the statement of
the lemma follows directly.

8. Bounding the Total Space for the Basic AVD

We are now in a position to apply spatial amortization to bound the total number of
nearest-neighbor representatives as well as the preprocessing time for computing
them. To begin, assume that we have applied Lemma 6.1 to construct a BBD tree
T , where the parameter β has been chosen to be 16/ε. (We will justify this choice
below.) Let W denote the subdivision induced by the leaf cells of T . Lemma 6.1
implies that the total number of cells of W is O(nγ d log(1/ε)). As we did in this
lemma, let m = m(n, d, γ, β) = nγ d log(1/ε) denote the asymptotic bound on
the number of cells. (Note that we have omitted the factor of 16 to simplify the
expression, but there is no harm in doing so since it will only be used in asymptotic
expressions.)

Our goal is to compute an ε-representative set for each cell w ∈ W . Recall that
this is a subset Rw ⊆ S such that for any query point q ∈ w , its nearest neighbor
in Rw is an ε-approximation to its nearest neighbor in S. The following lemma
provides the main technical result of this section. It bounds the maximum and total
sizes of these representative sets and their total computation time.

LEMMA 8.1. Let 0 < ε ≤ 1/2 and 2 ≤ γ ≤ 1/ε be two real parameters. Let S
be a set of n points in R

d , and let T be the BBD tree described above. Let W denote
T ’s leaf cells. Then, for each cell w ∈ W , there exists an ε-representative set Rw
for w, such that |Rw | = O(1/(εγ )(d−1)/2). The total number of representatives over
all the cells is O(m) = O(nγ d log(1/ε)). Moreover, it is possible to compute the
sets Rw for all cells w ∈ W in total time

O

(
m

((
1

εγ

) d−1
2

+ log m

))
.

The remainder of this section is devoted to proving this lemma. Throughout, let
ε, γ , S, n, W , and m be as specified in the statement of the above lemma, and let
w be any cell of W . We begin by showing that, given our choice of β = 16/ε in
the application of Lemma 6.1, all but one of the representatives may be assumed
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FIG. 13. Computing the outer representatives for the cell w .

to be taken from outside w’s outer ball. Based on the separation properties given
in Lemma 6.1, for a query point lying within w there are three possible sources
of ε-nearest neighbor representatives: (a) from within w , (b) within the inner ball
b′

w , and (c) from outside the outer ball γ bw . (Recall Figure 8 of Section 6.) The
representatives of type (c) are called the ε-outer representatives, which we will
denote by Ow . Formally, we define Ow to be an ε-representative set for w with
respect to the points of S lying outside γ bw that are nearest neighbors of some
query point in w . If w satisfies condition (i) of Lemma 6.1, the outer ball contains
no points of S, and so Rw ← Ow . If (ii) holds, then there is only one point p within
the outer ball, and so we may take the final representatives to be Rw ← Ow ∪ {p}.
(In fact, it can be shown that since γ ≥ 2, the nearest neighbor of any point in w
will be p, so we do not need Ow at all.) Finally, if (iii) holds, then by our choice of
β, all the points lying within the inner ball b′

w are concentrically (16/ε)-separated
from w . By Lemma 5.2, it follows therefore that it suffices to take an arbitrary
point p as the representative from the inner ball. (The construction provides such
a point.) The final set of representatives will be Rw ← Ow ∪ {p}.

Thus, given the sets Ow for all w ∈ W we can compute the complete representa-
tive sets Rw in O(1) additional time per cell, that is, O(m) additional time overall.
Hence, for the rest of this section, it suffices to consider the problem of computing
just the outer representatives Ow for each of the cells w ∈ W . One way to do this
would be to implement the construction implied by the proof of Lemma 5.1. We
will describe a significantly more efficient method here. For the sake of clarity, we
first ignore issues related to preprocessing time, which we will address a bit later.

By Lemma 6.3, there is a constant c > 1 such that the ball cγ bw contains at least
one point of S. It follows from the triangle inequality that our search for the outer
representatives can be restricted to the annulus Aw = (cγ + 1)bw \ γ bw . Let Uw
denote the set of nonempty quadtree boxes of size εγ rw/c1 overlapping Aw , where
c1 is a suitably large constant (see Figure 13(a)).

Our approach will be to construct an initial set O ′
w of representatives, which

will be larger than needed, and then prune this set to the desired set Ow . For each
u ∈ Uw , let pu be an arbitrary point of S ∩ u, and let O ′

w = ⋃
u∈Uw

{pu}. Since the
cells of Uw are at distance �(γ rw ) from w , and their size is smaller by a factor of
O(ε), we would expect that the points of O ′

w form an O(ε)-outer representative set.
To compensate for later additional approximations, it will be useful to engineer the
approximation factor to be a bit smaller than ε.

LEMMA 8.2. For all sufficiently large constants c1 (in the definition of Uw ) O ′
w

is an (ε/4)-outer representative set for w.
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PROOF. For any box u ∈ Uw , let su = εγ rw/c1 be its size, and let bu denote the
enclosing ball of radius ru = sud centered about u. We claim that bu is concentrically
(64/ε)-separated from w . Assuming this claim for now, since 64/ε = (16/(ε/4)), it
follows from Lemma 5.2 that for any query point q ∈ w , ‖qpu‖ ≤ (1+ε/4)NNq(S∩
u). That is, {pu} is an (ε/4)-representative set for w with respect to S ∩ u. We have
seen that each point of S ∩ γ bw that is the nearest neighbor of some point in w lies
within Aw and therefore lies within some box of Uw . It follows directly that O ′

w is
an (ε/4)-outer representative set for w .

To complete the proof, we establish the above claim. Let Lu denote the distance
between the center of ball bu and w (see Figure 13(a)). It suffices to show that
Lu/ru ≥ 64/ε. Recall that rw = sw d and ε ≤ 1/2. Setting c1 ≥ 4d, we obtain

ru = sud = εγ rw d
c1

≤ γ rw

8
.

Since γ ≥ 2, and bu overlaps γ bw , by applying the triangle inequality we have

Lu ≥ γ rw − ru − rw ≥ γ rw − γ rw

8
− γ rw

2
= 3γ rw

8
.

Thus, setting c1 ≥ 64 · 8d/3 implies that

Lu

ru
≥ (3γ rw/8)

(εγ rw d/c1)
= 3c1

8εd
≥ 64

ε
.

as desired.

In view of this lemma, we could let O ′
w be the set of outer representatives for w ,

but their number would be too large to satisfy our desired bounds on query times.
(A simple packing argument shows that in the worst case, |O ′

w | could be as large
as �(1/εd).) We will discuss how to reduce the number later, but first we show
that, through the use of spatial amortization, we can bound the total number of
representatives over all the cells of W to be O(m). This is in contrast to the much
higher bound of O(m/(εγ )(d−1)/2) arising from the naive analysis.

LEMMA 8.3. For each cell w ∈ W , let O ′
w be the set of representatives defined

above. Then
∑

w |O ′
w | = O(m). Furthermore, we can compute O ′

w for all the cells
of W in time O(m log n).

PROOF. Since |O ′
w | = |Uw | it suffices to bound

∑
w |Uw |. As observed before,

all the boxes of Uw overlap the ball (cγ + 1)bw . Since γ ≥ 2, this ball is contained
in c2γ bw for a suitable constant c2. To bound

∑
w |Uw |, we apply Lemma 7.3 with

ρ = c2γ and δ = ε/(c1c2). It is easy to see that all the conditions of Lemma 7.3
are met, and so we have∑

w∈W
|Uw | = O

(
nγ d log

1

ε
+ m

)
= O(m).

We can compute the points of O ′
w by sampling an arbitrary point from each of

the boxes of Uw . By Lemma 7.4, this can be done in time O(nγ d log(1/ε) +
|W| log n) = O(m log n).

To produce the final outer representative set, recall from the proof of Lemma 8.2
that, for any u ∈ Uw , ru ≤ γ rw/8. Thus, by the triangle inequality, all the points
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of O ′
w are at distance at least γ rw − 2ru ≥ (3γ /4)rw from the center of w , that is,

they lie outside (3γ /4)bw . Thus, by Lemma 5.1 there exists a subset Ow ⊆ O ′
w of

size O(1/(εγ )(d−1)/2) such that NNq(Ow ) ≤ (1+ε/4)NNq(O ′
w ) (see Figure 13(b)).

Combining this with Lemma 8.2 and our assumption that ε ≤ 1/2, it follows that
Ow is the desired outer ε-representative set for w . Since Ow ⊆ O ′

w , it follows that∑
w |Ow | = O(m).
Now let us consider how to compute these representative sets for all w ∈ W .

Recall from Lemma 6.1 the BBD tree T can be constructed in time O(m log m).
We have just seen that the sets O ′

w can be computed for all the cells of W in time
O(m log n). It remains only to consider the time it takes to prune O ′

w to Ow . The
proof of Lemma 5.1, which was used to establish the existence of Ow , shows that
there exists a set of O(1/(εγ )(d−1)/2) points, called helpers, and the points of Ow
can be taken to be the (ε/2)-approximate nearest neighbors of these helpers. Thus,
for each helper it suffices to compute its exact nearest neighbor from O ′

w , which is
done by a simple brute-force scan of the points of O ′

w . Summing over all the cells
yields a total asymptotic time of(

1

εγ

) d−1
2 ∑

w

|O ′
w | = O

((
1

εγ

) d−1
2

m

)
.

Recall that once the sets Ow have been computed, the final representative sets Rw
can be computed in additional O(m) time. This establishes the computation time
for Lemma 8.1, and completes its proof.

To answer an ε-NN query for a point q, we first determine the leaf cell that
contains q. This takes time O(log m) = O(log(nγ )+log log(1/ε)) time by a simple
descent in the BBD tree. We then compute the distance from q of each point in Rw
and return the closest among them, which can be done in time O(1/(εγ )(d−1)/2).
The total query time is the sum of these two quantities. Note that log log(1/ε) is
never dominant and so may be ignored. This follows because

log log
1

ε
≤ log

1

ε
= log γ + log

1

εγ
≤ log(nγ ) +

(
1

εγ

) d−1
2

.

Therefore the overall query time is O(log(nγ ) + 1/(εγ )(d−1)/2).
We can now provide the complete analysis of the basic AVD construction of

Section 6.

THEOREM 8.4 (BASIC AVD THEOREM). Let S be a set of n points in R
d , and

let 0 < ε ≤ 1/2 and 2 ≤ γ ≤ 1/ε be two real parameters. Let m = nγ d log(1/ε).
We can construct a (t, ε)-AVD, where t = O(1/(εγ )(d−1)/2), of space O(m) that
can answer ε-NN queries in time O(log(nγ ) + t). It can be constructed in time
O(m (t + log m)).

By considering the two extreme cases, γ = 2 and γ = 1/ε, we have:

COROLLARY 8.5. Let S be a set of n points in R
d , and let 0 < ε ≤ 1/2. Then:

(i) Let m ′ = n log(1/ε). There exists a (t, ε)-AVD, where t = O(1/ε(d−1)/2), of
space O(m ′) that can answer ε-NN queries in time O(log n + t). It can be
constructed in time O(m ′(t + log m ′)).
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(ii) Let m ′′ = (n/εd) log(1/ε). There exists a (t, ε)-AVD, where t = O(1), of space
O(m ′′) that can answer ε-NN queries in time O(log(n/ε)). It can be constructed
in time O(m ′′ log m ′′).

