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Abstract

We present worst-case lower bounds on the minimum size of a binary space partition (BSP)
tree as a function of its height, for a set S of n axis-parallel line segments in the plane. We
assume that the BSP uses only axis-parallel cutting lines. These lower bounds imply that, in
the worst case, a BSP tree of height O(log n) must have size Ω(n log n) and a BSP tree of size
O(n) must have height Ω(nδ), where δ is a suitable constant.
Key words: Computational geometry, binary space partitions, line segments.

1 Introduction

Given a set S of n interior-disjoint objects in IRd, the binary space partition (BSP) for S is a
subdivision obtained by recursively cutting space into two parts by a hyperplane, terminating when
each cell is intersected by at most a constant number of the given objects. BSPs can be represented
in a natural way by binary trees, and they have numerous applications including hidden surface
removal [5], ray tracing [7], visibility problems [11], solid geometry [12], and spatial databases [10].
The efficiency of BSP-based algorithms depends on the size and the height of the tree. For example,
the time taken to answer point location and ray tracing queries depends on the height of the tree,
while the space requirement depends on the size of the tree.

BSPs have been extensively studied for objects in two, three, and higher dimensions. Here we
restrict our attention to BSPs for objects in the plane. Paterson and Yao [8] showed that any set
of n line segments admits a BSP of O(n log n) size and O(log n) height. They conjectured that it
is possible to achieve a size bound of O(n); however, recently, Tóth [13] disproved this conjecture
by showing that, in the worst case, Ω(n log n/ log log n) size is necessary.

When the line segments are axis-parallel, Paterson and Yao [9] showed that there exists a BSP
of 3n size. This bound was improved to 2n by d’Amore and Franciosa [2]; a nearly matching lower
bound was presented by Dumitrescu et al. [4]. Besides axis-parallel line segments, linear size BSPs
are known for three other special cases: fat objects, homothetic objects, and line segments where
the ratio between the lengths of the longest and shortest segment is bounded by a constant [3].

In this paper we consider the following natural question: Is it possible to construct a BSP
of O(n) size and O(log n) height for any set S of n axis-parallel segments? Not only is this
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question interesting for its theoretical value, this subproblem also arises naturally when constructing
balanced BSPs for axis-parallel rectangles in three dimensions.1 We give a negative answer to this
question, under the assumption that the BSP is only allowed to use axis-parallel cutting lines.
Henceforth, we call such a BSP an orthogonal BSP. While the restriction to orthogonal BSPs is a
limitation of our analysis, we note that all the BSP constructions in the literature for axis-parallel
segments satisfy this model and, thus, our analysis applies to them.

More precisely, we present a worst-case lower bound of Ω(n log n/ log h) on the minimum size
of an orthogonal BSP that has height at most h. Thus, in the worst case, a linear size orthogonal
BSP must be highly unbalanced (that is, have height Ω(nδ), where δ is a suitable constant). On
the other hand, an orthogonal BSP of height O(log n) must have size at least Ω(n log n/ log log n).
We also present a stronger lower bound (detailed in Theorem 1(ii)) that enables us to improve the
size bound in the last claim to Ω(n log n).

2 Preliminaries

Let S be a set of n interior-disjoint line segments in the plane. A BSP for S is a tree defined as
follows. The root of the tree is associated with IR2. Inductively, suppose that a node v is associated
with a convex polygon Pv. If the set Sv = {s ∩ Pv : s ∈ S} is empty, then v is a leaf. Otherwise
we partition Pv into two polygons by a cutting line ℓv. We store with v the segments in Sv (if any)
contained within ℓv. The left and right child of v are associated with the polygons Pv ∩ ℓ+

v and
Pv ∩ ℓ−v , respectively, where ℓ+

v and ℓ−v denote the positive and negative open halfplanes bounded
by ℓv. The size of the BSP is the total number of segments stored at all the internal nodes, and its
height is the length of the longest path from the root to a leaf.

3 Lower Bounds

Our lower bound example consists of a set S of 2n segments arranged as shown in Fig. 1. We refer
to this configuration as a stair-case of size n. Let Sh(n) denote the minimum size of an orthogonal
BSP for a stair-case of size n, subject to the condition that its height is at most h.

The following lemma is useful in deriving a recurrence inequality for Sh(n).

