
The Effect of Corners on the Complexity of Approximate Range

Searching

Sunil Arya∗ Theocharis Malamatos† David M. Mount‡

January 31, 2007

Abstract

Given an n-element point set in Rd, the range searching problem involves preprocessing these
points so that the total weight, or for our purposes the semigroup sum, of the points lying within
a given query range η can be determined quickly. In ε-approximate range searching we assume
that η is bounded, and the sum is required to include all the points that lie within η and may
additionally include any of the points lying within distance ε · diam(η) of η’s boundary.

In this paper we contrast the complexity of approximate range searching based on properties
of the semigroup and range space. A semigroup (S, +) is idempotent if x + x = x for all
x ∈ S, and it is integral if for all k ≥ 2, the k-fold sum x + · · · + x is not equal to x. Recent
research has shown that the computational complexity of approximate spherical range searching
is significantly lower for idempotent semigroups than it is for integral semigroups in terms of
the dependencies on ε. In this paper we consider whether these results can be generalized to
other sorts of ranges. We show that, as with integrality, allowing sharp corners on ranges has
an adverse effect on the complexity of the problem. In particular, we establish lower bounds on
the worst-case complexity of approximate range searching in the semigroup arithmetic model
for ranges consisting of d-dimensional unit hypercubes under rigid motions. We show that
for arbitrary (including idempotent) semigroups and linear space, the query time is at least
Ω(1/εd−2

√
d). In the case of integral semigroups we prove a tighter lower bound of Ω

(
1/εd−2

)
.

These lower bounds nearly match existing upper bounds for arbitrary semigroups.
In contrast, we show that the improvements offered by idempotence do apply to smooth

convex ranges. We say that a range is smooth if at every boundary point there is an incident
Euclidean sphere that lies entirely within the range whose radius is proportional to the range’s
diameter. We show that for smooth ranges and idempotent semigroups, ε-approximate range
queries can be answered in O

(
log n + (1/ε)(d−1)/2 log(1/ε)

)
time using O(n/ε) space. We show

that this is nearly tight by presenting a lower bound of Ω
(
log n + (1/ε)(d−1)/2

)
. This bound is

in the algebraic decision-tree model and holds irrespective of space.

∗Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong. Supported by the Research Grants Council, Hong Kong, China (Project No. 610106). Email:
arya@cs.ust.hk.

†Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany. Email: tmalamat@mpi-
inf.mpg.de.

‡Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College
Park, Maryland 20742. Partially supported by the National Science Foundation under grant CCF–0635099. Email:
mount@cs.umd.edu.

1

1 Introduction

Answering range queries is a problem of fundamental importance in spatial information retrieval
and computational geometry. We assume that we are given a set of n points P in Rd, where
each point is associated with a weight from some commutative semigroup, and the objective is to
preprocess these points so that, for any shape η from a given range space, it is possible to compute
the semigroup sum of the points of P ∩ η efficiently. Range searching is among the most well
studied problems in computational geometry. Excellent surveys have been written by Agarwal and
Erickson [1] and Matoušek [20]. For many formulations of this problem, nearly matching asymptotic
upper and lower bounds are known. For example, Matoušek [19] has shown that using m units of
storage, where n ≤ m ≤ nd, halfspace range counting queries can be answered in O

(
n/m1/d

)
time.

Nearly matching lower bounds for halfspace range searching have been proved by Brönnimann,
Chazelle, and Pach [11].

Because of the high complexity of answering queries it is natural to consider approximation. In
ε-approximate range searching we are given ε > 0 and a bounded range η of diameter diam(η), and
the sum is required to include all the points of P that lie within η and may additionally include any
subset of P that lies within a distance of ε·diam(η) of η’s boundary. Arya and Mount [7] showed that
for fixed d, approximate range queries over convex ranges can be answered in O

(
log n + 1/εd−1

)
time with O(n) space. The dependency on ε is significant, since as the dimension increases the
1/εd−1 term dominates the query time in practice. Chazelle, Liu, and Magen [14] considered
approximate halfspace and Euclidean ball range searching in the high-dimensional context. Ignoring
polylogarithmic factors, they showed that it is possible to answer queries in O(d/ε2) time and
O(dnO(1/ε2)) space. In fixed dimensions, in contrast, a natural goal is to achieve O(log n) query
time and O(n) space, while minimizing the ε-dependencies. Throughout, we treat both n and ε as
asymptotic quantities and assume that n À ε−1.

As mentioned above we are interested in computing some function of the weights of the points
lying within a range. We assume that this function is the sum from a commutative faithful semi-
group. (See Section 2.) Our broad goal is to understand how range and semigroup properties
affect the computational complexity of approximate range searching. A semigroup is idempotent if
x + x = x for all semigroup elements x. It is integral if for all nonzero semigroup elements x and
all natural numbers k ≥ 2, the k-fold sum x + · · ·+ x is not equal to x [15]. For example, (R,min)
and ({0, 1},∨) are both idempotent, and (N,+) is integral. Idempotence is relevant because of the
way that most range searching algorithms work. At preprocessing time the algorithm implicitly
computes the semigroup sum of a number of suitably chosen subsets of P , which we call generators.
To answer a query η, the algorithm determines an (ideally small) subset of generators whose union
is equal to P ∩ η and then returns their total sum. If the semigroup is idempotent these subsets
may overlap, but for integral semigroups they must be disjoint.

Because of the constraint of disjointness, one would expect that range searching over integral
semigroups would be harder than for idempotent semigroups. It is surprising, therefore, that this
does not seem to be the case for exact range searching. For example, the lower bounds in the
semigroup arithmetic model for exact halfspace range searching for idempotent semigroups [11]
and integral semigroups [5] are both quite similar to the upper bound complexity [19]. Further,
the difference in complexity decreases as dimension increases. This changes in the context of
approximate range searching. In [5] we showed that the complexity of approximate range searching
for Euclidean balls is much lower for idempotent semigroups than for integral semigroups. Assuming
roughly linear space and ignoring polylogarithmic factors, our results there imply nearly matching

2

asymptotic upper and lower bounds of O(1/εd−O(1)) for range searching over integral semigroups
and O(1/εd/2−O(1)) for idempotent semigroups. Thus, the exponent in the ε dependency is reduced
by roughly half when the semigroup is idempotent.

This raises the question of whether other aspects of the problem formulation have similarly
dramatic impacts on the computational complexity of ε-approximate range searching. The upper
bounds of [5] made critical use of two properties of Euclidean balls: smoothness and rotational
symmetry. In this paper we consider two alternative formulations that arise from relaxing these
properties. The first involves ranges with sharp corners, and the second involves arbitrary smooth
convex ranges. In both instances the aforementioned upper bounds of O(log n+1/εd−1) query time
with O(n) space apply [7]. We consider whether idempotence helps reduce query times for these
two classes.

For the case of ranges with sharp corners, we consider the simple case of d-dimensional unit
hypercube ranges under rigid motions, or rotated unit hypercubes. We show that the worst-case
complexity of approximate range searching for these ranges is not significantly better, even in the
idempotent case. Assuming linear space, we show that the worst-case query time in the semigroup
arithmetic model is Ω(1/εd−2

√
d). For integral semigroups, we show that the lower bound can be

tightened to Ω(1/εd−2). As in [5], our analysis of the integral case requires the assumption of convex
generators, which states that the convex hull of each generator subset contains no other points of
P .

In contrast, we show that the improvements offered by idempotence do apply to convex ranges
that are sufficiently smooth. For κ ≥ 1, say that a range η is κ-smooth if at any point x on the
boundary of η, it is possible to place a Euclidean ball inside η that touches x and has radius at
least diam(η)/(2κ). Note that a Euclidean ball is 1-smooth, and a convex polytope is not κ-smooth
for any finite κ. We show that for any fixed κ and any idempotent semigroup, ε-approximate
range queries for κ-smooth ranges can be answered from a data structure of space O(n/ε) in time
O(log n+(1/ε)

d−1
2). Further, we show that this query time is optimal by presenting a lower bound

of Ω(log n + (1/ε)
d−1
2) on the complexity of range searching over the space of all κ-smooth convex

ranges. This is proved in the algebraic decision-tree model, and so it holds irrespective of the
amount of space used.

We consider space-time tradeoffs in some of our results. Rather than expressing our space and
time tradeoffs in the conventional manner of query time as a function of space and data size, we
adopt a notation that more clearly illustrates the incremental benefits of increased space [5]. Recall
that n denotes the size of the point set, and let m denote the space of the data structure. Let
ρ = m/n, which we call the expansion ratio, be the ratio of space to data size. Clearly ρ ≥ 1,
but the requirements of any particular data structure may imply other lower and upper bounds
on ρ. (For example, one of our results assumes that space is at least n/ε, implying that ρ ≥ 1/ε.)
We express query time as a fraction, where the numerator gives the running time assuming linear
space (ρ = 1) and the denominator gives the tradeoff rate, which can be interpreted as the rate
with which query time decreases as a function of a multiplicative increase in space. For example,
for exact halfspace range queries, the conventionally expressed asymptotic query time of n/m1/d

would instead be expressed in our notation as n1−1/d
/

ρ1/d.
Here is a more detailed summary of our results:

• We present a lower bound for answering ε-approximate range queries for d-dimensional rotated
unit hypercubes over arbitrary semigroups (and hence over idempotent semigroups). We show

3

that for any 0 ≤ f ≤ 1, given m = n(1/ε)f2d2
units of storage (that is, ρ = 1/εf2d2

), the
query time in the semigroup arithmetic model is at least

Ω

((
1
ε

)d−2
√

d
/(

1
ε

)2fd
)

.

See Theorem 3.1(i) for details.
• We extend the above results to the case of integral semigroups. We show that under the

assumption of convex generators the query time is at least

Ω

((
1
ε

)d−2
/ (

1
ε

)2fd
)

.