When γ = 1/ε, we need only O(1) representatives per cell. It is natural to wonder
whether this number can be reduced to exactly one representative per cell, while
retaining the asymptotic space and query bounds of Corollary 8.5(ii). The answer
is yes. By setting γ = 32/ε and β = 16/ε in the construction of the BBD tree of
Lemma 6.1, it can be shown that a single representative suffices for each node. We
will spare the reader the straightforward technical details, but here is a sketch. The
factor γ is sufficiently large that Lemma 5.2 implies that a single representative
suffices from beyond the outer ball γ bw . Similarly, β is sufficiently large that, if
the inner ball b′

w exists, a single representative suffices from within it. If there is an
inner ball, we use its representative, and otherwise, we use the representative from
the outer ball.

Readers familiar with the earlier version of this article [Arya et al. 2002] may have
noted that the bounds on the number of cells m in the above theorem and corollary
carry an additional factor of log(1/ε). In the earlier paper we showed that this
additional term could be eliminated through a combination of elements involving
deterministic sampling, a more complex construction involving a quadratic growth
rate, and a second separation condition (analogous to Lemma 5.1) based on disjoint
balls. We chose to simplify the presentation by eliminating these elements at the
price of this small additional factor.

9. Bisector-Sensitive AVDs

Our bounds on the number of cells in our various constructions so far have been
suboptimal since they carry additional factors of γ and/or ε. For example, ignoring
logarithmic factors our bound on the number of cells is O(nγ d), while O(nγ d−1)
would have been expected. To gain some intuition as to the source of this ineffi-
ciency, observe that our constructions process the space around each well-separated
pair in a uniform manner. For example, given a well-separated pair P = (X, Y ), the
basic construction of Section 6 generates quadtree boxes uniformly throughout a
ball centered about the associated dumbbell. Intuitively, one may view these boxes
as arising from a need to ascertain whether the approximate nearest neighbor lies
in X or Y . This point of view suggests that we only need to generate those boxes
that contain a query point q such that the respective nearest-neighbor distances,
NNq(X ) and NNq(Y ), are approximately equal. That is, the boxes of interest are
those that overlap the bisector between the sets X and Y . Since X and Y are well
separated, the bisector is a (d − 1)-dimensional polyhedral manifold, and hence
the number of boxes needed to cover it should grow as γ d−1 rather than γ d . In this
section we shall see that, by exploiting this observation, it is possible to construct an
AVD having only O(nγ d−1) cells. An efficient implementation of this construction
would involve a number of technical geometric details. To simplify the presenta-
tion, we will not discuss preprocessing time, and instead we will only establish the
existence of an AVD of the desired size.

In the next section, we will derive the relevant geometric properties of bisectors
of well-separated sets. Then, in Section 9.2, we present our bisector-sensitive AVD
construction and establish its separation properties. Finally, in Section 9.3, we
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FIG. 14. The Voronoi bisector of a well-separated pair and Lemma 9.1.

analyze the total number of representatives needed and present the total space
requirements.

9.1. BISECTOR PROPERTIES. Consider a WSPD with constant separation factor
σ > 4. Throughout this section we will focus on a single well-separated pair
P = (X, Y ) of the decomposition. Let z denote their midpoint, or the dumbbell
center. Recall that the line passing through the centers of the dumbbell heads is
called P’s axis, and the distance between the centers of these heads, denoted �, is
P’s length. Recall also that the distance between a point and a set is the distance
to its closest point within the set.

Define the Voronoi regions V (X ) = {q : dist(q, X ) ≤ dist(q, Y )} and V (Y ) =
{q : dist(q, Y ) ≤ dist(q, X )} (see Figure 14(a)). Define P’s bisector, denoted

(P) to be the points that are equidistant to X and Y , that is, 
(P) = V (X ) ∩
V (Y ). Because the sets X and Y are linearly separated (since σ > 2), it follows
from standard results on Voronoi diagrams [Preparata and Shamos 1990] that these
Voronoi regions are each connected sets and the bisector 
(P) is a connected
(d −1)-dimensional polyhedral manifold, each of whose facets lies on the bisecting
hyperplane between some pair of points x ∈ X and y ∈ Y . It follows that any line
that is parallel to P’s axis intersects 
(P) in a single point. (As the separation factor
σ increases 
(P) approaches the perpendicular bisector of the dumbbell centers.)
The following lemma presents a bound on the degree of deviation from the limiting
case as a function of σ .

LEMMA 9.1. Let P = (X, Y ) be a well-separated pair of length � with sepa-
ration factor σ > 4. Let � and �′ be two lines that are parallel to P’s axis, and
let L denote the distance between these lines. Let t and t ′ denote the respective
intersection points of � and �′ with 
(P). Then the component of the distance
between t and t ′ that is parallel to P’s axis (shown as �′ in Figure 14(c)) is at most
3L/σ .

PROOF. P’s dumbbell heads are of radius at most �/σ . By considering the cross
tangents between these heads (see Figure 14(b)) it is easy to see that the line joining
any two points x ′ ∈ X and y′ ∈ Y forms an angle with respect to P’s axis of at
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most θσ = arcsin(2/σ ). Using our hypothesis that σ > 4, we have

tan2 θσ = sin2 θσ

1 − sin2 θσ

= 4/σ 2

1 − (4/σ 2)
= 4

σ 2 − 4
<

9

σ 2
.

Thus, tan θσ < 3/σ .
As mentioned above, the facets that make up the bisector 
(P) each lie on the

(d − 1)-dimensional bisecting flat between a pair of points, one in X and the other
in Y . By the symmetry of the spherical dumbbell heads, it follows easily that each
such bisecting flat forms an angle of at least (π/2) − θσ with respect to any line
that is parallel to P’s axis.

Consider the 2-dimensional flat passing through � and �′. For the sake of illus-
tration, take these lines to be horizontal on this flat. (See Figure14(c). Note that this
2-dimensional drawing is a bit misleading since P’s axis need not lie on this flat.)
The intersection of 
(P) with this flat is a vertically monotone polyline in which
each edge forms an absolute angle of at most θσ with respect to vertical. It follows
easily that if we travel a vertical distance of L along the intersection of 
(P) with
the flat, the horizontal component of the distance (shown as �′ in the figure) cannot
exceed L tan θσ ≤ 3L/σ , as desired.

Using this lemma, we will prove a packing lemma analogous to BBD prop-
erty (iii), but restricted now just to objects that intersect the bisector of a well-
separated pair.

LEMMA 9.2. Consider a well-separated pair P = (X, Y ) with separation fac-
tor σ > 4. Let b be a ball of radius r centered at P’s dumbbell center. Then, for
any positive s, the following hold.

(i) It is possible to cover b ∩ 
(P) with O((1 + r/s)d−1) balls of radius s.
(ii) The number of BBD-tree cells of size s intersecting b∩
(P) is O((1+r/s)d−1).

(iii) The number of quadtree boxes of size s intersecting b∩
(P) is O((1+r/s)d−1).

PROOF. We begin by proving assertion (i). Let H be the (d −1)-flat that passes
through P’s dumbbell center and is orthogonal to P’s axis. Let b′ = b∩ H . Clearly,
b′ is a (d − 1)-dimensional ball of radius r , and by a simple packing argument we
can cover b′ by a collection B′ of balls centered on H each of radius s/2 (see
Figure 15(a)), such that |B′| = O((1 + r/s)d−1). For each ball of B′, consider the
line � parallel to P’s axis that passes through the center of this ball, and consider
the cylinder C� of radius s/2 centered about this line. Since the balls of B′ cover
b′, the union of these cylinders covers b.

To establish (i), it suffices to show that for each�, it is possible to cover C�∩
(P)
with O(1) balls of radius s. To see this, consider a set of points placed along �

spaced uniformly at intervals of length s
√

3, and place a ball of radius s centered
at each point (see Figure 15(b)). It is easy to verify that these balls cover C�. Let
t denote the point of intersection between 
(P) and �. Consider any other line
�′ that is parallel to � and lies within C�, and let t ′ denote its intersection with

(P). These two lines are separated by a distance of at most s/2. By Lemma 9.1,
it follows that, the component of the distance between t and t ′ along the direction
of � is at most 3(s/2)/σ < 3s/8. Therefore, a constant number of balls along
� suffice to cover C� ∩ 
(P), and this completes assertion (i). Let B denote the
resulting set of size O(|B′|) = O((1 + r/s)d−1) covering balls.
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FIG. 15. Proof of Lemma 9.2.

To establish (ii), observe that BBD property (iii) implies that the number of
BBD-tree cells of size s that intersect each ball of B is O(1 + s/s)d) = O(1).
The number of BBD-tree cells overlapping b ∩ 
(P) cannot be any larger. Finally,
to establish (iii), observe that quadtree boxes are a special case of BBD-tree cells
(without an inner box), and so BBD property (iii) can be applied here in exactly
the same way.

9.2. BISECTOR-SENSITIVE CONSTRUCTION. In this section, we modify the basic
AVD construction given in Section 6 to be sensitive to the bisector defined by each
well-separated pair. As before, the approach is to generate a subdivision whose cells
satisfy certain separation properties with respect to the points of S. The separation
properties are the same as those of Lemma 6.1 with only a couple of significant ex-
ceptions. In particular, because the construction only focuses on cells that intersect
the bisector of each well-separated pair, the separation properties will not apply to
all the points of S. We will show, however, that they do apply to the subset of S that
are the nearest neighbors of some point within the cell. This follows because the
bisector between any pair of such points must intersect the cell, and it is therefore
easy to show the bisector of any well-separated pair that separates these points
must also intersect the cell. By focusing consideration only on cells that overlap
this manifold of dimension d − 1, we will see that the dependency on γ in the
number of cells decreases from γ d to γ d−1. We let m−(n, d, γ, β) = nγ d−1 log β
denote the asymptotic bound on the number of nodes in the bisector sensitive case.
As before, when n, d, γ , and β are clear from context, we will refer to this simply
as m−. Here are our bisector-sensitive separation properties.

LEMMA 9.3. Consider real parameters β ≥ 2 and γ ≥ 2. Let S be a set of n
points in R

d , and recall that m− = m−(n, d, γ, β) = nγ d−1 log β. It is possible to
construct a BBD tree T with O(m−) = O(nγ d−1 log β) nodes, where each leaf cell
w satisfies at least one of the following three properties. Let Sw denote the subset
of points of S that are the nearest neighbor of some point in w.

(i) Sw ∩ γ bw = ∅, and hence bw is concentrically γ -separated from Sw .
(ii) |Sw ∩ w | = 1 and bw is concentrically γ -separated from Sw \ w.

(iii) There exists a ball b′
w such that Sw ∩ γ bw ⊆ b′

w and b′
w is concentrically

β-separated from w.

The remainder of this section is devoted to giving the construction and proving
these separation properties. In contrast to the basic construction given in Section 6,
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FIG. 16. Bisector-sensitive construction.

we will generate an asymptotically smaller set of boxes by concentrating only on
boxes that overlap the bisector of the well-separated pair, 
(P). We will apply
Lemma 9.2(iii) from the previous section to bound the number of boxes generated.