Lemma 1 Let S be a set of n interior-disjoint axis-parallel line segments, which is partitioned
into two sets S1 and S2. Let h be a positive integer. Let s, s1, and s2 be the minimum size of an
orthogonal BSP of height at most h, for S,S1, and S2, respectively. Then s ≥ s1 + s2. (If it is not
possible to construct an orthogonal BSP of height at most h for S, then s = ∞ and we regard this
inequality as true.)

Proof Let T denote a minimum-size orthogonal BSP of height at most h for S. Let s′1 and s′2
be the number of segments stored at the internal nodes of T that are generated from S1 and S2,
respectively. Clearly s = s′1 + s′2. Further, T is obviously an orthogonal BSP of height at most h

1Specifically, if a BSP of O(n) size and O(log n) height could be constructed for axis-parallel segments in the
plane, then it would follow from known results [4, 9] that we could construct a BSP of optimal size (that is, O(n3/2)
size) and O(log n) height for axis-parallel rectangles in three dimensions.
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i = 4

4 fragments

Figure 1: A stair-case of size 9.

for S1, after eliminating the segments stored at the internal nodes of T that are generated from S2.
It follows that s1 ≤ s′1. Similarly s2 ≤ s′2. Thus s ≥ s1 + s2. ⊓⊔

Let ℓ denote the cutting line associated with the root of a minimum-size orthogonal BSP of height
at most h for S. Without loss of generality, assume that ℓ is vertical. Assign labels 1, 2, . . . , n to
the vertical segments of the stair-case, from left to right. There are two possible cases: (i) ℓ passes
through the ith vertical segment, 1 ≤ i ≤ n, and (ii) ℓ lies between the ith and (i + 1)th vertical
segment, 1 ≤ i ≤ n − 1.

For case (i), we obtain a stair-case of size i−1 to the left of ℓ; the size of the corresponding BSP
is thus Sh−1(i−1). See Fig. 1. To the right of ℓ we obtain i fragments (from the i lowest horizontal
segments) and a stair-case of size n− i; it follows from Lemma 1 that the size of the corresponding
BSP is at least Sh−1(n − i) + i. Thus, for case (i), we have

Sh(n) ≥ min
1≤i≤n

Sh−1(i − 1) + Sh−1(n − i) + i + 1, (1)

where 1 has been added to account for the fragment contained in ℓ.

Similarly, for case (ii), we can write

Sh(n) ≥ min
1≤i≤n−1

Sh−1(i) + Sh−1(n − i) + i ≥ min
1≤i≤n−1

Sh−1(i − 1) + Sh−1(n − i) + i + 2. (2)

In the last inequality we have used the fact that Sh−1(i) ≥ Sh−1(i−1)+2, which follows immediately
from Lemma 1. Combining the two cases, it is easy to see that Eq. (1) dominates. Moreover, we
can restrict the minimization variable i to the range 1 ≤ i ≤ ⌈n/2⌉. Including the boundary cases,
we have

Sh(0) = 0, for h ≥ 0,
S0(n) = ∞, for n ≥ 1,
Sh(n) ≥ min1≤i≤⌈n/2⌉ Sh−1(i − 1) + Sh−1(n − i) + i + 1, for n ≥ 1, h ≥ 1.

(3)

We define Sh(n) using the same recurrence relation as given here for Sh(n), except with the
inequality in the third equation replaced by equality. Clearly a lower bound for Sh(n) also applies
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to Sh(n). To compute a lower bound for Sh(n), we find it convenient to expand the recurrence
relation in the form of a tree as follows. The root of the tree corresponds to the term Sh(n) and is
labelled n. Suppose that at the top level of the recursion, we assign a value k to the minimization
variable i. We represent this by two nodes labelled k − 1 and n − k corresponding to the terms
Sh−1(k−1) and Sh−1(n−k), respectively. The node labelled k−1 is made the left child of the root,
and the node labelled n− k is made the right child (note that the label assigned to the left child is
never more than the label assigned to the right child). We continue recursively in this manner to
expand the terms generated, leading to an equivalent recursion tree. This tree has height at most
h and its leaves correspond to the boundary cases. We can get many different trees depending on
the value assigned to the minimization variable for each term generated. Let Th(n) denote the set
of all the labelled trees that this process can generate, starting with the term Sh(n) associated with
the root of the tree. (Fig. 2 shows one possible tree for n = 11 and h = 5.)
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Figure 2: A labelled tree T for n = 11 and h = 5. The labels of the nodes are shown inside the
circles. For internal nodes, their cost is shown above the circle.