See Theorem 3.1(ii) for details.
• We present a lower bound for answering ε-approximate range queries over κ-smooth convex

ranges and over any faithful semigroup. We show that, irrespective of space, the query time
in the algebraic decision-tree model, is at least Ω

(
log n + (1/ε)

d−1
2

)
. See Theorem 4.1 for

details.
• We show that an existing data structure for approximate spherical range searching [4] can

be generalized to answer ε-approximate range queries for κ-smooth convex ranges over any
idempotent semigroup. We show that, for any fixed κ, queries can be answered from a data
structure of space O(n/ε) in time O

(
log n + (1/ε)

d−1
2

)
. See Theorem 4.2 for details. As

in [7] we assume that ranges satisfy the unit-cost test assumption, which implies the primitive
operations involving ranges can be computed in constant time. See Section 4.2 for a formal
definition.

Table 1 summarizes both our results and recent results on the complexity of approximate
range searching for Euclidean balls, κ-smooth, and rotated unit hypercube ranges in dimension d,
assuming n points. To simplify and clarify the ε-dependencies with dimension, we have explicitly
omitted factors involving log n and ε-factors that are independent of d. For the sake of comparison,
we also provide known bounds for Euclidean balls and general convex ranges from [4], [5] and [7].
All these results assume either O(n) or O(n/ε) space, except the lower bound for κ-smooth ranges
in the idempotent case, which holds independent of space.

The table shows that in the case of roughly linear space, approximate range searching can be
performed most efficiently for Euclidean balls and smooth convex ranges over idempotent semi-
groups. It is not hard to see intuitively why this is to be expected. Approximate range searching
in the semigroup arithmetic model is similar to a shape approximation problem, where the ob-
jective is to approximately cover a shape with a small number of precomputed canonical shapes
(corresponding to the generator subsets). It is possible to approximately cover smooth ranges and
Euclidean balls with O(1/ε(d−1)/2) overlapping large Euclidean balls. This is not possible (within
the given space bounds) when the range has sharp corners or when the semigroup is integral.

Converting this intuition into lower bound proofs involves considerable work. Our lower bound
proofs for rotated unit hypercubes are based on the general framework developed by Chazelle [13]
for exact simplex range searching and Brönnimann, Chazelle, and Pach [11] for exact halfspace
range searching. Both papers are based on a number of geometric tools, such as the isoperimetric

4

Idempotent Integral

Euclidean Balls Lower Bound 1/ε
d
2 [5] 1/εd [5]

Upper Bound 1/ε
d
2 [5] 1/εd [4]

Rotated Unit Hypercubes Lower Bound 1/εd−2
√

d (new) 1/εd (new)
Upper Bound 1/εd [7]

κ-Smooth Convex Bodies Lower Bound 1/ε
d
2 (new) 1/εd [5]

(unit-cost test) Upper Bound 1/ε
d
2 (new) 1/εd [7]

Table 1: Query times (ignoring logarithmic and 1/εO(1) factors) for n points either linear or roughly
linear space.

inequality, the slicing lemma, and Macbeath regions, which were tailored to these particular prob-
lems. In our case, these tools need to be adapted and generalized to our new setting. We believe
that these generalizations, especially the generalizations of Macbeath regions may be of indepen-
dent interest. Our lower bound for κ-smooth ranges is based on an entirely different decision-tree
approach.

The remainder of the paper is organized as follows. In Section 2 we present preliminary def-
initions, which will be used throughout the paper. In Section 3 we give our main result, namely
lower bounds on the complexity of approximate range searching for rotated unit hypercubes for
both idempotent and integral semigroups. In Section 4 we present lower and upper bounds on the
complexity of range searching for κ-smooth convex ranges over idempotent semigroups. Concluding
remarks are given in Section 5.

2 Preliminaries

Before presenting our results we begin with some general definitions and assumptions. Throughout
we assume that the dimension d is a fixed constant greater than 1, and treat n and ε as asymptotic
quantities. Unless otherwise stated, we will use the term “constant” to refer to any fixed quantity,
which may depend on d but not on n or ε. To avoid specifying the many real-valued constants that
arise in our constructions and analyses, we will often hide them using asymptotic notation. For
positive real x, we use the notation O(x) (resp. Ω(x)) to mean a quantity whose value is at most
(resp. at least) cx for an appropriately chosen constant c.

Let (S, +) be a commutative semigroup. Our lower bounds assume that the semigroup is
faithful, meaning that any two identically equal linear forms have the same set of variables [13].
For example, (N, +), (R, min), and ({0, 1},∨) are faithful, but ({0, 1}, + mod 2) is not. We will
assume that each element of S can be stored in unit space, and that for any two elements x, y ∈ S,
their semigroup sum x + y can be computed in constant time. Let P be a set of n points in Rd

and let w : P → S be a function that assigns a semigroup value in S to each point in P . For any
subset G of P , we define its weight w(G) =

∑
p∈G w(p), where the summation is taken over the

semigroup. Let Q denote the set of query ranges in the range space. Recall that in the exact range
searching problem, we are required to preprocess P so that for any query range η ∈ Q, we can
efficiently compute w(P ∩ η). Let η+ denote the expanded range, consisting of all the points that
lie within distance ε · diam(η) of η. A valid answer to an approximate range query is w(P ′), where

5

P ′ is any subset of P satisfying P ∩ η ⊆ P ′ ⊆ P ∩ η+.
Let us recall some of the basic elements of the semigroup arithmetic model for range searching

[17, 21]. Given a set {x1, . . . , xn} of n variables over S, a generator G(x1, . . . , xn) is a linear form∑n
i=1 αixi, where the values αi are nonnegative integers, not all zero. A storage scheme is a set of

generators {G1, . . . , Gm} satisfying the following property. For any query range η ∈ Q, there exists
a set Iη ⊆ {1, . . . , m} and a set of labeled nonnegative integers {βi : i ∈ Iη} such that

w(P ∩ η) =
∑

i∈Iη

βiGi(w(p1), . . . , w(pn)) (1)

holds for any weight function w. The query time for η is defined to be the size of the smallest such
set Iη. In this model the space is the number of generators in the storage scheme. Intuitively, the
generators correspond to partial sums that have been precomputed in the data structure. The query
time in the semigroup arithmetic model counts the minimum number of semigroup operations on
these generators needed to answer a query. The time for auxiliary operations such as determining
which generators to use is ignored.

For our purposes the values αi will be either 0 or 1, which means that we may identify each
generator with a subset of the points P . In this context, the time to answer a query η is the smallest
set of generators (subsets of P) whose union covers P ∩ η. More formally, let G be any storage
scheme consisting of m generators. For any range η ∈ Q, define Aη ⊆ G to be the smallest subset
of generators of G such that

⋃
G∈Aη

G = P ∩ η. The worst-case query time for a storage scheme
G is the maximum of |Aη| over all ranges η ∈ Q. Given a space bound m, the worst-case query
time complexity in the semigroup arithmetic model is the minimum worst-case query time over all
storage schemes G of size m [13]. The only modification necessary for approximate range searching
is to define Aη ⊆ G to be the smallest set such that the union of the corresponding generators,⋃

G∈Aη
G, contains all the points of P lying within η and none of the points lying outside of η+.

Let us define some other terms that will be used throughout the presentation. Let Ud = [0, 1]d

denote the unit hypercube in Rd, and given a body K in Rd, let µ(K) denote its Lebesgue measure.
Let O denote the origin of the coordinate system. Given a point p ∈ Rd, let b(p, r) denote the
closed Euclidean ball of radius r centered at p. Consider a compact (closed and bounded) convex
body K in Rd, and let u be a nonzero vector in Rd. The width of K in the direction u is defined
to be the orthogonal distance between the two supporting hyperplanes for K that are orthogonal
to u. We denote this by wid(K , u). (See Fig. 1(a).) The closed region bounded by two parallel
(d − 1)-dimensional hyperplanes in Rd is called a slab, and its width is the orthogonal distance
between these hyperplanes.

w

K

C

K

H

C2

2w

K

uu

wid(K , u)

u

(b) (c)(a)

Fig. 1: Widths and caps.

6

Any hyperplane J that does not pass through the origin defines two closed halfspaces, one that
contains the origin and one that does not. We refer to the first as the inner halfspace, denoted
J≤ and the second as the outer halfspace, denoted J≥. Given a halfspace H, let ∂H denote its
bounding hyperplane. We say that two halfspaces are parallel if their bounding hyperplanes are
parallel, and they both lie on the same sides of their respective bounding hyperplanes.

Consider a compact, convex body K and a halfspace H that has a nonempty intersection with
K. Let u be a vector orthogonal to ∂H. (See Fig. 1(b).) The intersection C = K ∩ H is called
the cap of K generated by H. The width of a cap, denoted wid(C), is defined to be the width of
C along its defining direction u. Given such a cap C of width w and a real λ ≥ 0 we define the
λ-expansion of C, denoted Cλ, to be the cap of K of width min(λw,wid(K , u)) generated by an
appropriate translation of H. (See Fig. 1(c).) If λw exceeds the width of K in the direction u, then
the expansion is simply equal to K itself.

The query ranges used in our lower bound analysis will consist of translates and rotations of a
hypercube of side length 1/2, which we will call quads. Our proof focuses on the portion of each
quad that lies near one of its k-dimensional faces, for a suitably chosen k. To make this more
precise, given an integer r, where 1 ≤ r ≤ d, define an r-corner to be a sequence of r hyperplanes
that are all mutually orthogonal and none of which passes through the origin. Given a d-corner
L = 〈J1, J2, . . . , Jd〉, define the corresponding quad, denoted ¤L, to be the unique hypercube of
side length 1/2 that has a vertex at the intersection of the hyperplanes of L and which lies in
the intersection of the corresponding inner halfspaces,

⋂
i Ji

≤. (See Fig. 2(a).) Note that such a
hypercube is generally not axis-aligned. Given a quad ¤L, let ¤+

L denote the ε-expanded range
consisting of all the points of ¤L and all the points that lie within distance ε · diam(¤L) of its
boundary. (See Fig. 2(b).)