The bisector-sensitive construction has the same general structure as the basic
construction of Section 6. It is parameterized in terms of the given quantities β and
γ and constants c1 and c2, whose values are determined in the proof of Lemma 9.3.
As in the basic construction, we will use the convenient shorthand “quadtree boxes
of size s” to mean “quadtree boxes of size 2�log s�.”

We begin by computing a well-separated pair decomposition P for S using any
constant separation factor σ > 4. For a fixed well-separated pair P ∈ P , let � and z
denote its length and center, respectively. We compute a set of quadtree boxes U(P)
as follows. For 0 ≤ i ≤ �log(c1β)�, let bi (P) denote the ball centered at z of radius
ri ← 2i� (see Figure 16(a)). Let B(P) denote the resulting set of balls. For each
such ball bi (P), let Ui (P) be the set of quadtree boxes1 of size ri/(c2γ ) that overlap
bi (P) ∩ 
(P) (see Figure 16(b)). Let U+(P) denote the set of quadtree boxes of
size β�/d that overlap the ball of radius c1β� centered at z (see Figure 16(c)). The
boxes of U+(P) are not generated in a bisector-sensitive manner. They are needed
for technical reasons, but their number will not dominate the asymptotic bounds.
Let U(P) denote the union of all these boxes over all the O(log β) values of i
together with U+(P).

This process is performed for each well-separated pair of P . Let U =⋃
P∈P U(P) denote the union of all the boxes. To complete the construction, we

apply BBD property (ii) to construct a BBD tree T storing all these boxes.
This bisector-sensitive construction is essentially the same as the basic construc-

tion with two notable differences. First, only the boxes that overlap the bisector

(P) are generated. Second, the boxes of U+(P), which are not bisector-sensitive,
have been included. The following lemma bounds the size of the resulting BBD
tree. It is analogous to Lemma 6.2 but with the use of m− = nγ d−1 log β.

1 Since we will not discuss preprocessing time, we will simply assume the existence of an oracle
that computes these covering boxes. It can be shown that, if we have access to an oracle that answers
approximate nearest neighbor queries for the points lying within each of the dumbbell heads, it is
possible to efficiently construct a slightly larger superset of the quadtree boxes that cover the bisector

(P). Once these covering quadtree boxes have been determined, the construction follows in a manner
analogous to that of Section 6.
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LEMMA 9.4. This BBD-tree construction runs in O(m− log m−) time and gen-
erates O(m−) nodes.

PROOF. Since Ui (P) is the set of quadtree boxes of size ri/(c2γ ) that overlap
bi (P) ∩ 
(P) and since the radius of bi (P) is ri , by Lemma 9.2(iii), we have
|Ui (P)| = O((1+γ )d−1). The size of U+(P) is bounded by the number of quadtree
boxes of size β�/d that overlap the ball of radius c1β�. By a standard packing
argument, this is O((1 + (c1β�)/(β�/d))d) = O(1). Since the number of balls
for each well-separated pair is O(log β), the total number of boxes in U(P) is
O(γ d−1 log β).

The total number of well-separated pairs is O(n), and thus |U | = O(nγ d−1 log β).
Recalling our definition of m− above, |U | = O(m−). By BBD property (ii), the
number of nodes of T is O(|U |) = O(m−), and it can be constructed in time
O(m− log m−).

We now present the proof of Lemma 9.3 by showing that the BBD tree T produced
by this construction satisfies the desired separation properties.

PROOF OF LEMMA 9.3. We have just shown that the BBD tree T resulting from
the above construction satisfies the size and construction time bounds. It suffices to
show that for all suitably large constants c1 and c2, T possesses the stated separation
properties.

The proof follows the same structure as that of Lemma 6.1, and so we fo-
cus principally on the differences between the two. In particular, we use the
prior observation that any cell generated by the old construction for a given
well-separated pair P will also be generated by this construction if it overlaps

(P).

Let w be any leaf cell of T . Following the proof of Lemma 6.1, we consider
cases based on the relationship between the points of S lying within 2γ bw , but here
we focus attention not on S but on the points of Sw , which are nearest neighbors of
some point in w . (In fact, this proof works for γ bw , but we continue to use 2γ bw
for the sake of symmetry.)

First, if Sw ∩ 2γ bw = ∅, then (i) trivially holds. Thus, for the remainder of
the proof we assume that Sw ∩ 2γ bw is nonempty, and we let x be any point of
Sw ∩ 2γ bw . If x is the only point of Sw in 2γ bw , as in the proof of Lemma 6.1,
either x ∈ w , implying that (ii) holds, or x /∈ w , implying that (iii) holds for any
sufficiently small ball centered at x .

Henceforth, we may assume that x is not the only point of Sw in 2γ bw . Let y be
the point of Sw ∩ 2γ bw that is farthest from x . Let r ′

w = ‖xy‖, and let b′
w be the

ball of radius r ′
w centered at x (see Figure 17). Clearly, any point of Sw ∩ γ bw is

contained within b′
w .

It suffices to show that b′
w satisfies separation property (iii). To this end, consider

the dumbbell P = (X, Y ) ∈ P that separates points x and y. Let � denote the length
of this dumbbell, and let z denote its center. Throughout, we will make use of the
following inequalities, which follow from Lemma 3.1 and the fact that σ > 4:
‖xz‖ < �, � < 2‖xy‖, and � > ‖xy‖/2.

First, we assert that the bisector 
(P) intersects w . Since x, y ∈ Sw , they are
the nearest neighbors of some points qx and qy , respectively, in w (see Figure 17).
BBD-tree cells are connected (although they are not necessarily convex), which
implies that there is a path from qx to qy lying entirely within w . It follows from a
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FIG. 17. Proof of AVD separation properties for the bisector-sensitive construction.

simple continuity argument that on any such path there is at least one point t that
is equidistant from X and Y , that is, t ∈ w ∩ 
(P). Let L = ‖zt‖.

We distinguish cases based on the relationship between L and �.

Case 1 (L > c1β�). We will show that separation property (iii) holds. We first
assert that dist(z, w) > c1β�/2. To see this, observe that if w does not overlap
the ball of radius c1β� centered at z, then clearly dist(z, w) > c1β� > c1β�/2.
Otherwise, since our construction generates all quadtree boxes of size β�/d that
overlap this ball (from U+(P)), it follows that sw ≤ β�/d. Thus, by the triangle
inequality we have

dist(z, w) ≥ ‖zt‖ − diam(w) ≥ L − sw d > c1β� − β�.

Choosing c1 ≥ 2 implies that dist(z, w) > c1β�/2, as desired. Given this assertion,
and arguing as in Case 1 of Lemma 6.1, we obtain

dist(x, w) ≥ dist(z, w) − ‖xz‖ >
c1β�

2
− �

>

(
c1β

2
− 1

) ‖xy‖
2

=
(

c1β

4
− 1

2

)
r ′

w .

Since β ≥ 2, for all sufficiently large constants c1 this exceeds βr ′
w , which implies

that b′
w is concentrically β-separated from w , as desired.

Case 2 (L ≤ c1β�). We adapt the argument presented in Case 2 of Lemma 6.1
to show that this case cannot occur, since otherwise the dumbbell P would have
caused w to be split. Since x , y, and t are all contained in the ball 2γ bw , we have
both ‖xt‖ ≤ 4γ rw and � < 2‖xy‖ ≤ 2(4γ rw ) = 8γ rw . Thus, by the triangle
inequality, we have

L = ‖zt‖ ≤ ‖xz‖ + ‖xt‖ < � + 4γ rw < 8γ rw + 4γ rw = 12γ rw .

Because L ≤ c1β�, it follows from our construction that there is a ball of B(P)
that overlaps t . Let b denote the smallest such ball, and let r denote its radius. By
our construction we have r ≤ max(�, 2L). Since our construction generates all
quadtree boxes of size r/(c2γ ) that overlap b ∩
(P), it follows that sw ≤ r/(c2γ ),
and so

rw = sw d ≤ rd
c2γ

≤ max(�, 2L)d
c2γ

<
(24γ rw )d

c2γ
= 24rw d

c2
.

Choosing c2 ≥ 24d yields the desired contradiction.
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Now that we have shown that the leaf cells of T satisfy the basic separation
properties, it is also useful to observe that each such cell is not too far away from
its closest point of S. This fact, which is analogous to Lemma 6.3 for the basic
construction, will be useful in bounding the distance to the nearest neighbor of any
point of the cell.

LEMMA 9.5. The BBD tree of Lemma 9.3 satisfies the property that there exists
a constant c > 1 such that for any leaf cell w of this tree the ball cγ bw contains at
least one point of S.

PROOF. As in Lemma 6.3, let v be the quadtree box that has twice the size of w
and contains w . There must be a dumbbell P ∈ P that generated a quadtree box u
that is smaller and contained within v . Let b be the ball responsible for generating
u in the construction, and let z and r denote the center and radius of b, respectively.
(It may be helpful to recall Figure 10 from Section 6.)

Recall from our construction that b overlaps u. If b ∈ B(P), then as argued in
Lemma 6.3 we have dist(z, u) ≤ r ≤ 2c2γ su . Otherwise, u ∈ U+(P). For this to
occur, b has radius r = c1β� and su ≥ β�/(2d), where � denotes the length of P .
Since γ ≥ 2 we have dist(z, u) ≤ r ≤ c1(2d)su ≤ c1dγ su . Thus, in either case, we
have dist(z, u) ≤ r ≤ max(2c2, c1d)γ su . Let p denote any point of S in a head of
P . Arguing exactly as in Lemma 6.3, but with this new bound on r , we can easily
show that the ball cγ bw contains p for any constant c ≥ 1 + max(4c2/d, 2c1).

9.3. BOUNDING TOTAL SPACE IN THE BISECTOR-SENSITIVE CASE. In this sec-
tion we describe how to apply spatial amortization to bound the total number of
nearest-neighbor representatives for our bisector-sensitive construction, and hence
to bound the total space of the AVD. This section follows the same general structure
as Section 8, but now in the context of the bisector-sensitive construction. In the
analysis of the basic construction, for each cell w , we considered all the nonempty
quadtree boxes of a certain size that were sufficiently close to w as being eligible for
providing a representative. Here, we will be more economical and instead consider
only quadtree boxes that contain a point of S that is the nearest neighbor of some
query point lying within w . We shall see that if a well-separated pair separates two
such points, then its bisector intersects the cell. As in the previous section, we will
use the fact that the bisector is a (d −1)-dimensional manifold in order to produce a
tighter bound on the number of representatives. We begin with a bisector-sensitive
variant of Lemma 7.3.

LEMMA 9.6 (BISECTOR-SENSITIVE SPATIAL AMORTIZATION). Let S be a set of
n points in R

d , and let W be the leaf cells of a BBD-tree decomposition. Let ρ ≥ 1
and 0 < δ ≤ 1 be two real parameters. For each w ∈ W , let Uw be the set of
quadtree boxes of size δρrw that overlap ρbw and contain at least one point of S
that is the nearest neighbor of some query point in w. Then∑

w∈W
|Uw | = O

(
nρd−1 log

1

δ
+ |W|

)
.