Let T ∈ Th(n) be any labelled tree. Based on the value assigned to the minimization variable
at the internal nodes, we can deduce the value of the term Sh(n) associated with its root. We
formalize this by defining the notion of the cost of tree T , denoted cost(T ), as follows. Define the
cost of an internal node to be k + 1, where k is the value of the minimization variable associated
with it. If any leaf in T has a non-zero label, then define the cost of T to be ∞; otherwise, define
the cost of T to be the total cost of its internal nodes. (For example, the cost of the tree in Fig. 2 is
28.) It is clear from Eq. (3) that the cost of a tree represents the value of the term Sh(n) associated
with its root. It is now obvious that

Sh(n) = min
T∈Th(n)

cost(T ). (4)

We compute a lower bound on the cost of T . To this end, we assign an address to each node
in T based on the path taken to reach it, starting from the root of T . For example, if we take a
right, right, left, and a right branch to reach a node, its address is RRLR. We define the L-depth
of a node to be the number of L’s in its address, and define the L-path-length of a tree T , denoted
L-path-length(T ), to be the sum of the L-depth of all the leaves in T .
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In Lemma 2, we show that L-path-length(T ) is a lower bound on cost(T ) and, in Lemma 3, we
establish lower bounds on L-path-length(T ).2

Lemma 2 Let T ∈ Th(n) be a tree with all leaves labelled 0. Then the following are true:

(i) int(T ) = n and leaves(T ) = n + 1, where int(T ) and leaves(T ) denote the number of internal
nodes and leaves, respectively, in T .

(ii) cost(T ) = L-path-length(T ) + n.

Proof The proof is by induction on n. If n = 0, then T consists of just one node labelled 0. Thus,
int(T ) = 0, leaves(T ) = 1, cost (T ) = 0,L-path-length(T ) = 0, so (i) and (ii) hold.

Next suppose that the claim in the lemma holds for all n < m, where m is an integer greater
than 0. We will show that the claim holds for n = m. Let TL and TR denote the left and right
subtree, respectively, of the root of T . If k is the value assigned to the minimization variable
associated with the root of T , then TL ∈ Th−1(k − 1) and TR ∈ Th−1(m − k). Also, the leaves in
TL and TR are all labelled 0. Thus, we can apply the induction hypothesis to TL and TR, which
implies that int(TL) = k − 1, leaves(TL) = k, int(TR) = m − k, and leaves(TR) = m − k + 1. Thus,
int(T ) = int(TL) + int(TR) + 1 = m and leaves(T ) = leaves(TL) + leaves(TR) = m + 1, which
proves (i).

To prove (ii), observe that for a leaf in TL, its L-depth in T is one more than its L-depth in
TL, and for a leaf in TR, its L-depth in T is the same as its L-depth in TR. Thus L-path-length(T ) =
L-path-length(TL)+L-path-length(TR)+leaves(TL). Also, by definition, we have cost(T ) = cost(TL)+
cost(TR)+k+1 and, by the induction hypothesis, we have cost(TL) = L-path-length(TL)+k−1 and
cost(TR) = L-path-length(TR) + m− k. It is now easy to see that cost(T ) = L-path-length(T ) + m,
which completes the proof. ⊓⊔

Lemma 3 Let T ∈ Th(n) be a tree with all leaves labelled 0. Then

(i) L-path-length(T ) = Ω(n log n/ log h).

(ii) L-path-length(T ) = Ω(nr), where r is an integer, 0 ≤ r ≤ h, such that
∑r

d=0

(h
d

)

≤ n/4.

Proof We say that a node in T is an L-node if its address ends with an L (that is, it is a left
child), or if it is the root of T . If an L-node is a leaf in T , we call it an L-leaf.

We construct a new tree T ′ from T as follows. The nodes of T ′ correspond in a one-to-one
manner to the L-nodes of T . For each L-node in T at L-depth d, d ≥ 0, the corresponding node
in T ′ is at depth d. Moreover, the tree T ′ satisfies the following property. Let x be an L-node in
T at L-depth d, and let Cx be the set of descendants of x at L-depth d + 1; then in T ′ the nodes
corresponding to the nodes in Cx are children of the node corresponding to x. (Fig. 3 shows the
tree T ′ for the tree T given in Fig. 2.) Since |Cx| is at most h, the degree of any node in T ′ is at
most h. Also, the height of T ′ is the same as the maximum L-depth of a node in T , and so it is at
most h.