(b)

O
J2

1/2

J1

1/2 ε · diam(¤L)

O
J2

J1

(a)

Fig. 2: The quad ¤L defined by L = 〈J1, J2〉 (a) and the expanded quad (b).

Let Q denote the set of all quads, which will form the ranges of our range space. Given n points
and any storage scheme for Q consisting of m generators, let t(n,m) denote the worst-case query
time in the arithmetic model, that is, the minimum number of generators needed to answer any
query of Q. The objective of the next section is to establish a lower bound on t(n,m).

3 Lower Bound for Rotated Unit Hypercubes

In this section we prove the following theorem establishing a lower bound in the semigroup arith-
metic model on the complexity of approximate range searching for unit hypercubes over any faithful
semigroup.

7

Theorem 3.1 Let d ≥ 2 be a fixed dimension, and let f be a fixed parameter 0 ≤ f ≤ 1. Consider
ε-approximate range searching for n points over the range space of d-dimensional unit hypercubes
for a weight function over any faithful semigroup, with m = n(1/ε)f2d2

units of storage (that is,
ρ = (1/ε)f2d2

). Then for all sufficiently small ε and sufficiently large n, we have the following.

(i) For arbitrary (and hence idempotent) semigroups the worst-case query time in the semigroup
arithmetic model is at least

Ω

((
1
ε

)d−2
√

d
/(

1
ε

)2fd
)

.

(ii) If the semigroup is integral, then under the assumption of convex generators the query time
is at least

Ω

((
1
ε

)d−2
/ (

1
ε

)2fd
)

.

Before giving the proof, let us consider some important special cases. When f = 0 and the
semigroup is idempotent this implies that with O(n) space the query time is at least Ω(1/εd−2

√
d).

For the integral case the corresponding bound is Ω(1/εd−2). In order to bring the query time down
to something approaching the Ω(1/ε(d/2)−O(1)) lower bound for Euclidean balls over idempotent
semigroups, we consider f = 1/4. This leads to a query time of at least Ω(1/ε(d/2)−2

√
d). However,

in this case the space increases dramatically to O(n(1/ε)d2/16), which is O(n(1/ε)Ω(d2)). Thus,
rotated unit hypercubes are significantly harder than Euclidean balls. This stands in stark contrast
to exact range searching, where the two problems have very similar complexities as dimension
increases.

Our lower bound is based on the general framework presented by Brönnimann, Chazelle, and
Pach [11] (referred to henceforth as BCP) for establishing a lower bound on the complexity of
halfspace range searching in the semigroup arithmetic model. Before presenting our methods, we
begin with a high-level overview of this framework. The data point instance used in the proof
consists of a set of uniformly distributed points in Ud. This makes it possible to relate the volume
of a convex subset of Ud to the number of data points it contains.

The proof begins by defining a suitable set of query ranges and a suitable region of interest
for each query range, which lies close to the range’s boundary. The principal source of complexity
in range searching is handling points that are close to the range’s boundary. For halfspace range
searching the region of interest is defined to be a thin slab close to the range’s boundary. Recall
that the goal in the arithmetic semigroup model is to relate the space (number of generators) to
the query time (maximum number of generators needed to answer any query). In order to establish
this relationship, a probability distribution is defined on the set of query ranges, and a lower bound
is obtained by showing that if a generator covers a large number of points in the region of interest
for some range, then it cannot be useful in this manner for many query ranges.

To understand the proof strategy better, we need to elaborate on this last point. Clearly, a
worst-case query time of t implies that t generators suffice to cover all the data points in the region
of interest. An easy implication is that at least half the points in the region of interest must
be covered by generators contained within the ε-expanded query range that each cover at least a
fraction of 1/2t of the points in the region of interest. We call these generators (absolutely) fat
with respect to the query. The suggests the following definition of usefulness. Consider a random

8

variable that is zero if the generator is not fat with respect to the query, otherwise it is equal to the
number of points in the region of interest covered by the generator. The usefulness of a generator
is the expected value of this random variable over all ranges.

Techniques are presented in the BCP paper for establishing an upper bound on the usefulness of
any generator. (We will describe these later.) Taking the product of this quantity with the number
of generators yields an upper bound on the expected number of points covered by generators that
are fat with respect to the query. By our earlier remarks, multiplying this by 2 gives an upper
bound on the expected number of points in the region of interest. Using the fact that the data set
is uniformly distributed, we can easily lower bound the expected number of points in the region of
interest. Relating this back to the upper bound implies a lower bound on the number of generators
necessary to achieve query time t.

We return to the BCP techniques for bounding the usefulness of a generator. These are designed
specifically for halfspace queries. They involve an isoperimetric inequality and a decomposition into
convex bodies. Their isoperimetric inequality bounds the probability that a fixed convex body is
contained within a random query slab, as a function of the volume of the convex body and the
thickness of the slab. Their decomposition involves breaking the convex hull of the generator into a
small number of convex bodies, called Macbeath regions. The desired property is that if a generator
is fat with respect to a query halfspace, then one of these bodies is contained completely within the
halfspace. Furthermore, its volume is proportional to the generator’s volume of intersection with
the halfspace.

Our proof uses this framework as adapted to the context of approximate range searching [5].
However, we need to modify the techniques used to bound the usefulness of generators. Recall
that our query ranges are hypercubes. We define our region of interest to be the intersection of
r slabs associated with the facets of the hypercube, where r is a parameter between 1 and d,
which is chosen to achieve the best bound. We modify BCP’s isoperimetric inequality to bound
the probability that a fixed convex body is contained within a randomly generated intersection of
slabs. This is presented in Section 3.1. The decomposition of convex bodies needs to be generalized
as well from halfspaces to the intersection of r mutually orthogonal halfspaces. The key elements
are presented in Section 3.2, and mathematical technicalities upon which the method relies are
formally established in Sections 3.2.1 and 3.2.2.

Once we have established the appropriate generalizations of the BCP techniques to our context,
we then proceed with the main part of the analysis of the idempotent case, which we present in
Section 3.3. One additional issue that arises only in the context of approximate range queries
involves the thickness of the region of interest. In the BCP proof the thickness of the region of
interest is adjusted to control the expected number of points that lie within the region. Thus, as n
increases the thickness decreases. In approximate range searching, however, it is counterproductive
to reduce the thickness of the region of interest to be smaller than the allowable approximation
error. Following the approach of our earlier work [5], we handle this by first generating many
separate instances of the same point distribution, called replicants, next we apply the lower bound
argument separately to each replicant, and finally we combine the results. These three elements
are presented in Sections 3.3.1, 3.3.2, and 3.3.3, respectively. Finally, in Section 3.4 we explain how
to modify the analysis in the previous sections to obtain the lower bound for the integral case.

9

3.1 Generalized Isoperimetric Inequality

An important tool in our analysis is an appropriate generalization of Chazelle’s isoperimetric in-
equality [11,13] to the context of r-corners. In this section we present this result.

Let O denote the origin of the coordinate frame in Rd. For any hyperplane H not passing
through O, let q = (x1, . . . , xd) denote the point on H such that the segment Oq is orthogonal to
H. As in [13], define the measure of any set X of hyperplanes as follows:

∫

X
dH =

∫

H∈X

dx1 ∧ . . . ∧ dxd

‖q‖d−1
.

The choice of this measure is based on the fact that it is invariant under rigid motions of Rd [13].
We will be applying this measure to the set of hyperplanes that pass through some bounded region
of Rd. It is well known that the total measure of such a set of hyperplanes is bounded [13], and
therefore we can interpret the measure as a probability density by dividing it by the total measure
of the region. We shall say that a hyperplane is random over a set X of hyperplanes in Rd of
bounded measure if it is selected with the probability density associated with dH.

Throughout, unless otherwise specified we will use the term hyperplane to denote a (d − 1)-
dimensional hyperplane in Rd. When dealing with hyperplanes of arbitrary dimension k, for 0 ≤
k ≤ d − 1, we will often use the term k-flat. Let H ′ denote an arbitrary k-flat in Rd. By using
any rigid transformation φ that maps Rk to H ′, we can naturally transform the above measure
on (k − 1)-dimensional hyperplanes in Rk to a measure on (k − 1)-flats that lie on H ′. Thus we
can define the notion of a random (k − 1)-flat on H ′. Observe that the resulting measure will be
invariant under rigid motions of Rd that fix H ′. Because the measure in Rk is invariant under rigid
motions, the choice of φ is unimportant. But for the sake of concreteness, let us assume that it
maps the origin of Rk to the point O′ of H ′ that is closest to the origin of Rd.

Recall that an r-corner is a sequence of r mutually orthogonal hyperplanes. Observe that an r-
corner can be specified recursively by giving a sequence of flats 〈f1, f2, . . . , fr〉, where for 1 ≤ i ≤ r,
the flat fi is a (d−i)-flat that lies on fi−1, and f0 is the full d-dimensional space Rd. The associated
r-corner Lr = 〈J1, J2, . . . , Jr〉 is defined by setting J1 to f1, then for i = 2, 3, . . . , r, we define Ji to
be the unique hyperplane that passes through fi and is orthogonal to Jj , for 1 ≤ j ≤ i − 1. (See
Fig. 3.)

J1
f2

f1

f3

f2

f1

f3

J2
J3

Fig. 3: The 3-corner determined by a sequence of flats.