PROOF. The proof follows the general framework of Lemma 7.3. Recall from
Section 7 that a charging scheme is a process in which each dumbbell of a WSPD
allocates a unit charge to a subset of cells of W . For each w ∈ W , some subset of
dumbbells are declared to be useful for w . A charging scheme is said to be valid
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FIG. 18. Proof of bisector-sensitive spatial amortization.

if, for any w ∈ W , all w’s useful dumbbells allocate a unit charge to w . We will
present a charging scheme in this context and establish its validity.

Let c1 and c2 be two constants, both assumed to be suitably large. LetP be the set
of dumbbells corresponding to the WSPD for S, assuming any constant separation
factor greater than 4. Each dumbbell P ∈ P allocates a unit charge to some of the
cells of W according to the following charging scheme. Let � denote P’s length,
and let z denote its center. Let B(P) denote the set of balls of radii ri = 2i� centered
at z, for 0 ≤ i ≤ �log(c1/δ)�. Let bi (P) denote the ball of B(P) of radius ri , and
let Wi (P) ⊆ W be the set of cells overlapping bi (P) ∩ 
(P) that have size at least
ri/(c2ρ) (see Figure 18(a)). Dumbbell P allocates a unit charge to all the cells of
the set

⋃
bi (P)∈B(P) Wi (P).

By Lemma 9.2(ii), it follows that |Wi (P)| = O((1 + ri/(ri/c2ρ))d−1) =
O(ρd−1). Thus, the number of cells charged by P is

�log(c1/δ)�∑
i=0

|Wi (P)| = O
(

ρd−1 log
1

δ

)
.

Since |P| = O(n), the total number of charges allocated to all the cells of W is
� = O(nρd−1 log(1/δ)). Below, we will show that this charging scheme is valid,
and it will then follow from Lemma 7.2 that

∑
w |Uw | = O(nρd−1 log(1/δ)+|W|),

as desired.
To establish the validity of this charging scheme, let Sw be the subset of points of

S that lie within some box of Uw and that are the nearest neighbor of some point in
w . Let s ′

w = δρrw be the size of the quadtree boxes of Uw . Let Pw denote the subset
of dumbbells that separate some pair of points x, y ∈ Sw such that ‖xy‖ ≥ s ′

w .
These are the useful dumbbells for w .

It suffices to show that each dumbbell P ∈ Pw charges w . By definition of Sw ,
each P ∈ Pw separates a pair x, y ∈ S, such that these two points are the nearest
neighbors of two respective points qx , qy ∈ w (see Figure 18(b)). By a simple
continuity argument, 
(P) intersects any path from qx and qy , and since BBD-
tree cells are connected, it follows that 
(P) intersects w . Let t be any point in
w ∩
(P). Let � denote P’s length, and let z be its center. The argument given in the
last two paragraphs of the proof of Lemma 7.3 shows that there is a ball b ∈ B(P)
of radius r such that b overlaps t , and the size of w is at least r/(c2ρ). (The only
additional element here is that t lies on 
(P).) Clearly, w overlaps b ∩ 
(P) since
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FIG. 19. Computing the outer representatives for the cell w in the bisector-sensitive case. Filled black
points are the nearest neighbor of some point in w , whereas hollow points are not. Square points,
either filled or hollow, are the points of O ′

w .

t ∈ w ∩ 
(P). It follows that w receives a charge from P , which establishes the
validity of the charging scheme and completes the proof.

We are now in a position to apply spatial amortization to bound the total num-
ber of nearest-neighbor representatives. To begin, we apply the bisector-sensitive
construction of Lemma 9.3 to build a BBD tree T , where the parameter β has been
chosen to be 16/ε. As usual, let W denote the subdivision induced by the leaf cells
of T . By this lemma we know that |W| = O(nγ d−1 log(1/ε)). As we did in this
lemma, let m− = m−(n, d, γ, β) = nγ d−1 log(1/ε) denote this asymptotic bound.
(Just as in Section 8, we may ignore the factor of 16 to simplify the expression,
since m− will only be used in asymptotic expressions.)

As before, our goal is to compute an ε-representative set for each cell w ∈ W ,
that is, a subset Rw ⊆ S such that for any query point q ∈ w , its nearest neighbor
in Rw is an ε-approximation to its nearest neighbor in S. The principal lemma is
given below.

LEMMA 9.7. Let 0 < ε ≤ 1/2 and 2 ≤ γ ≤ 1/ε be two real parameters. Let S
be a set of n points in R

d , and let T be the BBD tree described above. Let W denote
T ’s leaf cells. Then, for each cell w ∈ W , there exists an ε-representative set Rw
for w, such that |Rw | = O(1/(εγ )(d−1)/2). The total number of representatives over
all the cells is O(m−) = O(nγ d−1 log(1/ε)).

The remainder of this section is devoted to proving this lemma. Throughout, let
ε, γ , S, n, W , and m− be as specified in the statement of the above lemma, and
let w be any cell of W . As mentioned in the comments following the statement of
Lemma 8.1 in Section 8, there are three possible sources for the ε-nearest neighbor
representatives, but the only nontrival case are the representatives lying outside the
ball γ bw , called the outer representatives and denoted by Ow .

By Lemma 9.5, there is a constant c > 1 such that the ball cγ bw contains at least
one point of S, and therefore the outer representatives may be assumed to lie within
the annulus Aw = (cγ + 1)bw \ γ bw . For some suitably large constant c1 (to be
defined later), let Uw denote the set of nonempty quadtree boxes of size εγ rw/c1
overlapping Aw that contain at least one point of S such that this point is the nearest
neighbor of some query point in w (see Figure 19).

Journal of the ACM, Vol. 57, No. 1, Article 1, Publication date: November 2009.



1:36 S. ARYA ET AL.

As in Section 8, our approach will be to construct an initial set O ′
w of represen-

tatives, which will be larger than needed, and then prune this set to the desired set
Ow . For each u ∈ Uw , let pu be any point of S ∩ u. (Note that pu need not be in
Sw .) Let O ′

w = ⋃
u∈Uw

{pu} (see Figure 19). The boxes of Uw and the points pu
satisfy the conditions essential to the proof of Lemma 8.2. (In particular, they are
of the same size, overlap the same annulus, and each point of S ∩ γ bw that is the
nearest neighbor of some point in w lies within one of these boxes.) Therefore, the
proof of Lemma 8.2 can be applied here as well to show that O ′

w is an (ε/4)-outer
representative set for w . We can now apply the bisector-sensitive version of spatial
amortization to produce the following analog to Lemma 8.3, which bounds the total
number of representatives of O ′

w over all the cells of the BBD tree with respect to
the tighter m− bound.

LEMMA 9.8. For each cell w ∈ W , let O ′
w be the set of representatives defined

above. Then
∑

w |O ′
w | = O(m−).

PROOF. The proof is identical to that of Lemma 8.3 except that we invoke
Lemma 9.6 in place of Lemma 7.3.

The rest of the construction, which involves pruning the set O ′
w down to Ow ,

follows from exactly the same construction given in Section 8, just after the proof
of Lemma 8.3, but using m− in place of m. This completes the proof of Lemma 9.7.

Summarizing, we have the following (existential) bisector-sensitive improvement
to the AVD Theorem (Theorem 8.4).

THEOREM 9.9. Let S be a set of n points in R
d , and let 0 < ε ≤ 1/2 and

2 ≤ γ ≤ 1/ε be two real parameters. Let m− = nγ d−1 log(1/ε). There exists a
(t, ε)-AVD, where t = O(1/(εγ )(d−1)/2), of space O(m−) that can answer ε-NN
queries in time O(log(nγ ) + t).

The space bounds of Corollary 8.5 can be improved as well. The difference is
only reflected in the high-space case of γ = 1/ε, which we present below.

COROLLARY 9.10. Let S be a set of n points in R
d , and let 0 < ε ≤ 1/2. Let

m ′′ = (n/εd−1) log(1/ε). There exists a (O(1), ε)-AVD of space O(m ′′) that can
answer ε-NN queries in time O(log(n/ε)).

By the same reasoning that we presented following Corollary 8.5, we can reduce
the number of representatives per cell from O(1) to 1. Owing to the additional
complexities of the construction, we do not know whether it is possible to eliminate
the logarithmic factor in the space bounds entirely. However, by applying the same
methods mentioned at the end of Section 8 it is possible to reduce this factor
in Theorem 9.9 from log(1/ε) to log min(1/(εγ ), γ ) [Arya et al. 2002]. Thus, in
Corollary 9.10, the log factor can be eliminated altogether from the space bound.

10. Lower Bounds

In this section, we present a lower bound on the space requirements of an AVD. Our
main result, presented in Theorem 10.5 in Section 10.3, provides a lower bound
on the total space of any (t, ε)-AVD for a set of n sites for a given approximation
bound ε and desired number of representatives t . We establish our lower bounds
in a simpler and more general model, which we call covering AVDs, in which cells
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are allowed to overlap each other and may generally be fat axis-aligned rectangles
(rather than quadtree boxes). We will show that our lower bounds are nearly tight
with respect to our upper bounds of Sections 8 and 9. Further, in Corollary 10.6, we
will contrast the ratio between our upper and lower bounds throughout the range
of space-time tradeoffs.

This section is organized as follows. In Section 10.1, we introduce the covering
AVD model; in Section 10.2, we present a couple of technical results; and finally
in Section 10.3, we present and analyze the lower bound construction.

10.1. COVERING AVDS. Throughout, we use the term rectangle to denote an
axis-aligned d-dimensional hyperrectangle, that is, the Cartesian product of d closed
intervals on the coordinate axes. We assume that the side lengths of such a rectangle,
that is, the lengths of these coordinate intervals, are strictly positive. A rectangle’s
aspect ratio is the ratio between its longest and shortest side lengths. Given ϕ ≥ 1,
a rectangle is ϕ-fat if its aspect ratio is at most ϕ. When the value of ϕ is clear from
context we will simply use the term fat.

The AVD that has been presented in our earlier constructions is a subdivision
of space into BBD-tree cells, each of which is a quadtree box or the set-theoretic
difference of two quadtree boxes. One of the advantages of such a subdivision is
the ability to rapidly determine the leaf cell containing any query point. However,
the nonconvexity of the cells resulting from inner boxes is a messy element, which
we would prefer to avoid. Thus, it will be convenient to establish our lower bounds
in a somewhat simpler model. Given a finite set of sites S in R

d , a positive integer
parameter t ≥ 1, a parameter ε > 0, and constant ϕ ≥ 1, we define a (t, ε, ϕ)-
covering AVD to be a collection of rectangles, again called cells, that are ϕ-fat and
cover the convex hull of S. Each such cell w is associated with an ε-representative
set for w with respect to S, whose cardinality is at most t . (It follows that if multiple
rectangles intersect, they must all store representatives for query points lying in the
region of intersection.) This model is both cleaner (since inner boxes are eliminated)
and more general (since we allow cells to overlap and do not demand that they be
quadtree boxes). As with standard AVDs, the space of a covering AVD is defined to
be the total number of representatives summed over all its cells. Unlike the AVDs
of our upper bounds, we do not assume the existence of a structure for determining
a rectangle containing the query point. Also, we require that the cells cover just
the convex hull of S, whereas our upper bound AVDs cover a region whose size is
larger by a factor of �(1/ε).