2Recently, Theocharis Malamatos has pointed it out to us that this quantity was studied earlier by Callahan and
Kosaraju [1], in the context of constructing the well-separated pair decomposition of points. Our analysis in Lemma 3
is similar to theirs.
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Figure 3: Tree T ′ for the tree T shown in Fig. 2.

It is clear from the construction of T ′ that the external path length of T ′ (that is, the sum of the
depth of all its leaves) is the same as the sum of the L-depth of the L-leaves in T , and is, therefore,
a lower bound on L-path-length(T ). Observe that the sibling of a leaf in T that is a right child
must be a leaf (since the label of the right child is never less than the label of its sibling) and so,
by Lemma 2(i), the number of L-leaves in T is at least (n + 1)/2. Thus the number of leaves in
T ′ is at least (n + 1)/2. Since the height of T ′ and the degree of its nodes are both at most h, it
follows from standard results [6, Section 2.3.4.5] that its external path length is minimized when
the tree is balanced and this quantity is at least Ω(n logh n). This completes the proof of (i).

In order to obtain a stronger bound on L-path-length(T ), we note that for any d, 0 ≤ d ≤ h,
the number of L-nodes in T at L-depth d is at most

(h
d

)

(because the addresses of any two nodes
are distinct and the address of any such node can be formed by choosing d out of h positions,
assigning an L to these positions, and an R to all remaining positions to the left of the right-most
L). Thus, the number of nodes in T ′ at depth d is at most

(h
d

)

. It follows that the number of leaves
in T ′ that can occur at depth r or less, where r is as given in part (ii) of the lemma, is at most
n/4. Recalling that the number of leaves in T ′ is at least (n + 1)/2, this implies that at least n/4
leaves are at depth r + 1 or more. Thus the external path length of T is at least n(r + 1)/4, which
proves (ii). ⊓⊔

Recall that the cost of a tree T ∈ Th(n) is either ∞ or all its leaves are labelled 0. By Eq. (4),
Lemmas 2 and 3, it follows that the lower bounds on L-path-length(T ) given in Lemma 3 also apply
to Sh(n). We have thus shown the following:

Theorem 1 There exists a set S of n interior-disjoint axis-parallel line segments such that the size
of any orthogonal BSP for S of height at most h satisfies the following two lower bounds:

(i) Ω(n log n/ log h).

(ii) Ω(nr), where r is an integer, 0 ≤ r ≤ h, such that
∑r

d=0

(h
d

)

≤ n/8.

This theorem implies that, in the worst case, an orthogonal BSP of O(n) size must be highly
unbalanced and, on the other hand, an orthogonal BSP of height O(log n) must have size Ω(n log n).
The first claim follows readily from Theorem 1(i), while the proof of the second claim needs more
effort and requires the stronger lower bound given in Theorem 1(ii).
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Corollary 1.1 Let c be any constant. There exists a set S of n interior-disjoint axis-parallel line
segments such that any orthogonal BSP for S that has size at most cn must have height at least
Ω(nγ/c). Here γ is a constant independent of c.

Corollary 1.2 Let c be any constant. There exists a set S of n interior-disjoint axis-parallel line
segments such that any orthogonal BSP for S that has height at most c log n must have size at least
Ω(n log n/ log(c + 1)).

Proof Let h ≤ c log n denote the height of an orthogonal BSP for S. We set r = ⌈ǫ log n⌉ and
show that for sufficiently small ǫ (depending on c),

∑r
d=0

(h
d

)

≤ n/8. By Theorem 1(ii), it would
follow that the size of the BSP is at least Ω(nǫ log n).

Using the identity
(m+1

t

)

=
( m
t−1

)

+
(m

t

)

repeatedly, we can easily show that
∑r

d=0

(h
d

)

≤
(h+r

r

)

.
Furthermore

(

h + r

r

)

≤
(h + r)r

r!
≤

[

(h + r)e

r

]r

= 2r log[(1+ h
r )e],

where, in the second step, we have used the fact that r! > (r/e)r for r ≥ 1. Since h ≤ c log n and
ǫ log n ≤ r ≤ 2ǫ log n, for sufficiently large n, we can simplify this to obtain

r
∑

d=0

(

h

d

)

≤ n2ǫ log[(1+ c
ǫ )e]. (5)

It is clear that the exponent of n can be made less than one by choosing a sufficiently small ǫ,
depending on c. More precisely, for ǫ = 1/(β log(c+1)), where β is a suitable constant independent
of c, the exponent can be made less than one (note that c ≥ 1, since the BSP must have at least
2n + 1 nodes). This completes the proof. ⊓⊔
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