In order to define a random r-corner consider the following random process, which generates a
sequence of nested flats 〈f1, f2, . . . , fd〉. Recall that f0 = Rd. For i ≥ 1, assume inductively that

10

〈f0, f1, . . . , fi−1〉 have already been generated. Let O′
i−1 be the closest point of fi−1 to the origin.

Consider the set of (d − i)-dimensional flats on fi−1 that intersect the ball of radius
√

d centered
at O′

i−1. From this set select fi randomly with the probability density associated with dH. We
say that the r-corner associated with this sequence of flats 〈f1, f2, . . . , fr〉 is random. Since we
only consider hyperplanes that lie within some fixed distance of the origin, the resulting set is of
bounded measure. Let dLr denote the corresponding probability density, and let dL = dLd.

Before presenting our generalization of the isoperimetric inequality, let us review Chazelle’s
original isoperimetric inequality. Let α > 0 be a real parameter. Given any hyperplane J , let
Sα(J) denote the slab consisting of points in Rd whose distance from J is at most α. This slab has
width 2α. Recall that Ud denotes the unit hypercube in dimension d.

Lemma 3.1 (Chazelle [13]) Given any compact convex body K ⊆ Ud,
∫

Sα(H)⊇K
dH = O

(
αd+1

µ(K)

)
.

When expressed in the language of probability theory this lemma implies that if H is selected
randomly from a set of hyperplanes in Rd whose measure is Θ(1), then the probability that the
slab Sα(H) contains K is at most O

(
αd+1/µ(K)

)
.

Let s be an integer 1 ≤ s ≤ r. Given any r-corner Lr = 〈J1, . . . , Jr〉, we can associate it with
a region, called an s-corner slab, which is the intersection of the α-distance slabs associated with
the first s of its defining hyperplanes. More precisely, let Sα

s (Lr) = ∩s
i=1S

α(Ji) denote this s-corner
slab. When s = r we omit the subscript, that is Sα(Lr) = Sα

r (Lr). We define the width of this
s-corner slab to be 2α. We now establish our generalization of the isoperimetric inequality from
hyperplane slabs to r-corner slabs.

Lemma 3.2 Given any compact convex body K ⊆ Ud,
∫

Sα(Lr)⊇K
dLr = O

((
αd+1

µ(K)

)r)
.

Proof : The integral on the left-hand side above represents the probability that the r-corner slab
of width 2α associated with a random r-corner contains K. Let Lr = 〈J1, . . . , Jr〉 be any r-corner.
By our earlier discussion, Lr can be represented alternatively as a sequence of flats 〈f1, . . . , fr〉. By
definition, the r-corner slab Sα(Lr) contains K if and only if Sα(Ji) contains K, for 1 ≤ i ≤ r.

Since J1 (= f1) is selected randomly from a set of Θ(1) measure, by Lemma 3.1 the probability
that the slab Sα(J1) contains K is at most O

(
αd+1/µ(K)

)
. Now consider any hyperplane f1 such

that Sα(f1) ⊇ K. Let K ′ be the orthogonal projection of K onto f1. Let Sα
f1

(f2) denote the slab
consisting of points in f1 whose distance from f2 is at most α. Observe that Sα(J2) ⊇ K if and
only if Sα

f1
(f2) ⊇ K ′. Again, by observing that f2 is selected randomly from a set of measure Θ(1),

and applying Lemma 3.1, it follows that the probability that the slab Sα
f1

(f2) contains K ′ is at
most O

(
αd/µ(K ′)

)
.

Since Sα(f1) ⊇ K and this slab has width 2α, it follows that µ(K) ≤ 2α · µ(K ′). Therefore
assuming that Sα(J1) contains K, the conditional probability that Sα

f1
(f2) contains K ′ (and hence

of Sα(J2) containing K) is at most O
(
αd+1/µ(K)

)
. Continuing in this manner, we see that the

integral in the statement of the lemma is the product of r factors of αd+1/µ(K), ignoring constant
factors in d. ¤

This leads to the following lemma, which will be useful in our analysis.

11

Lemma 3.3 Let r be any integer where 1 ≤ r ≤ d. Given any compact convex body K ⊆ Ud, we
have ∫

Sα
r (L)⊇K

dL = O

((
αd+1

µ(K)

)r)
.

Proof : The left-hand side is the probability that the r-corner slab associated with a random d-
corner contains K. In view of the definition of dL and dLr this quantity is the same as

∫
Sα

r (L)⊇K dLr.
The claim now follows from Lemma 3.2. ¤

3.2 Macbeath Regions and Generalizations

The slicing lemma is another key in BCP’s lower bound proof [11]. Intuitively it states that, given a
convex body K ⊂ Rd of unit volume, and 0 < β < 1, there exists a collection of O

(
(1/β)1−2/(d+1)

)
disjoint convex bodies, such that for any cap of K of volume at least β, one of these bodies lies
entirely within the cap and its volume is proportional to the volume of the cap.

The concept of a Macbeath region was an integral element in the proof of the slicing lemma
of [11]. Given a compact convex body K, a point x ∈ K, and a real number λ > 0, the set

M(x, λ) = x + λ((K − x) ∩ (x−K))

is called a Macbeath region. Note that a Macbeath region is convex and centrally symmetric about
the point x, and if λ ≤ 1, then M(x, λ) ⊆ K. Macbeath regions have numerous applications in the
theory of convex bodies [8–10].

Our ranges are not halfspaces, but rather involve the intersection of a number of halfspaces. In
this section we establish Lemma 3.5 below, which is our generalization of the slicing lemma of [11] to
the intersection of multiple halfspaces. Informally this lemma states that given a compact, convex
body K and a volume parameter ρ, there exists a relatively small number of (overlapping) convex
bodies contained within K satisfying the following property. Given any collection of halfspaces
whose region of intersection with K has volume exceeding ρ, at least one of these convex bodies
will fully contain this region of intersection, and it will not be significantly larger in the sense that
it will be contained within a suitable expansion of each of the caps defined by these halfspaces.
(Note that one difference between our slicing lemma and that of [11] is that the body is contained
within the cap, whereas ours contain the cap. This distinction seems to be necessary for technical
reasons arising from our approach.)

Throughout this section we define the real parameter β0 = 1/(2d)2d. Recall that given a cap
C and positive real λ, the notation Cλ denotes the expansion of C by a width factor of λ. Before
presenting our slicing lemma, we present the following a simpler version, which involves a single
halfspace. (See Fig. 4(a) and (b).) It is a technical modification of the slicing lemma of [11].

Lemma 3.4 There exist constants c1, c2, c3 > 1 such that the following holds. Consider a compact,
convex body K ⊂ Rd of volume v and a positive real ρ ≤ β0v. Let β = ρ/v. There exists a collection
of at most c1(1/β)1−2/(d+1) convex bodies K1,K2, . . . ⊆ K such that

(i) ρ ≤ µ(Ki) ≤ c2ρ, for all i.
(ii) Let H be a halfspace, and let C denote the cap K ∩H. If µ(C) = ρ then there exists a Kj

such that (a) Kj ⊇ C, and (b) Kj ⊆ Cc3.

12

K

H2

H1
Kj

(c)

K

(a)

C = K ∩H

K

H

(b)

Kj

Fig. 4: Slicing lemmas
.

We provide a proof of the above lemma in Section 3.2.1. We will then apply this along with
induction to prove the following slicing lemma. (See Fig. 4(c).) Its proof will be presented in
Section 3.2.2.

Lemma 3.5 (Slicing Lemma) There exist positive constants c4 and λ such that the following holds.
Consider a compact, convex body K ⊂ Rd of volume v, a positive real ρ ≤ v, and a positive integer
r. Let β = ρ/v. There exists a collection of at most

cr
4

(
1
β

)1− 2
d+1

logr−1

(
2
β

)

convex bodies K1,K2, . . . ⊆ K such that given any r halfspaces H1,H2, . . . , Hr where µ(K ∩ (H1 ∩
H2 ∩ · · · ∩Hr)) ≥ ρ, there exists a body Kj such that

(i) Kj ⊇ K ∩ (H1 ∩H2 ∩ · · · ∩Hr), and
(ii) for 1 ≤ i ≤ r, Kj ⊆ Cλ

i , where Cλ
i is the λ-expansion of the cap Ci = K ∩Hi.

3.2.1 Proof of Lemma 3.4

The proof of Lemma 3.4 follows from extensive but relatively straightforward modifications of the
methods appearing in [8], [10], [11], and [16]. Before presenting the proof, we review a number of
facts about Macbeath regions that will be useful for us. The first follows immediately from the
definition of the Macbeath region. Throughout, K will denote a compact convex body, and H will
denote a halfspace. Let xH denote the center of mass of the section K ∩ ∂H.

Lemma 3.6 Let K be a compact, convex body, and let H be a halfspace. Let C = K ∩H be a cap.
Then M(xH , 1) ⊆ C2.

The following lemma, proved by Ewald, Larman, and Rogers [16], is useful for establishing
containment relationships between the Macbeath regions generated by suitably close points.

Lemma 3.7 Let K be a compact, convex body. If for some x, y ∈ K, M
(
x, 1

2

)∩M
(
y, 1

2

) 6= ∅, then
M(x, 1) ⊂ M(y, 5).

The next result asserts that each suitably thin cap of K is contained within a Macbeath region
centered on the cap’s defining hyperplane. It was first proved by Ewald, Larman, and Rogers [16],
but we use a variant due to Brönnimann, Chazelle, and Pach [11].

13

Lemma 3.8 Let K ⊂ Rd be a compact convex body containing the ball of radius r centered at the
origin. Let H be a halfspace not containing the origin such that the distance between ∂H and one
of the supporting hyperplanes of K parallel to ∂H is at most r/3. Then K ∩H ⊆ M(xH , 3d).