The AVDs that we have presented in our earlier BBD-tree constructions are not
of this type, but we show in the lemma below that it is possible to cover any BBD-
tree cell by a constant number of 3-fat rectangles. This implies that we can convert
any (t, ε)-AVD into a (t, ε, 3)-covering AVD whose space is larger by at most a
constant factor. Thus the asymptotic lower bounds on space that we will establish
for covering AVDs will apply to standard AVDs as well. The proof appears in
Appendix B.

LEMMA 10.1. It is possible to cover any BBD-tree cell in R
d by a set of at most

2d closed axis-aligned rectangles, each of aspect ratio at most 3.

For the rest of the lower bound analysis, we will consider covering AVDs in-
volving cells that are fat rectangles. Since the aspect ratio bound ϕ will only af-
fect the constant factors, we will henceforth use the terminology (t, ε)-covering
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AVD to denote any (t, ε, ϕ)-covering AVD, where ϕ is bounded above by some
constant.

10.2. TECHNICAL PRELIMINARIES. Our lower bound construction is parameter-
ized by the number of sites n, the dimension d, the approximation factor ε > 0, and
the maximum number t of representatives per cell. Intuitively, in order to force the
space to be large we should create regions of space in which there are more than
t contenders for the nearest neighbor, thus forcing us to create many AVD cells
to cover this region. Consider a linear subspace K of some dimension k, and let
K ′ denote its (d − k)-dimensional orthogonal complement. If we place t + 1 sites
on K ′ at unit distance from the origin, then every point of K is equidistant to all
these sites. Since we are limited to using t representatives per cell, we shall argue
that this will force us to use many cells in order to process query points that are
sufficiently close to both K and the origin. We will then use this to drive a packing
argument, by showing that no cell of the AVD that is close to the origin can have a
large intersection with K . Given such a configuration of sites, the final construction
(which is described in Section 10.3) involves generating roughly n/(t + 1) widely
distributed copies of this configuration. Our construction will take the dimension
k as a parameter, and later we will determine the value of k that produces the best
lower bound as a function of d, ε and t .

In order to carry out this plan, it will be desirable that any cell of the AVD that has
a large intersection with K contains a large ball centered on K , and hence requires
many representatives to handle query points in this ball. The following lemma
formalizes this observation by showing that for any k, there exists a k-dimensional
linear subspace with this property. It is proved in the more general context of fat
rectangles. Let diam(U ) denote the diameter of a given geometric set U . The proof
appears in Appendix B.

LEMMA 10.2. For any integer k and real ϕ, where 1 ≤ k ≤ d − 1 and ϕ ≥ 1,
there exists a k-dimensional linear subspace K ⊂ R

d and a positive real c < 1
(depending on d and ϕ), such that for any ϕ-fat (axis-aligned) rectangle R that has
a nonempty intersection with K , there is a ball of radius at least c · diam(K ∩ R)
contained in R that is centered on K .

The next step in our plan is to show that any AVD cell that has a large diameter
of intersection with K within the unit ball requires many nearest-neighbor repre-
sentatives. The previous lemma implies that such a cell must contain a large ball
centered on K . The following lemma shows that any sufficiently large ball that is
sufficiently close to the origin requires many representatives. Given any β > 0 a
set is said to be β-sparse if any pair of points of the set are separated by a distance
of at least β.

LEMMA 10.3. Given 0 ≤ k ≤ d − 1, 0 < ε ≤ 1, and 0 < β ≤ 2, let K be a
linear k-dimensional subspace, and let K ′ be its (d − k)-dimensional orthogonal
complement. Let S be a β-sparse set of sites on K ′ all at unit distance from the origin.
Let b be a ball centered on K whose center is within unit distance of the origin,
and whose radius is at least 7ε/β2. Then, any ε-nearest neighbor representative
set for b with respect to S must contain all the sites of S.

PROOF. We first clarify that when k = 0, K consists of the origin, and the ball
b is necessarily centered at the origin. Also, when k = d − 1, K ′ degenerates to a
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FIG. 20. Proof of Lemma 10.3.

line, and the only nontrivial β-sparse set consists of two sites, each at unit distance
from the origin along K ′.

To show that every point of S must be included in any ε-representative set, it
suffices to show that:

∀p ∈ S, ∃q ∈ b, such that ∀p′ ∈ S \ {p}, ‖qp′‖ > ‖qp‖(1 + ε). (1)

Fix any p ∈ S, and let p′ be any point of S \ {p}. Let α denote b’s radius, let z
denote the center of b, and let h ≤ 1 denote the distance from z to the origin (see
Figure 20(a)). The distance of each point of S to z is at most 1 + h ≤ 2. If α > 2,
every point of S (and p in particular) lies within b. By setting q = p, Eq. (1) holds
irrespective of ε. Thus, we may assume henceforth that α ≤ 2.

Let Sα be the point set resulting by scaling the coordinates of each point of S
by α. Thus, the points of Sα lie on a (d − k − 1)-sphere of radius α centered at
the origin. Let Sα + z denote the translate of Sα by z. Clearly, the points of Sα + z
lie within the ball b. Given any p ∈ S, let q ′ = αp be the corresponding point
of Sα and let q = q ′ + z be the corresponding point of Sα + z. Clearly,

−→
qq ′ ∈ K

and
−→
q ′ p ∈ K ′, and so −→qp can be expressed as the sum of these orthogonal vectors.

Thus,

‖qp‖2 = ‖qq ′‖2 + ‖q ′ p‖2 = h2 + (1 − α)2 = h2 + 1 + α2 − 2α. (2)

Because h ≤ 1 and α ≤ 2, the above quantity is at most 2.
Recall that p′ is any point of S \ {p}. Given vectors −→u and −→v , let ‖−→u ‖ denote

the Euclidean length of −→u , let (−→u · −→v ) denote their dot product, and let o denote
the origin. By basic vector analysis (see Figures 20(a) and 20(b)) and the fact that
‖−→u + −→v ‖2 = ‖−→u ‖2 + 2(−→u · −→v ) + ‖−→v ‖2, we have

‖qp′‖2 − ‖qp‖2 = ‖−→qo + −→op ′‖2 − ‖−→qo + −→op‖2

= 2
(−→qo · (−→op ′ − −→op

))
(since ‖op‖2 = ‖op′‖2)

= 2
(−→qo · −→pp′) = 2

(−→
q ′o · −→pp′

)
(since −→qq ′ is orthogonal to −→pp′)

= 2 · ‖q ′o‖ · ‖pp′‖ · cos φ,
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where φ is the angle between
−→
q ′o and −→pp′, which is equal to ∠opp′. Since ‖op‖ =

‖op′‖ = 1, it follows that cos φ = ‖pp′‖/2. Also ‖oq ′‖ = α and ‖pp′‖ ≥ β, and
so we have

‖qp′‖2 − ‖qp‖2 = 2 · ‖oq ′‖ · ‖pp′‖2

2
≥ αβ2 ≥

(
7ε

β2

)
β2 > 6ε.

Since ε ≤ 1 and ‖qp‖2 ≤ 2, we have 6 ≥ (2 + ε)‖qp‖2. This yields ‖qp′‖2 −
‖qp‖2 > (2 + ε)‖qp‖2ε, which implies that

‖qp′‖2 > ‖qp‖2 + ‖qp‖2(2ε + ε2) = ‖qp‖2(1 + ε)2.

By taking square roots of both sides we see that Eq. (1) holds, and this completes
the proof.

10.3. LOWER-BOUND CONSTRUCTION. We are now ready to present the lower-
bound construction. Recall that 0 < ε ≤ 1 is the approximation factor, and t
is the maximum number of representatives per cell. Let 0 ≤ k ≤ d − 1 be an
integer parameter whose value will be fixed later. If k = 0, let K be the origin
and let K ′ = R

d . Otherwise, let K be the k-dimensional linear subspace given
by Lemma 10.2, and let K ′ be its (d − k)-dimensional orthogonal complement.
Consider the (d − k − 1)-dimensional sphere consisting of the points of K ′ that
are at unit distance from the origin. If 0 ≤ k ≤ d − 2, then for all sufficiently
small β (depending on k and t) there exists a β-sparse set on this sphere consisting
of t + 1 sites. By a straightforward packing argument such a set exists for β =
�

(
1/t1/(d−k−1)

)
. If k = d − 1, K ′ degenerates to a line, and the only nontrivial

β-sparse set consists of two sites, each at unit distance from the origin along K ′. In
this case, we require that t = 1, and observe that for β = 2 there is a β-sparse set
of size t + 1. In either case, let S′ be a set of sites consisting of such a β-sparse set.

We create �(n − (d + 1))/(t + 1)� = �(n/t) translated copies of S′, where the
translation vectors are drawn from K , and the minimum distance between any two
copies is any sufficiently large constant, which we denote by L . (See Figure 21(a).)
Finally, we add (d + 1) points sufficiently far away so that the convex hull of these
points contains a unit ball centered about each translate. (Recall that a covering AVD
is required to contain the convex hull of the set of sites. These d + 1 points have
been added to ensure that the covering AVD will contain not only the translates, but
a local region around each one in order for us to apply Lemma 10.3.) Let S denote
the resulting set of at most n sites. Except for the final d + 1 points, all of the sites
of S are equidistant to any point of K . We will exploit this fact to establish a lower
bound on the total space of any covering AVD for S.

LEMMA 10.4. Given integers k and t such that either (a) 0 ≤ k ≤ d − 2 and
t ≥ 1 or (b) k = d − 1 and t = 1, let S be the point set given in the above
construction. Then, for 0 < ε ≤ 1, any (t, ε)-covering AVD for S requires space

�

(
n

(
1

ε t2/(d−k−1)

)k
)

,

in case (a) and space �(n/εd−1) in case (b).

PROOF. Irrespective of ε, k, and t , any AVD for n sites naively requires �(n)
space. If either k = 0 or t = �

(
1/ε(d−k−1)/2

)
, the stated formula provides a bound
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FIG. 21. Lower bound construction (not to scale).

that is no better. Thus, we may assume that k ≥ 1 and t is asymptotically strictly
smaller than 1/ε(d−k−1)/2. Recall the constant 0 < c < 1 from Lemma 10.2 and the
sparseness parameter β in the definition of S. In addition, we define the following
three quantities:

α = 7ε

β2
, α′ = 2α

c
, and r = 1

3
√

d
.

Clearly, 2α < α′ and r < 1. We may assume that α′ < 2r , since otherwise it
would follow that β ≤ (21ε

√
d/c)1/2 = O(ε1/2), which in turn would imply that

t = �
(
1/ε(d−k−1)/2

)
, thus leading to the trivial �(n) lower bound.

Our proof is based on generating a collection of sparsely placed balls, showing
that no AVD cell can overlap two or more of these balls, and then bounding the
space of the AVD cells that overlap each of these balls. Let Z ′ be a maximal α′-
sparse set of points that lie within the intersection of a ball of radius r centered
at the origin and the k-dimensional linear subspace K (shown as hollow points
in Figure 21(b)). By a standard packing argument the number of points of Z ′ is
�((r/α′)k) = �(1/αk). Let Z be the set that results by making translated copies of
the points of Z ′ in exactly the same manner that was used to generate S from each
copy S′. Let BZ ′ be a collection of balls, each of radius α, centered at the points
of Z ′ (shown as shaded balls in Figure 21(b)), and let BZ be the union of these
balls over all the translated copies. Because 2α < α′ the balls of BZ ′ are pairwise
disjoint. Also, by making the separation distance L between translates a sufficiently
large constant, the balls of any two translates are disjoint. It is easy to verify that
the balls of BZ ′ are contained within a unit ball centered at the origin, from which
it follows that they are contained within the convex hull of S. Thus, the cells of any
covering AVD of S must cover all the balls of BZ .