Given a compact convex body K and a real number β > 0, let Kβ be the set of all points of K
not contained in any halfspace H such that µ(K ∩H) = β. Kβ is called the floating body1 of K for
β. Bárány and Larman [10] established an upper bound on the volume of the region obtained by
subtracting the floating body from the original convex body. This region is called the wet part of
K.

Lemma 3.9 Let K ⊂ Rd be a compact convex body of unit volume, and let β > 0 be any real
number. Then µ(K \Kβ) = O

(
β

2
d+1

)
.

The following facts are easy to prove, and will be useful for the rest of our development. The
first is a simple fact about centrally symmetric convex bodies. A proof appears in Bárány [8].

Lemma 3.10 Let A and B be centrally symmetric convex bodies with center points a and b, re-
spectively, where B ⊂ A. Then for any λ > 1, b + λ(B − b) ⊂ a + λ(A− a).

The following well known result, related to the John ellipsoid [18], states that any convex body
can be transformed by a volume preserving transformation so that it is nested between two balls
of similar radii. Recall that b(O, r) denotes the Euclidean ball of radius r centered at the origin.

Lemma 3.11 Given any compact convex body K ⊂ Rd, there exists a volume-preserving affine
transformation T such that b(O, r) ⊆ T (K) ⊆ b(O, d r), for some r > 0.

The next fact follows from straightforward geometric calculations. A proof can be found in
Lemma 2.7 of [11]. (Recall the constant β0 defined just prior to Lemma 3.5.)

Lemma 3.12 Let K ⊂ Rd be a compact convex body of unit volume such that b(O, r) ⊆ K ⊆
b(O, d r), for some r > 0. Let H be a halfspace such that µ(K ∩H) ≤ β0. Then the width of the
cap K ∩H is at most r/3.

We now present the proof of Lemma 3.4. As a convenience we assume that K has been scaled
to unit volume. It follows that we need to establish properties (i) and (ii), with β written in place
of ρ. Note that in light of Lemma 3.11, we may assume that K has been transformed so that
b(O, r) ⊆ K ⊆ b(O, d r), for some r > 0. Recall that for any halfspace H that intersects K, the
center of mass of the section K ∩ ∂H is denoted by xH .

Consider the following incremental process for constructing a set H of halfspaces. Initially
H is the empty set. A general step of this process works as follows. If there exists a halfs-
pace H such that µ(K ∩ H) = β and M

(
xH , 1

2

)
does not intersect any of the Macbeath regions{

M
(
xH′ , 1

2

)
: H ′ ∈ H}

, then add H to H. (Fig. 5(a) illustrates M
(
xH , 1

2

)
.) If no such H exists

the process terminates.
1The term floating body originates from the physical analogy with a buoyant object that is floating on the flat

surface of a body of water, so that the volume of the body lying beneath the water’s surface is β.

14

H

K

M(xH , 1/2)

xH

R(H ′)H ′

(a) (b)

Fig. 5: Entities used in the proof of Lemma 3.4.

We will show that the set of convex bodies

K = {M(xH′ , 15d) ∩K : H ′ ∈ H}
satisfies all the properties of this lemma.

Our first task is to bound the number of bodies in K. We begin by showing that |H| =
O((1/β)1−2/(d+1)). For each halfspace H ′ ∈ H, associate a region R(H ′) = M

(
xH′ , 1

2

) ∩ H ′ with
it. (See Fig. 5(b).) We claim that all the regions R(H ′) for H ′ ∈ H are contained in the wet part,
K\Kβ, and each has volume Ω(β). To prove the claim, note that since µ(K∩H ′) = β (by definition
of the floating body Kβ) we have K ∩ H ′ ⊆ K \ Kβ. Also, by definition of a Macbeath region,
M(xH′ , 1) ⊆ K. Therefore R(H ′) = M

(
xH′ , 1

2

) ∩H ′ ⊆ K ∩H ′. It follows that R(H ′) ⊆ K \Kβ.
Next we bound the volume of R(H ′). Since µ(K∩H ′) ≤ β0, by Lemma 3.12 it follows that the width
of the cap K ∩H ′ is at most r/3. By Lemma 3.8, M(xH′ , 3d) ⊇ K ∩H ′, and so µ(M(xH′ , 3d)) ≥ β.
It follows that µ

(
M

(
xH′ , 1

2

))
= Ω(β). Since Macbeath regions are centrally symmetric and ∂H ′

bisects M
(
xH′ , 1

2

)
it follows that

µ(R(H ′)) =
1
2
µ

(
M

(
xH′ ,

1
2

))
= Ω(β).

Since the regions R(H ′) for H ′ ∈ H are pairwise disjoint (by construction) and by Lemma 3.9,
µ(K \Kβ) = O

(
β

2
d+1

)
, it follows by a standard packing argument that

|H| ≤ µ(K \Kβ)
minH′∈H µ(R(H ′))

= O

((
1
β

)1− 2
d+1

)
.

Because the elements of K are in 1–1 correspondence with the elements of H, the same bound
applies to the number of bodies of K.

To complete the proof, we show that K satisfies conditions (i) and (ii) in the statement of
Lemma 3.4. To establish (i) consider a convex body K ′ = M(xH′ , 15d) ∩K, where H ′ ∈ H. We
showed above that M(xH′ , 3d) ⊇ K ∩H ′. Thus K ′ ⊇ K ∩H ′. Since µ(K ∩H ′) = β, it follows that
µ(K ′) ≥ β.

Next, we show that µ(K ′) is O(β). Recall that M(xH′ , 1) ⊆ K, which implies that M(xH′ , 1)∩
H ′ ⊆ K ∩H ′. Therefore, µ(M(xH′ , 1) ∩H ′) ≤ µ(K ∩H ′) = β. Recalling that Macbeath regions
are centrally symmetric and that ∂H ′ bisects M(xH′ , 1) we have

µ(M(xH′ , 1)) = 2µ(M(xH′ , 1) ∩H ′) = O(β).

15

Thus, µ(K ′) ≤ µ(M(xH′ , 15d)) = O(β), as desired. This completes the proof of (i).
It remains to show that for any halfspace H with µ(K ∩ H) = β there exists a convex body

K ′ ∈ K that satisfies conditions (ii.a) and (ii.b). From the construction of H, it is clear that there
exists H ′ ∈ H such that M

(
xH , 1

2

) ∩M
(
xH′ , 1

2

) 6= ∅. We claim that K ′ = M(xH′ , 15d) ∩K is the
desired body.

Let C = K ∩ H. We first establish (ii.a), namely that K ′ ⊇ C. By the same reasoning that
was used above to show that M(xH′ , 3d) ⊇ K ∩ H ′, we can show that M(xH , 3d) ⊇ K ∩ H.
Since M

(
xH , 1

2

) ∩M
(
xH′ , 1

2

) 6= ∅, by Lemma 3.7 we have M(xH , 1) ⊂ M(xH′ , 5). Since Macbeath
regions are centrally symmetric, we can apply Lemma 3.10 with A = M(xH′ , 5), B = M(xH , 1)
and λ = 3d to obtain M(xH , 3d) ⊂ M(xH′ , 15d). Since M(xH , 3d) ⊇ K ∩ H, it follows that
M(xH′ , 15d) ⊇ K ∩H. Thus, K ′ = M(xH′ , 15d) ∩K ⊇ K ∩H, as desired.

To show (ii.b), we will use a similar argument as used for condition (ii.a). Recall the proof of
condition (ii.a). By swapping the roles of H and H ′, we have by Lemma 3.7 that M(xH′ , 1) ⊂
M(xH , 5). By Lemma 3.10 with A = M(xH , 5), B = M(xH′ , 1) and λ = 15d, we obtain
M(xH′ , 15d) ⊂ M(xH , 75d). From Lemma 3.6 we have M(xH , 1) ⊆ C2, where C = K ∩ H.
Therefore, M(xH , 75d) ∩ K ⊆ C(1+75d). Thus, M(xH′ , 15d) ∩ K ⊆ C(1+75d), which establishes
condition (ii.b), and completes the proof of Lemma 3.4.

3.2.2 Proof of Lemma 3.5

Now that we have established Lemma 3.4, we use it to prove Lemma 3.5. Before doing so we
provide two preliminary lemmas. The first lemma shows that if a cap for some convex body has
sufficiently high volume, then its expansion by a suitable constant contains the entire body.

Lemma 3.13 There exists a constant λ > 1 such that the following holds. Let K ⊂ Rd be a
compact, convex body of unit volume, and let H be a halfspace in Rd. Let C denote the cap K ∩H.
If µ(C) ≥ β0, then K ⊆ Cλ.

Proof : In view of Lemma 3.11, it suffices to prove this lemma for K such that b(O, r) ⊆ K ⊆
b(O, d r), for some r > 0. Let H be a halfspace such that the cap C = K∩H has volume µ(C) ≥ β0.
We will show that wid(C) ≥ β0r/dd, which will imply that the λ-expansion of C contains K, for
λ = 2dd+1/β0.

Let ωd denote the volume of a d-dimensional unit ball. For the sake of contradiction, suppose
that wid(C) < β0r/dd. Since K ⊆ b(O, d r), the (d− 1)-dimensional cross-sectional volume of the
intersection of K with any hyperplane, is at most ωd−1(d r)d−1. It follows that

µ(C) < ωd−1(d r)d−1 β0r

dd
≤ β0ωdr

d,

where we have used the fact that ωd−1 ≤ dwd. Since b(O, r) ⊆ K, we have ωdr
d ≤ µ(K) = 1. Thus

µ(C) < β0, which contradicts our initial assumption. It follows that wid(C) ≥ β0r/dd, as desired.
¤

The second lemma shows that two parallel caps (that is, bounded by parallel halfspaces) of
similar volumes have similar widths. (Note that the converse is also true, but we will not need it.)
The proof is similar to that of Theorem 7 in [10] by Bárány and Larman.

Lemma 3.14 Let K ⊂ Rd be a compact, convex body, and let H1 and H2 be two parallel halfspaces,
where H1 ⊆ H2. Consider the two caps C1 = K ∩ H1 and C2 = K ∩ H2, and suppose that
µ(C2) ≤ 2µ(C1). Then wid(C2) ≤ 2d · wid(C1).

16

Proof : Note that it suffices to prove the lemma under the assumption that both ∂H1 and ∂H2

intersect K. Let u denote the unit vector orthogonal to the bounding hyperplanes of H1 and H2.
For 0 ≤ z ≤ 1, let J(z) denote the hyperplane {x : (x · u) = z}. Through an appropriate
translation, we may assume that J(0) is a supporting hyperplane to K. Finally, by directing u
properly, we may assume that ∂H1 = J(z1) and ∂H2 = J(z2), where 0 ≤ z1 ≤ z2. (See Fig. 6.)
Let V1 be the maximum value of the (d− 1)-dimensional cross-sectional volume µ(J(z)∩K) in the
range 0 ≤ z ≤ z1. Clearly µ(C1) ≤ V1z1.

y1
V2

y2

J(0)
J(z1) J(z2)

V1

C2C1

u

Fig. 6: Proof of Lemma 3.14.

Next we compute a lower bound on µ(C2). Let y1 and y2 be any points in the cross-section
J(0) ∩K and J(z2) ∩K, respectively. Let V2 be the maximum value of µ(J(z) ∩K) in the range
0 ≤ z ≤ z2 and suppose that this maximum is realized at z = z′. Observe that C2 contains the
two cones with common base J(z′)∩K and apexes at y1 and y2, respectively. (See Fig. 6.) As the
sum of the volume of these two cones is V2z2/d, it follows that µ(C2) ≥ V2z2/d. Obviously V2 ≥ V1

and therefore µ(C2) ≥ V1z2/d. By our earlier remarks, µ(C1) ≤ V1z1, so we have µ(C2)/µ(C1) ≥
z2/(d z1). By the statement of the lemma, µ(C2)/µ(C1) ≤ 2. It follows that z2 ≤ 2 d z1, as desired.

¤
We now have all the pieces we need to prove Lemma 3.5. The idea is to apply Lemma 3.4

inductively for each halfspace. Consider applying this lemma directly to K where the value of ρ is
proportional to µ(K ∩H1). Given the first halfspace H1, it follows that there exists a convex body
Kj that encloses the cap K ∩H1. (See Fig. 7(a).) We then apply Lemma 3.4 recursively to each of
the bodies of this first-level decomposition, which provides a second-level decomposition of Kj . By
the lemma there exists a body in this second-level decomposition that contains the cap Kj ∩H2.
(See Fig. 7(b).) We continue in this manner for all r halfspaces.

K

(a)

H1 H1

Kj

H2

(b)

Fig. 7: Proof of Lemma 3.5
.

17

One complication in this approach is that, although we have a bound on the final volume
K ∩ (H1 ∩H2 ∩ · · · ∩Hr), we do not have a bound on the volume of individual caps like K ∩H1.
For this reason, when we apply the construction of Lemma 3.4, we will do it for a geometrically
increasing series of volume bounds, and then select the appropriate body at each step of the
induction.

Let us define this multi-level decomposition more formally. Consider a compact, convex body
K and let v = µ(K). Given a positive real ρ ≤ v, a ρ-decomposition of K is a set of convex bodies,
each contained within K, defined as follows.

Case I: If ρ ≥ β0v, then it is {K}.
Case II: If ρ < β0v, then it is the union of {K} together with the union of the sets of convex

bodies described in Lemma 3.4 for

ρ′ = β0v,
β0v

2
,
β0v

4
, . . . ,

β0v

2s−1
,

where s is the smallest integer such that ρ ≥ β0v/2s.

Note that the elements of the decomposition will generally overlap one another. Also, since
β0v/2s−1 > ρ, by property (i) of Lemma 3.4, it follows that the volume of each of these elements is
at least ρ.

Next, we introduce the concept of an r-level decomposition of K, which involves recursively
applying the decomposition to its own elements. As above, given K and ρ, and a positive integer r,
we define an r-level ρ-decomposition of K as follows. We assume that ρ ≤ µ(K). If r = 1, then it is
just a ρ-decomposition of K. Otherwise, for r > 1, for each convex body K ′ in the ρ-decomposition
of K recursively compute an (r−1)-level ρ-decomposition of K ′. The union of these decompositions
over all K ′ is the final r-level decomposition.

We will show that the r-level ρ-decomposition of K satisfies the conditions of Lemma 3.5. Our
first task is to bound the number of elements of an r-level decomposition. The proof is based on
an induction on r and the bound on the single level decomposition of Lemma 3.4.

To simplify notation somewhat, throughout the proof let f(d) = 1 − 2
d+1 denote the term in

the exponent in the statement of the lemma. For the basis case, assume r = 1. If β0v ≤ ρ ≤ v,
the ρ-decomposition consists of only one convex body, and the desired bound holds trivially. If
ρ < β0v, the number of convex bodies in the ρ-decomposition is at most

1 +
s−1∑

i=0

c1

(
2i

β0

)f(d)

.

(We have added 1 to account for K.) This is a geometric progression, and so is dominated by the
largest term, which is (2s−1/β0)f(d). By definition of s, ρ < β0v/2s−1, and so up to a constant
factor, the number of convex bodies in the ρ-decomposition is at most

(
2s−1

β0

)f(d)

≤
(

v

ρ

)f(d)

,

which is within the stated bound for a suitable constant c4.
For the induction step, assume that r > 1. If β0v ≤ ρ ≤ v, the r-level ρ-decomposition of K

consists of only one convex body. So the desired bound holds trivially. If ρ < β0v, consider the

18

set of convex bodies described in Lemma 3.4, where ρ′ is set to β0v/(2i). The size of this set is at
most c1

(
2i/β0

)f(d). The volume of each convex body in this set is at most min
(

c2β0

2i v, v
)
. By the

induction hypothesis the size of the (r − 1)-level ρ-decomposition constructed for each such body
is at most

cr−1
4

(
c2β0v

2iρ

)f(d)

logr−2

(
2v

ρ

)
.

Therefore, the size of the r-level decomposition is at most
(

s−1∑

i=0

c1

(
2i

β0

)f(d)

cr−1
4

(
c2β0v

2iρ

)f(d)

logr−2

(
2v

ρ

))
+ cr−1

4

(
v

ρ

)f(d)

logr−2

(
2v

ρ

)
. (2)

(The last term accounts for the (r − 1)-level decomposition of K.)
Simplifying Eq. (2), we find that the number of bodies in the r-level decomposition is at most

(
s−1∑

i=0

c1c
r−1
4

(
c2v

ρ

)f(d)

logr−2

(
2v

ρ

))
+ cr−1

4

(
v

ρ

)f(d)

logr−2

(
2v

ρ

)

≤ (s + 1)c1c
r−1
4 c

f(d)
2

(
v

ρ

)f(d)

logr−2

(
2v

ρ

)
. (3)

(The “+1” in the “(s + 1)” term is there to absorb the second term.)
Recall that ρ < β0v/2s−1, which yields s + 1 < log(4β0v/ρ). Since β0 = 1/(2d)2d, we have

s + 1 < log(2v/ρ). Thus, by further simplifying Eq. (3) the number of bodies of the decomposition
is at most

c1c
r−1
4 c

f(d)
2

(
v

ρ

)f(d)

logr−1

(
2v

ρ

)
.

By making c4 at least as large as c1c
f(d)
2 , we find that the number of bodies of the decomposition

is at most

cr
4

(
v

ρ

)f(d)

logr−1

(
2v

ρ

)
,

which completes the induction proof.
Trivially, all the convex bodies in the r-level decomposition of K are contained within K. It

remains to prove Properties (i) and (ii). Again, the proof is by induction on r.
For the basis case, assume r = 1. We need to show that for any halfspace H1 with µ(K∩H1) ≥ ρ,

there exists a convex body Kj in the 1-level ρ-decomposition of K such that (i) Kj ⊇ K ∩H1 and
(ii) Kj ⊆ Cλ

1 , where Cλ
1 is the λ-expansion of the cap K ∩H1. Henceforth, let C1 denote the cap

K ∩H1.
We consider two cases, based on µ(C1). First, suppose that µ(C1) ≥ β0v. Recall that the ρ-

decomposition of K contains K. Clearly, K ⊇ C1, so property (i) trivially holds. By Lemma 3.13,
K ⊆ Cλ

1 , for some constant λ, and so property (ii) also holds.
Next, suppose that ρ ≤ µ(C1) < β0v. Recall that β0v/(2s) ≤ ρ, so β0v/(2s) ≤ µ(C1) < β0v.

Therefore, for some i, 0 ≤ i ≤ s− 1, we must have

β0v

2i+1
≤ µ(C1) ≤ β0v

2i
.