It is easy to see that for any ε ≤ 1 and L sufficiently large, the approximate nearest
neighbor of any query point lying in a ball of BZ ′ must lie in the corresponding
copy S′. Because the points of Z ′ are within distance r ≤ 1 of the origin and of
radius α = 7ε/β2, by Lemma 10.3, it follows that each ball of BZ ′ requires all t +1
points of S′ to form its ε-representative set. Thus, the union of cells of the AVD
that intersect any ball b ∈ BZ must together have at least t + 1 representatives, and
so the total space for these cells is �(t). Assuming for now that no cell of the AVD
can intersect two or more balls of BZ , it follows that the total space required is at
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FIG. 22. Proof of Lemma 10.4.

least

�(t · |Z |) = �
(

t
(n

t

) ∣∣Z ′∣∣) = �
( n
αk

)
= �

(
n

(
β2

ε

)k
)

.

In case (b) (k = d − 1), we have β = 2, and this is �(n/εd−1). Otherwise, in
case (a), (0 ≤ k ≤ d − 2), this is �

(
n(1/(ε t2/(d−k−1)))k

)
, as desired.

To complete the proof, it suffices to establish the assertion that no cell of a (t, ε)-
covering AVD can intersect two or more balls of BZ . Suppose to the contrary that
there was such a cell w . Let z1, z′

2 ∈ Z denote the centers of these balls. Irrespective
of whether z1 and z′

2 arise from the same or different translated copies of Z ′, we
have ‖z1z′

2‖ ≥ α′. Consider the line segment z1z′
2. Let z2 be the point along this

segment at distance α′ from z1. Clearly, both z1 and z2 lie on K , they are separated
by distance α′ ≤ 2r , and (since cells are convex) the balls of radius α centered at
these points both intersect w (see Figure 22(a)).

Since all translated copies are identical, we may assume without loss of generality
that z1 ∈ Z ′. Let w ′ denote the rectangle that results by expanding w by translating
each of bounding facets outwards by distance α (see Figure 22(a)). It is easy to
see that w ′ has an aspect ratio no greater than w , and it contains both z1 and z2.
Every coordinate of the vector −→z1z2 is of absolute value at most α′ ≤ 2r . It follows
that there exists a fat rectangle w ′′ ⊆ w ′ of diameter at most 2r

√
d that contains

both z1 and z2 (see Figure 22(b)). (To see this, observe that there exists a rectangle
nested within w ′ containing z1 and z2 whose j th side length is the minimum of 2r
and the corresponding side length of w ′. Clearly, the aspect ratio of this rectangle
is not greater than that of w ′, and its sides are all of length at most 2r .) Since z1
lies within distance r of the origin, it follows that every point of this rectangle
lies within distance r + 2r

√
d ≤ 3r

√
d = 1 of the origin. By our hypothesis that

1 ≤ k ≤ d − 1 and applying Lemma 10.2, there is a ball b′ of radius c α′ = 2α that
lies within w ′′ and is centered on K (see Figure 22(b)). By translating the faces of
w ′′ inwards by α, it follows that w contains a ball b of radius 2α − α = α that is
centered on K at a point within unit distance of the origin (see Figure 22(c)). By
Lemma 10.3, such a ball would require all t + 1 points of S′ as representatives,
contradicting the hypothesis that w is a cell of a (t, ε)-covering AVD.

Considering the case 0 ≤ k ≤ d −2 for now, let Ld,n,t,ε(k) = n(1/(εt2/(d−k−1)))k

denote the asymptotic lower bound of the previous lemma as a function of k. For
a given number of per-cell representatives t , we wish to determine the value of k
that produces the best lower bound. Since our interest is in representatives ranging
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from 1 = 1/ε0 up to 1/ε(d−1)/2, it will be convenient to substitute the variable t
with a variable τ , where 0 ≤ τ ≤ 1, so that the number of representatives per cell
is t(τ ) = 1/ε(1−τ )2(d−1)/2. (That is, τ = 1 − √−(2 ln t)/((d − 1) ln ε).) With this
substitution, we have

Ld,n,τ,ε(k) = n
(

1

ε

)k
(

1 − (d−1)(1−τ )2

d−k−1

)
.

To derive the best lower bound for a fixed value of τ , we select k to maximize the
exponent. Setting the derivative to zero yields k = (d − 1)τ . The value of τ must
be chosen so that k is an integer in the range 0 ≤ k ≤ d − 2, which holds if τ is of
the form j/(d − 1) for 0 ≤ j ≤ d − 2. Using this value of k, the exponent in the
lower bound is

k
(

1 − (d − 1)(1 − τ )2

d − k − 1

)
= (d − 1)τ

(
1 − (d − 1)(1 − τ )2

(d − 1) − (d − 1)τ

)
= (d − 1)τ 2.

Substituting this exponent into Ld,n,τ,ε(k), we obtain a lower bound of

�

(
n

(
1

ε

)(d−1)τ 2)

on the space of the AVD.
On the other hand, if k = d − 1, we have assumed that t = 1, and the previous

lemma shows that there is a lower bound of �(n(1/ε)d−1). Note that, by setting
τ = 1, this arises nicely as a special case of the previous bound.

THEOREM 10.5. Given a number of sites n, approximation bound 0 < ε ≤ 1,
and parameter τ of the form j/(d − 1), for 0 ≤ j ≤ d − 1, there exists a set of n
sites S in R

d such that any (t, ε)-covering AVD for S requires space at least

�

(
n

(
1

ε

)(d−1)τ 2)
, where t =

(
1

ε

) (1−τ )2(d−1)
2

.

At one extreme, τ = 0, the number of representatives per cell is t = 1/ε(d−1)/2,
and the total space is �(n). At the other extreme, τ = 1, the number of represen-
tatives per cell is t = 1, and the total space is �

(
n/ε(d−1)

)
. Both of these bounds

match the upper bounds given in Corollaries 8.5(i) and 9.10, respectively, up to a
factor of O(log(1/ε)). (Recall that lower bounds on covering AVDs hold for stan-
dard AVDs as well.) Because of the quadratic dependence on τ , the lower bound
differs from the upper bound between these extremes, and their ratio is bounded in
the following lemma.

COROLLARY 10.6. Given n, ε, and τ as in Theorem 10.5, the ratio between the
upper bound provided in Theorem 9.9 and the lower bound of Theorem 10.5 is

O

((
1

ε

)2(d−1)τ (1−τ )

log
1

ε

)
.

PROOF. Recall that for any γ , 2 ≤ γ ≤ 1/ε, the construction of Theorem 9.9
generates an AVD of space O(nγ d−1 log(1/ε)) with O(1/(εγ )(d−1)/2) representa-
tives per cell. To achieve the desired number t = (1/ε)(1−τ )2(d−1)/2 representatives
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per cell, we set γ = c/ετ (2−τ ), for a suitable constant c. (When τ = 0, we have
γ = c, which might violate the constraint that γ ≥ 2. However, a constant factor
change in γ will not affect the asymptotics.) Expressed in these terms, the upper
bound on the space of the resulting AVD given by Theorem 9.9 is

Ud(n, τ, ε) = O
(

nγ d−1 log
1

ε

)
= O

(
n

(
1

ε

)(d−1)τ (2−τ )

log
1

ε

)
.

Taking the ratio with our lower bound yields

Ud(n, τ, ε)

Ld(n, τ, ε)
= O

((
1

ε

)(d−1)(τ (2−τ )−τ 2)

log
1

ε

)
= O

((
1

ε

)2(d−1)τ (1−τ )

log
1

ε

)
,

as desired.

As mentioned above, this is nearly tight in the extremes. The ratio is maximized
when τ = 1/2, which implies that the ratio between the upper and lower bounds is
O((1/ε)(d−1)/2 log(1/ε)).

11. Conclusions

We have shown that the (t, ε)-AVD data structure provides a simple, general, and
efficient solution to ε-NN searching in Euclidean spaces of constant dimension.
Our formulation of the AVD structure has been in terms of a separation parameter
γ , and we have seen that by increasing the degree of separation between each
cell and the surrounding set of points, we can naturally induce a tradeoff between
the number of cells and the number of representatives needed per cell. Stated in
more traditional terms as a tradeoff between space Mε(n) and query time Tε(n),
our structure achieves the tradeoff relationship Mε(n)T 2

ε (n) = O(n/εd−1) (up to
log factors). In terms of the relationship between asymptotic space and query time,
our structure performs better (and sometimes significantly better) than existing data
structures for ε-NN searching.

We have also presented lower bounds showing that these bounds are essentially
tight in the extremes, assuming an AVD-like approach. If one considers the entire
continuum, there is a gap of roughly (1/ε)(d−1)/2 between our lower bounds and
upper bounds. The most obvious open problem remaining is to close this gap.

In order to analyze the space complexity of the AVD, we have introduced a
technique called spatial amortization. A (t, ε)-AVD allows t representatives per
cell, and thus a naive analysis would suggest that the total space would be larger
by a factor of t . However, spatial amortization shows that the upper bounds on
total space and numbers of cells differ only by a constant. This insight was used
to establish the space efficiency of our AVD constructions. We believe that this
technique may find applications elsewhere, and it has already proved to be useful
in the design of AVDs for range searching [Arya et al. 2005, 2006, 2009].

Although the AVD dramatically outperforms partition tree-based methods (such
as the BBD tree [Arya et al. 1998], the BAR tree [Duncan et al. 2001], and the
linearized quadtree [Chan 2002, 2006]) in terms of query times, methods based on
partition trees still have a number of advantages. For one, partition-tree space and
constructions are independent of ε, and hence ε need only be provided at query
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time. Also, depending on the variant, partition trees also have much lower constant
factors in space (not growing exponentially with dimension as for the AVD) and
are amenable to efficient point insertion and deletion. Chan’s in-place quadtree
structure [Chan 2006] and the skip quadtree [Eppstein et al. 2008] are notable
examples.

Viewed generically, an AVD is a decomposition of space into regions, each of
which is sufficiently well separated from its surroundings so that all the information
needed for answering queries can be encoded concisely, typically in O(1) space
or as a flat data structure such as an array. (This representation implies that query
processing is very simple, consisting of a tree descent followed by a small number
of distance computations. However, it is interesting to consider whether the space
or query time could be improved through the use of a more sophisticated storage
scheme for the leaf data.) The AVD concept was perhaps first used by Vleugels
and Overmars [1998] as a means to approximate the Voronoi diagram of a set of
convex obstacles in the context of motion planning. The use of AVDs in approx-
imate nearest neighbor searching has been established here and in earlier work
[Har-Peled 2001; Sabharwal et al. 2006]. AVDs have also been adapted to achieve
many of the best known space and query times for approximate range searching
in spaces of constant dimension [Arya et al. 2005, 2006, 2009]. In the same way
that the locus method can be used for solving exact geometric retrieval problems
through point location, we believe that AVDs will continue to find new applica-
tions in approximate geometric retrieval problems. We hope that this article will
provide the fundamental groundwork upon which these future structures will be
based.

Appendix

A. Proofs of Separation Theorems

In this section, we provide proofs of our theorems involving separation and numbers
of representatives, which were stated in Section 5.

We begin with a couple of technical lemmas regarding triangles. The first lemma
is an elegant result, due to Chan and Snoeyink. Given an obtuse triangle, it bounds
the sum of lengths of the short edges in terms of the length of the long edge. We
provide a proof for the sake of completeness.

LEMMA A.1 (CHAN AND SNOEYINK [1995]). Let �xyz be a triangle with
∠xzy = θ, ∠yxz = φ, and ∠xyz ≥ π/2. Then

‖xy‖ + ‖yz‖ ≤ (1 + sin θ sin φ)‖xz‖.

PROOF. By the Law of Sines,

‖xy‖
sin θ

= ‖yz‖
sin φ

= ‖xz‖
sin(θ + φ)

.
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This implies that

‖xy‖ + ‖yz‖
‖xz‖ − 1 = sin θ + sin φ − sin(θ + φ)

sin(θ + φ)

= sin θ sin φ

(
tan(φ/2) + tan(θ/2)

sin(θ + φ)

)
.

Since θ + φ ≤ π/2, we have

tan
θ

2
+ tan

φ

2
≤ 2

π
(θ + φ) ≤ sin(θ + φ),

and the proposition follows directly.

LEMMA A.2. Given a triangle �xyz:

(i) max(‖xy‖, ‖xz‖) ≥ ‖yz‖ implies that ∠yxz ≤ π/2.
(ii) sin(∠yxz) ≤ ‖yz‖/ max(‖xy‖, ‖xz‖).

PROOF. Part (i) follows from the fact that x must lie outside the circle with
‖yz‖ as diameter.

For part (ii) let θ = ∠yxz. It follows from the law of sines that sin θ/‖yz‖ ≤
1/‖xy‖ and sin θ/‖yz‖ ≤ 1/‖xz‖. Thus, sin θ ≤ ‖yz‖/ max(‖xy‖, ‖xz‖).

Using the above results, we now restate and prove Lemma 5.1.

LEMMA 5.1 (CONCENTRIC BALL LEMMA). Let c > 0 be a constant, and let
0 < ε ≤ 1 and γ ≥ 1 + c be two real parameters. Let S be a set of points
in R

d . Let b1 and b2 be two balls in R
d such that b1 is concentrically γ -

separated from b2. Then there exist subsets R1, R2 ⊆ S each consisting of at
most

O

((
1 + 1√

εγ

)d−1
)

points such that

(i) R1 is an ε-representative set for b1 with respect to S ∩ b2, and
(ii) R2 is an ε-representative set for b2 with respect to S ∩ b1.

PROOF. We only prove part (i), since the proof of part (ii) is entirely symmetri-
cal. Clearly, if the lemma holds when c equals some positive constant, it also holds
if we set c to a larger constant. Thus, it suffices to prove the lemma for 0 < c ≤ 1.
First, if γ ≥ 16/ε, then the lemma follows from Lemma 5.2, and so we may assume
that γ < 16/ε. Let b3 be the ball (1 + (c/2))b1. Let δ = cr

√
εγ /16, where r is the

radius of b1. Let R′ be a set of points on the boundary of b3 that is δ-dense for the
boundary. (That is, for any point y on the boundary of b3, there is a point x ∈ R′
such that ‖yx‖ ≤ δ.) By standard results [Yao 1982], we can find such a set R′ of
size O(1/(εγ )(d−1)/2). For each point x ∈ R′, we let px denote any point of S that
is its (ε/2)-NN. We define R = {px : x ∈ R′}. We now show that R satisfies the
property given in part (i) of the lemma.

Let q be a point in b1. Let pq denote the nearest neighbor of q among the points
of S ∩ b2. Let y denote the point of intersection of qpq with the boundary of b3.
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FIG. 23. Proofs of Lemmas 5.1 and 5.2.

Let x be the point of R′ that is closest to y (see Figure 23(a)). We will show that
‖qpx‖ ≤ (1 + ε)‖qpq‖, which will imply (i).

By the triangle inequality, we have ‖qpx‖ ≤ ‖qx‖ + ‖xpx‖. Since px is an
(ε/2)-NN of x , we have ‖xpx‖ ≤ (1 + ε/2)‖pq x‖. Thus,

‖qpx‖ ≤
(

1 + ε

2

)
(‖qx‖ + ‖pq x‖). (3)

In the triangle �qpq x , let θ denote ∠pqqx and φ denote ∠qpq x . We will make
use of the following, which will be proved below:

(a): ∠qxpq > π/2, (b): sin θ ≤
√

εγ

8
, (c): sin φ ≤ 1

4

√
ε

γ
.

Assuming these hold for now and applying Lemma A.1, we obtain ‖qx‖+‖pq x‖ ≤
(1 + ε/32)‖qpq‖. Substituting this in Eq. (3), and noting that ε ≤ 1, we obtain

‖qpx‖ ≤
(

1 + ε

2

) (
1 + ε

32

)
‖qpq‖ ≤ (1 + ε)‖qpq‖,

which is the desired result.
To prove inequalities (a)–(c) above consider �yqx . Since R′ is δ-dense for the

boundary of b3, we have ‖xy‖ ≤ δ = cr
√

εγ /16. Also, max(‖qx‖, ‖qy‖) ≥
cr/2. Thus ‖xy‖/ max(‖qx‖, ‖qy‖) ≤ √

εγ /8. By Lemma A.2(ii), it follows that
sin θ ≤ √

εγ /8, which establishes (b). Now, using Lemma A.2(i) and the fact that
γ < 16/ε, it is easy to see that θ ≤ π/6. We next consider �ypq x . Since γ ≥ 1+c
and c ≤ 1 we see that

max(‖pq x‖, ‖pq y‖) ≥ γ r −
(

1 + c
2

)
r ≥ γ r −

(
1 + c

2

)
1 + c

γ r ≥ c/2

1 + c
γ r ≥ cγ r

4
.

Thus ‖xy‖/ max(‖pq x‖, ‖pq y‖) ≤ 1
4

√
ε/γ . By Lemma A.2(ii), sin φ ≤ 1

4

√
ε/γ ,

which establishes (c). Now, applying Lemma A.2(i) and noting that ε ≤ 1 and
γ ≥ 1 + c > 1, it follows that φ ≤ π/6. Finally, since θ ≤ π/6 and φ ≤ π/6, we
have ∠qxpq > π/2, which establishes (a).

Finally, we restate and prove Lemma 5.2.

LEMMA 5.2 (SINGLE-REPRESENTATIVE CONC. BALL LEMMA). Let 0 < ε ≤ 1
and γ ≥ 11/ε be two real parameters. Let S be a set of points in R

d . Let b1 and b2

be two balls in R
d such that b1 is concentrically γ -separated from b2.
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(i) Let px be an (ε/2)-nearest neighbor of any point x ∈ b1. Then {px} is an
ε-representative set for b1 with respect to S ∩ b2.

(ii) Let p be any point of S ∩ b1. Then {p} is an ε-representative set for b2 with
respect to S ∩ b1.

PROOF. We first prove (i). It suffices to show that, for any point q ∈ b1, px

is an ε-NN of q with respect to S ∩ b2. Let pq denote the nearest neighbor of q
among the points of S ∩ b2 (see Figure 23(b)). By the triangle inequality, we have
‖qpx‖ ≤ ‖qx‖ + ‖xpx‖. Since px is an (ε/2)-NN of x , it follows that ‖xpx‖ ≤
(1 + ε/2)‖xpq‖. Therefore,

‖qpx‖ ≤ ‖qx‖ +
(

1 + ε

2

)
‖xpq‖.

Applying the triangle inequality again, we obtain ‖xpq‖ ≤ ‖qx‖ + ‖qpq‖. Using
the fact that ε ≤ 1, we see that

‖qpx‖ ≤ ‖qx‖ +
(

1 + ε

2

) (‖qx‖ + ‖qpq‖
) =

(
2 + ε

2

)
‖qx‖ +

(
1 + ε

2

)
‖qpq‖

≤ 5

2
‖qx‖ +

(
1 + ε

2

)
‖qpq‖. (4)

Letting r denote the radius of ball b1, we have ‖qx‖ ≤ 2r . Since γ ≥ 11/ε and
ε ≤ 1 it follows that

‖qpq‖ ≥ (γ − 1)r ≥
(

11

ε
− 1

ε

)
r ≥ 10

ε
r. (5)

Therefore, ‖qx‖ ≤ (ε/5)‖qpq‖. Substituting this into Eq. (4), we obtain ‖qpx‖ ≤
(1 + ε)‖qpq‖, as desired.

Next we prove (ii). It suffices to show that, for any point q ∈ b2, p is an ε-NN of
q with respect to S∩b1. Let pq denote the nearest neighbor of q among the points of
S∩b1 (see Figure 23(c)). By the triangle inequality, we have‖qp‖ ≤ ‖qpq‖+‖ppq‖.
Let r denote the radius of the ball b1. We have ‖ppq‖ ≤ 2r , and since γ ≥ 11/ε and
ε ≤ 1, as in Eq. (5), we have ‖qpq‖ ≥ (10/ε)r . Therefore, ‖ppq‖ ≤ (ε/5)‖qpq‖.
Putting this all together, we have

‖qp‖ ≤ ‖qpq‖ + ‖ppq‖ ≤ ‖qpq‖ + ε

5
‖qpq‖ < (1 + ε)‖qpq‖,

as desired.

B. Proofs of Technical Lemmas on Fat Rectangles

First, we restate and prove Lemma 10.1.

LEMMA 10.1. It is possible to cover any BBD-tree cell in R
d by a set of at most

2d closed axis-aligned rectangles, each of aspect ratio at most 3.

PROOF. Let w be the BBD-tree cell in question. If w has no inner box, then the
theorem is trivially satisfied by taking w itself as the covering rectangle (of aspect
ratio 1). Otherwise, let ui and uo denote w’s inner and outer boxes, respectively
(see Figure 24(a)). Let si and so denote their respective side lengths. Let F denote
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FIG. 24. Proof of Lemma 10.1, with the final four covering rectangles shown in part (c).

set of the up to 2d facets (faces of dimension d − 1) of ui that do not intersect a
facet of uo.

We begin by subdividing w into a collection of at most 2d polygonal regions.
For each facet f ∈ F , consider the infinite convex polygonal cone C f formed by
the union of rays emanating from ui ’s center point and passing through all points
of f . Let B f denote the smallest axis-aligned rectangle enclosing C f ∩ w (see
Figure 24(b)). Clearly the cones cover space, and thus the associated enclosing
rectangles B f form a cover of w of cardinality at most 2d.