19

Consider expanding the cap C1 by translating its defining hyperplane ∂H1 until the volume of
the cap is β0v/(2i). Let us denote this cap by C ′. Clearly, µ(C ′) ≤ 2µ(C1), and so it follows
from Lemma 3.14 that the width of C ′ is at most 2d · wid(C1). Recall that the ρ-decomposition
of K includes the set of convex bodies described in Lemma 3.4, where ρ′ is set to β0v/(2i). As
µ(C ′) = β0v/(2i), it follows from Lemma 3.4 that there exists some Kj in this set such that Kj ⊇ C ′

and Kj ⊆ (C ′)c3 for some constant c3. Since C ′ ⊇ C1 we have Kj ⊇ C1. Using the facts that the
width of C ′ exceeds the width of C1 by at most a constant factor, and Kj ⊆ (C ′)c3 , we have
Kj ⊆ Cλ

1 for a suitable constant λ.
For the induction step, assume that r > 1. Let H1,H2, . . . , Hr be any r halfspaces such that

µ(K∩(H1∩H2∩· · ·∩Hr)) ≥ ρ. Since µ(K∩H1) ≥ ρ, by the argument given for the basis case, there
exists a K ′ ⊆ K in the 1-level ρ-decomposition of K such that K ′ ⊇ K ∩H1 and K ′ ⊆ (K ∩H1)λ.
Since K ′ ⊇ K ∩H1 we obtain

K ∩ (H1 ∩H2 ∩ · · · ∩Hr) ⊆ K ′ ∩ (H2 ∩ · · · ∩Hr). (4)

It follows that µ(K ′ ∩ (H2 ∩ · · · ∩Hr)) ≥ ρ.
Applying the induction hypothesis, it now follows that the (r − 1)-level ρ-decomposition of

K ′ must contain a convex body Kj such that Kj ⊇ K ′ ∩ (H2 ∩ · · · ∩ Hr) and Kj is contained
within each of the expanded caps (K ′ ∩ Hi)λ, for 2 ≤ i ≤ r. Using Eq. (4), it follows that
Kj ⊇ K ∩ (H1 ∩H2 ∩ · · · ∩Hr), which proves property (i).

Next we prove property (ii). As just mentioned, we have Kj ⊆ (K ′ ∩ Hi)λ, for 2 ≤ i ≤ r.
Since K ′ ⊆ K, by definition, the width of cap K ′ ∩Hi is no larger than the width of cap K ∩Hi.
Therefore, for 2 ≤ i ≤ r, Kj ⊆ (K ∩ Hi)λ. Also, by our earlier remarks, K ′ ⊆ (K ∩ H1)λ and
Kj ⊆ K ′, which implies that Kj ⊆ (K ∩H1)λ. Thus, for 1 ≤ i ≤ r, we have Kj ⊆ Cλ

i , where Cλ
i

is the λ-expansion of the cap K ∩ Hi. This establishes property (ii), and completes the proof of
Lemma 3.5.

3.3 Lower Bound for Rotated Hypercubes: The Idempotent Case

Having now established the necessary geometric tools, we are ready to tackle the proof of Theo-
rem 3.1. This section is devoted to proving part (i) of this theorem, namely the lower bound in the
idempotent case. As mentioned earlier, the general structure of the proof is similar to the proof we
presented earlier for approximate spherical range searching [5], which in turn is an adaptation of
the BCP proof [11] for exact halfspace range searching.

We begin with some of the basic concepts and properties that will be used throughout the proof.
Recall that Ud denotes the unit hypercube in Rd. Let K be any convex body contained within Ud,
and let k = |P ∩ K|. The BCP proof employs the notion of scattered point sets [11], which will
be useful for us as well. A point set P ⊆ Ud is said to be scattered if the following holds for some
constant a′ > 1:

n

a′
µ(K)− log n

2
≤ k ≤ a′ n µ(K) +

log n

2
. (5)

Intuitively scattered point sets behave like uniformly distributed point sets in the sense that the
volume of a convex body is related to the number of points of the set it contains. This suggests
the following lemma, which is a trivial variant of Lemma 2.1 in [11].

Lemma 3.15 (Brönnimann, Chazelle, Pach) A random set of n points sampled uniformly and
independently in Ud is scattered with probability 1− o(1).

20

For our purposes it will be convenient to express scatteredness in terms of the following scattered-
point properties, which (as we shall see below) follow from the above definition. For some constant
a > 1:

Property 1: If µ(K) ≥ a log n
n , then k ≥ n

aµ(K).
Property 2: If k ≥ log n, then k ≤ a nµ(K).
Property 3: If k ≥ log n, then k ≥ n

aµ(K).

To see that these properties hold for any scattered set, first observe that the left inequality
of Eq. (5) implies Property 1 (for a ≥ 3a′/2), and the right inequality implies Property 2 (for
a ≥ 2a′). To see that Property 3 holds, we consider two cases. If the pre-condition of Property 1
holds, then the conclusion follows immediately. Otherwise, µ(K) < a log n

n , and since k ≥ log n we
have µ(K) < ak

n . In either case the post-condition of Property 3 holds.
Let r denote an integer parameter, 1 ≤ r ≤ d, whose value will be set later. Let ε denote the

approximation error. We assume throughout that ε is a sufficiently small real number between 0 and
1. Recall from Section 2 that Q denotes our range space, consisting of all quads, that is, hypercubes
of side length 1/2. Also recall that n denotes the number of points in the data set, m ≥ n denotes
the number of generators, and t = t(n,m) denotes the worst-case query time in the arithmetic
model over all the ranges in Q. Our bounds hold under the assumption that n is sufficiently large.
As mentioned earlier, following the approach of our earlier work [5] our proof involves three parts:
partitioning the set into a collection of disjoint sets called replicants, analyzing a single replicant,
and then combining the results. These are presented in the next three subsections.

3.3.1 Decomposition into Replicants

We construct a set P of n data points for which we will argue that the query time must be sufficiently
large for some range in Q. As mentioned above in the overview of the proof, we will assume that
P is composed of a collection of identical subsets, called replicants. Towards this end, let

n′ =
t

εr
log

t

εr
.

For simplicity we will assume that n is a multiple of n′. Consider any collection U of n/n′ unit
hypercubes whose interiors are pairwise disjoint. Our set P consists of a scattered set of n′ points
placed in each of these hypercubes.

Let G denote any set of m generators for P . For each hypercube in U , consider the subset of
generators that contains no point outside this hypercube. Let U ′ denote the hypercube that has
the smallest such subset of generators. Let G′ denote this subset of generators. Clearly |G′| ≤ m′,
where m′ = mn′/n. Henceforth, we restrict attention to the subset of n′ points P ′ = P ∩U ′ in this
replicant. Without loss of generality, we may take U ′ to be the unit hypercube Ud.

The remainder of the proof consists of placing a lower bound on the number of generators
needed to cover some quad of Q that is contained within U ′(= Ud), as a function of n′, m′, r, and
ε. This lower bound will be presented in Section 3.3.2. To complete the proof, this bound will then
be cast in terms of our original parameters n and m, and the value of r will be selected to produce
the best lower bound, which is presented in Section 3.3.3.

Let L denote the set of all d-corners L such that the corresponding ε-expanded quad, ¤+
L , lies

entirely within Ud, and let Q′ denote the corresponding set of (unexpanded) quads, ¤L. Note that

21

two different d-corners may give rise to the same quad. (This might happen because they generate
different vertices of the same hypercube, or because they generate the same vertex but through a
different ordered sequence.) For the purposes of the proof, we consider these to be distinct elements
of Q′. Thus, we can associate a unique d-corner with each quad in Q′, so that the hyperplanes of
this d-corner all pass through a vertex of the quad.

For any L ∈ L, let AL ⊆ G denote the smallest set of generators that provides a valid answer
to the query, that is,

P ∩¤L ⊆
⋃

G∈AL

G ⊆ P ∩¤+
L . (6)

Clearly t ≥ |AL|. Since the hypercubes of U have disjoint interiors and ¤+
L ⊆ Ud, it follows that

the above inequality holds if P is replaced with P ′ and AL is restricted to a subset of G′.

3.3.2 Analysis of a Single Replicant

We have limited consideration to a single replicant, that is, we consider the subset of generators G′
of size at most m′ that lie entirely within the unit hypercube Ud, the subset of points P ′ of size n′

that lie within Ud, and the subset of quad ranges Q′ whose ε-expansions lie within Ud.
Recall that we have a d-corner L ∈ L and its associated quad ¤L. We next consider how to

define the region of interest. Let L = 〈J1, J2, . . . , Jd〉. Let b be a positive constant, whose value will
be set later, and let α = bε. Recall the integer parameter r introduced earlier (whose value will be
fixed later). For 1 ≤ i ≤ r, let Ji(α) be the hyperplane that results by translating Ji by distance α
towards the origin. Let Si denote the slab bounded by the two parallel hyperplanes Ji and Ji(α).
The region of interest for L, denoted RL, is defined to be intersection of these slabs with ¤L, that
is,

RL = ¤L ∩
⋂

1≤i≤r

Si.

(See Fig. 8(a).) Recall that by definition, ¤L lies within the inner halfspaces of the hyperplanes Ji,
which implies that RL is nonempty.

Later in the proof, we will also make use of the following outer region, which will be convenient
to define now. Define Ji

≥(α) to be the halfspace that results by translating Ji
≥ by distance of α

towards the origin. Let
R≥

L =
⋂

1≤i≤r

Ji
≥(α). (7)

(See Fig. 8(b).) Observe that since Si ⊂ Ji
≥(α) we have RL ⊂ R≥

L.
As observed in [11], the complexity of (exact) halfspace range searching stems from the difficulty

of covering points inside the range that lie close to its boundary. The same is true for approximate
range searching. In order to make this precise, we introduce a quantity that corresponds roughly
to the number of points lying within the region of interest for an average query. Let

Φ =
∫

L
|P ′ ∩RL| dL, (8)

where dL = dLd is the probability density defined earlier for d-corners. We will compute lower and
upper bounds on Φ, which together will provide the desired lower bound on the worst-case query
time t. Intuitively, if a generator covers a large number of points in RL, then it cannot be useful in
this manner for many queries.