To complete the proof, we show that for any f ∈ F , B f has aspect ratio at most
3. Let f ′ denote the facet of uo corresponding to f , that is, the one sharing the same
outward normal vector, and let h = dist( f, f ′) (see Figure 24(a)). Since f ∈ F ,
we have h > 0, and by basic properties of quadtree alignment, h ≥ si . Since the
slopes of the sides of C f form an angle of 45◦ with respect to its central axis,
the intersection of C f with the (d − 1)-dimensional hyperplane containing f ′ is a
(d −1)-dimensional hypercube, denoted B ′, of side length 2(h + si/2) = 2h + si . It
is easy to see that the side lengths of B ′ are at least h + si (in Figure 24(a) consider
when ui touches the top edge of uo) and at most 2h + si . Since the side of B f that
is orthogonal to f is of length h, B f ’s aspect ratio is at most

max

(
max(h, 2h + si )

min(h, h + si )

)
≤ max

(
3h
h

)
≤ 3,

as desired.

Next, we restate and prove Lemma 10.2. This lemma asserts that, given any
1 ≤ k ≤ d, there exists a linear subspace K of any dimension k such that any fat
rectangle that has a large intersection with K contains a large ball centered on K .

LEMMA 10.2. For any integer k and real ϕ, where 1 ≤ k ≤ d − 1 and ϕ ≥ 1,
there exists a k-dimensional linear subspace K ⊂ R

d and a positive real c < 1
(depending on d and ϕ), such that for any ϕ-fat (axis-aligned) rectangle R that has
a nonempty intersection with K , there is a ball of radius at least c · diam(K ∩ R)
contained in R that is centered on K .

Intuitively, a subspace may fail to achieve this property because it “scrapes” along
near the boundary of the rectangle for a long distance. Our choice of K is motivated
by the property that no vector of K is too nearly orthogonal with respect to any
k-dimensional axis-aligned hyperplane. This will imply that the linear subspace is
in some sense well “slanted” with respect to the coordinate hyperplanes. Making
this intuition formal will involve some matrix analysis.

As with many constructions in computational geometry, our construction is based
on the moment curve. Consider the (d − k)×d matrix U = [ui, j ], where ui, j = i j .
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Let K be the null space of U , that is, K = {x ∈ R
d : U x = 0}. The rows of U

are points on the d-dimensional moment curve [Edelsbrunner 1987], and it is well
known that they are linearly independent. Thus the dimension of K is k.

Let us first explore some properties of U . Given a pair of increasing sequences
0 < a1 < a2 < · · · < am and 0 < b1 < b2 < · · · < bm , the m × m matrix V =
[vi, j ], where vi, j = ai

b j , is called a generalized Vandermonde matrix [Gantmacher
1959]. It is known that the determinant of any generalized Vandermonde matrix
is strictly positive [Gantmacher 1959]. Clearly, any (d − k) × (d − k) submatrix
of U is of this form, and so the corresponding minor of U is nonzero. In order to
define such a submatrix, consider any k-element integer sequence I : 1 ≤ j1 <
j2 < · · · < jk ≤ d, and let U ′ be the (d − k) × k submatrix of U formed by
concatenating the columns of U corresponding to the indices of I . Let U ′′ be the
(d − k) × (d − k) submatrix formed by concatenating the remaining columns of
U . In an analogous way, we can decompose any vector x ∈ R

d into x ′ ∈ R
k and

x ′′ ∈ R
d−k . Clearly, x ∈ K if and only if U ′x ′ + U ′′x ′′ = 0. When I is understood

from context, we express these decompositions as U = (U ′; U ′′) and x = (x ′; x ′′).
Any k-dimensional axis-aligned hyperplane is, up to translation, the span of k

coordinate unit vectors, and so can be identified with some choice of I . In order
to show that a vector x ∈ K is not too nearly orthogonal to such a coordinate
hyperplane it suffices to show that the length of x ′′ (which is orthogonal to the
hyperplane) is not significantly greater than the length of x ′ (which is parallel to the
hyperplane). We prove a slightly stronger version of this next. Let ‖ · ‖∞ and ‖ · ‖2
denote the L∞ and L2 norms, respectively, for both vectors and matrices [Golub
and Loan 1996].

LEMMA B.1. Let 1 ≤ k ≤ d, and consider the (d − k) × d matrix U defined
above and any x ∈ R

d . For any k-element index sequence I , let U = (U ′; U ′′)
and x = (x ′; x ′′) denote the corresponding decompositions. Given a fixed x ′ ∈ R

k ,
there is a unique x ′′ ∈ R

d−k such that (x ′; x ′′) ∈ K . Furthermore, there exists a
constant c′ > 1 (depending on dimension) such that ‖x ′′‖∞ ≤ c′‖x ′‖∞.

PROOF. It follows from our earlier remarks that det(U ′′) �= 0, and so its inverse,
(U ′′)−1, exists and is unique. If x ∈ K , then 0 = U x = U ′x ′+U ′′x ′′. Therefore x ′′ is
uniquely determined by x ′′ = −(U ′′)−1U ′x ′. Each entry of (U ′′)−1, as computed by
Cramer’s rule, is the ratio of nonzero determinants involving integers of magnitude
at most dd and hence are themselves of magnitude at most (dd)O(d) ≤ d O(d2). Thus,
‖(U ′′)−1‖∞ = d O(d2). Since the entries of U ′ are of magnitude at most dd , it follows
that ‖U ′x ′‖∞ ≤ d O(d)‖x ′‖∞. Thus, by standard linear algebra (see, e.g., Golub and
Loan [1996]) we have

‖x ′′‖∞ ≤ ‖(U ′′)−1‖∞ ‖U ′x ′‖∞ ≤ d O(d2) · d O(d)‖x ′‖∞ ≤ c′‖x ′‖∞,

where c′ = d O(d2).

We are now in a position to prove Lemma 10.2. Our approach is to show that if
diam(K ∩ R) is large for some fat rectangle R, then given any point x ∈ K ∩ R,
we can slide along K in a direction such that the distance from the boundary of R
increases rapidly. To determine this direction, we first classify which faces of R are
close to x . We decompose R into a collection of subrectangles according to which
face of R is close. The direction is a function of the subrectangle that contains x .
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FIG. 25. The subrectangles Lemma 10.2. For example, for face f we have π = (+1, 0), and so
f = {b1} × [a2, b2] and fδ = [b1 − δ, b1] × [a2 + δ, b2 − δ]. (Since the figure is drawn in the plane,
we have violated the constraint that j < k in (b). Both are equal to 1 here.)

PROOF OF LEMMA 10.2. Let R = ∏
1≤i≤d[ai , bi ], and let � = diam(K ∩ R).

Let F denote the set of faces (of all dimensions) of R. Each face f ∈ F can be
represented by a d-vector π ∈ {−1, 0, +1}d , so that f = ∏

1≤i≤d �i , where

�i =
{ {ai } if πi = −1

[ai , bi ] if πi = 0
{bi } if πi = +1.

Let us next decompose R into a collection of subrectangles by “fattening” each face
of R into a rectangle as follows. Recalling that R is ϕ-fat, we define δ = �/(c′′ϕ),
where c′′ is a sufficiently large constant (to be specified below). Given any face
f ∈ F , let fδ be the rectangle f = ∏

1≤i≤d �i (δ), where

�i (δ) =
{

[ai , ai + δ] if πi = −1
[ai + δ, bi − δ] if πi = 0
[bi − δ, bi ] if πi = +1

(see Figure 25(a)).
By convexity of K ∩ R, � is the length of some line segment contained within R.

It follows that the longest side of R is of length at least �/
√

d. Since R is ϕ-fat, the
shortest side of R is of length at least �/(ϕ

√
d). By selecting c′′ > 2

√
d, we see

that δ is less than one half the length of the shortest side of R. Thus, the rectangles fδ
defined above are all contained within R, they cover R, and have pairwise disjoint
interiors. In addition, for any x, y ∈ fδ we see that coordinates similar along skinny
dimensions and we are far from the boundary of R along fat dimensions. That is,

πi ∈ {−1, +1} ⇒ |xi − yi | ≤ δ (6)
πi = 0 ⇒ min(|xi − ai |, |bi − xi |) ≥ δ (7)

As mentioned above, there is a line segment contained within R whose length is
�. Because the fattened faces cover R, it follows that there is a face f ∈ F such
that diam(K ∩ fδ) ≥ �/|F | = �/3d . Let π denote the vector that defines this
face f , and let j denote the number of nonzero entries of π . It will simplify the
presentation to assume that the axes have been relabeled so that the first j entries
of π are nonzero, and hence the last d − j are zero. Henceforth, for any x ∈ R

d , let
(x ′; x ′′) denote the decomposition induced by the first k and last d − k components
of x .
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We begin by showing that j < k. Suppose to the contrary that j ≥ k. For i ≤ j ,
we have πi ∈ {−1, +1}. Consider any pair of points x, y ∈ K ∩ fδ. By Eq. (6)
it follows that |xi − yi | ≤ δ. Since k ≤ j , this is true for all i ≤ k, and therefore
‖x ′ − y′‖∞ ≤ δ. Since x, y ∈ K we have x − y ∈ K , and so by Lemma B.1, we
have

‖x ′′ − y′′‖∞ ≤ c′‖x ′ − y′‖∞ ≤ c′δ,

for c′ > 1. Thus, ‖x − y‖∞ ≤ c′δ, and so ‖x − y‖2 ≤ c′δ
√

d. By setting c′′ >

c′3d
√

d in the definition of δ and using the fact that ϕ ≥ 1, we see that this is less
than �/3d . Since x and y are arbitrary, this implies that diam(K ∩ fδ) ≤ 3d

√
d,

which contradicts the above bound on diam(K ∩ fδ).
Given that j < k, we will show that there exists a point y ∈ K ∩ R (but not

necessarily in fδ) whose distance from each of the sides of R is at least δ′ = δ/(2c′),
where c′ > 1 is the constant of Lemma B.1 (see Figure 25(b)). Let x be any point
of K ∩ fδ. First, for i ≤ j , we have πi ∈ {−1, +1}. If πi = −1, let yi = xi + δ′,
and if πi = +1, let yi = xi − δ′. The distance from y to the closest bounding side
of R along dimension i is at least min(δ′, δ − δ′) ≥ δ′. Next, for i in the range from
j + 1 to k, we let yi = xi . For these points, πi = 0, and so by Eq. (7) it follows that
each of these coordinates is at distance at least δ ≥ δ′ from the closest bounding
side of R.

Having defined all the components of y′, we apply Lemma B.1 to conclude that
there is a unique y′′ so that y = (y′; y′′) ∈ K . Furthermore, since both x, y ∈ K ,
we have x − y ∈ K , and so ‖x ′′ − y′′‖∞ ≤ c′‖x ′ − y′‖∞. Clearly, ‖x ′ − y′‖∞ ≤ δ′,
and so ‖x ′′ − y′′‖∞ ≤ c′δ′ = δ/2. For all the components of x ′′, we have πi = 0,
and so from Eq. (7) it follows that the distance from xi to the closest bounding side
of R is at least δ. Therefore, the distance from yi to the closest bounding side of R
is at least δ − (δ/2) ≥ δ′. The point y is the desired point in K ∩ R. The ball of
radius δ′ centered at y lies entirely within R, and by our definition of δ it has radius

δ′ = δ

2c′ = �

2c′c′′ϕ
.

Let c = 1/(2c′c′′ϕ). Since c′, c′′ and ϕ are all at least 1, we have c < 1, as
desired.
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