22

J1

J2

α

α
1/2

1/2

O
(a) (b)

O

J2

J1

α

α

1/2

1/2

Fig. 8: The regions of interest: (a) RL and (b) R≥
L.

First we want to show that, through an appropriate choice of the constant b, we can apply
the properties of scattered sets to lower bound the number of points in RL and so provide a lower
bound on Φ. For all sufficiently small ε, one can easily verify that for any L ∈ L, the volume of
the region of interest RL satisfies

µ(RL) =
(

1
2

)d−r

αr =
(

1
2

)d−r

(bε)r ≥ brεr

2d
.

Now, by setting b = (8 · 2da)1/r, where a is the constant used in the scattered set properties, we
have

µ(RL) ≥ 8aεr.

It is easy to verify that this exceeds (a log n′)/n′. Thus, by Property 1 of scattered point sets,
it follows that |P ′ ∩ RL| ≥ (n′/a)(8aεr) = 8t log(t/εr). Clearly the probability of generating the
d-corners of L is at least some constant, and so we have the following lower bound on Φ.

Φ = Ω
(

t log
t

εr

)
. (9)

Next, we compute an upper bound on Φ. To do this we will focus only on those generators that
are most efficient in covering the region of interest RL. Intuitively, in order to achieve a query time
of t, an average generator that is useful in covering the points of RL should cover or “consume”
a fraction of roughly Ω(1/t) of these points. Based on this, we say that a generator G ∈ G′ is
absolutely fat with respect to a d-corner L ∈ L if |G ∩ RL| > 4 log(t/εr) and G ⊆ ¤+

L . Indeed, as
shown in the next lemma, a constant fraction of points of RL are covered by such generators.

Lemma 3.16 For any d-corner L ∈ L, a constant fraction of the points of P ′ lying within RL are
covered by generators in G′ that are absolutely fat with respect to L.

Proof : Given L ∈ L, recall the smallest set AL of generators covering the query region ¤L defined
just prior to the start of this section. Recall that |AL| ≤ t. Let ÂL denote the subset of AL consisting
of those generators that are absolutely fat with respect to L. Observe that the generators in the
set AL \ ÂL cover at most 4t log(t/εr) points of P ′ in RL (because each such generator covers at
most 4 log(t/εr) points of P ′ in RL and the number of these generators is bounded by |AL| which
is at most t). As shown earlier, |P ′ ∩RL| is at least 8t log(t/εr), which is at least twice the number

23

covered by the non-fat generators in AL. Therefore, at least half of the points of P ′∩RL are covered
by absolutely fat generators. ¤

Recall the outer region R≥
L defined in Eq. (7). Since RL ⊂ R≥

L, the above lemma implies
that a constant fraction of the points of P ′ in RL are covered by generators G ∈ G′ that satisfy
|G∩R≥

L| > 4 log(t/εr) and G ⊆ ¤+
L (where the last condition is needed to satisfy the approximation

bound). Let us therefore define

∆G =
{

L ∈ L : |G ∩R≥
L| > 4 log

t

εr
and G ⊆ ¤+

L

}
.

If we take the definition of Φ in Eq. (8) but restrict consideration to only these generators and also
change the order of integration and summation, then up to constant factors we have

Φ ≤
∑

G∈G′

∫

∆G

|G ∩RL| dL. (10)

We will refer to the quantity
∫
∆G

|G∩RL| dL as the usefulness of generator G, denoted u(G). Our
main task now is to compute an upper bound on the usefulness of any generator G ∈ G′, which will
lead to a lower bound on t.

In order to apply our slicing lemma, it will be convenient to work with R≥
L, rather than RL,

since the former is expressed as the intersection of r halfspaces. Since RL ⊂ R≥
L we have

u(G) ≤
∫

∆G

∣∣G ∩R≥
L

∣∣ dL. (11)

Because each generator G contributing to Φ contributes a sufficiently large number of points within
R≥

L, we may apply Property 2 of scattered points to bound the volume of the convex set conv(G)∩
R≥

L. Towards this end, consider any G ∈ G′ and L ∈ ∆G. Clearly G ⊆ P ′ ∩ conv(G), and therefore
∣∣G ∩R≥

L

∣∣ ≤ ∣∣P ′ ∩ (
conv(G) ∩R≥

L

)∣∣ . (12)

Since |G ∩ R≥
L| > 4 log(t/εr) ≥ log n′, we have |P ′ ∩ (conv(G) ∩ R≥

L)| > log n′ (recall that we
are dealing with a single replicant). Thus we may apply Property 2 (where the convex body is
conv(G) ∩R≥

L) to obtain
∣∣P ′ ∩ (

conv(G) ∩R≥
L

)∣∣ ≤ an′ µ(conv(G) ∩R≥
L). (13)

Thus, by combining Eqs. (11), (12), and (13) we obtain

u(G) ≤ an′
∫

∆G

µ(conv(G) ∩R≥
L) dL. (14)

Our next task is to apply our version of the isoperimetric inequality (Lemma 3.3) to bound the
above integral. In order to do this we will first apply our version of the slicing lemma (Lemma 3.5)
to conv(G) to produce suitably sized bodies to which the isoperimetric inequality can be applied.
Observe that for all G in the integration domain, by Eq. (13) we have µ(conv(G)∩R≥

L) ≥ (1/an′)|P ′∩
(conv(G)∩R≥

L)|. Recalling that |P ′∩ (conv(G)∩R≥
L)| > 4 log(t/εr), and substituting the definition

of n′ for a single replicant, it follows that µ(conv(G) ∩ R≥
L) is at least 4εr/(at). Recall that the

corner L is defined by the hyperplanes 〈J1, J2, . . . , Jd〉. Now, by setting ρ = 4εr/(at), we may apply

24

Lemma 3.5 to conv(G), where the halfspaces are the defining halfspaces of R≥
L. For some constant

λ, we obtain a collection of

O

((
1
β

)1− 2
d+1

logr−1 2
β

)

convex bodies K1,K2, . . . ⊆ conv(G) such that for some Kj :

(i) Kj ⊇ conv(G) ∩R≥
L, and

(ii) for 1 ≤ i ≤ r, Kj ⊆ Cλ
i , where Cλ

i is the λ-expansion of the cap conv(G) ∩ Ji
≥(α). (Recall

that Ji(α) is the ith defining hyperplane of R≥
L.)

Here β = ρ/µ(conv(G)). Since conv(G) ⊆ Ud, we obtain µ(conv(G)) ≤ 1. Thus β ≥ ρ and so
β ≥ 4εr/(at).

Given a d-corner L = 〈J1, . . . , Jd〉 and δ > 0, recall that Sδ
r (L) denotes the intersection of slabs⋂

1≤i≤r Sδ(Ji), where Sδ(Ji) denotes the slab of width 2δ centered about Ji. For some constant c,
we claim that condition (ii) implies that Kj is contained within the r-corner slab Scε

r (L). To see
this, let J ′i be the hyperplane obtained by translating Ji by amount ε · diam(¤L) away from the
origin. (Note that this passes through a facet of the expanded range ¤+

L .) Since G ⊆ ¤+
L , it follows

that the cap Ci = conv(G) ∩ Ji
≥(α) lies between the hyperplanes Ji(α) and J ′i . Therefore, since

α = Θ(ε), by condition (ii), Kj ⊆ Scε(Ji), for a suitable constant c. Since this holds for all i, where
1 ≤ i ≤ r, the desired assertion follows. Thus,

∫

∆G

µ(conv(G) ∩R≥
L) dL ≤

∑

j

µ(Kj)
∫

∆′Kj

dL, where ∆′
Kj = {L ∈ L : Scε

r (L) ⊇ Kj} ,

and where the sum is taken over the number of bodies described in Lemma 3.5.
We are finally at a point where we can apply our isoperimetric inequality. By Lemma 3.3 we

obtain to within constant factors
∫

∆G

µ(conv(G) ∩R≥
L) dL ≤

∑

j

µ(Kj)
(

εd+1

µ(Kj)

)r

=
∑

j

ε(d+1)r

µ(Kj)r−1
.

Recall that µ(conv(G) ∩R≥
L) ≥ 4εr/(at) and, by condition (i), Kj ⊇ conv(G) ∩R≥

L. It follows that
µ(Kj) ≥ 4εr/(at). Therefore, up to constant factors we have

∫

∆G

µ(conv(G) ∩R≥
L) dL ≤

∑

j

ε(d+1)r

(εr/t)r−1 =
∑

j

εr(d−r+2)tr−1.

From our bound on the number of convex bodies Kj , we have up to constant factors

∫

∆G

µ(conv(G) ∩R≥
L) dL ≤

(
1
β

)1− 2
d+1

(
logr−1 1

β

)
εr(d−r+2)tr−1

≤
(

t

εr

)1− 2
d+1

(
logr−1 t

εr

)
εr(d−r+2)tr−1

= tr−
2

d+1 · εr(d−r+1+ 2
d+1) logr−1 t

εr
.

25

Substituting this into Eq. (14) we achieve the desired upper bound on the usefulness of the
generator G. Up to constant factors we have

u(G) ≤ n′ · tr− 2
d+1 · εr(d−r+1+ 2

d+1) logr−1 t

εr
.

Recalling that |G′| ≤ m′, we have our desired upper bound on Φ.

Φ = O

(
n′m′ tr−

2
d+1 εr(d−r+1+ 2

d+1) logr−1 t

εr

)
.

Now, by combining this with our lower bound on Φ given in Eq. (9) we obtain the following

n′ m′ tr−
2

d+1 εr(d−r+1+ 2
d+1) logr−1 t

εr
= Ω

(
t log

t

εr

)
. (15)

3.3.3 Putting it All Together

We are now able to incorporate the above single-replicant results into the overall analysis. We will
show that the lower bound on the query time given in Eq. (16) holds. We may assume that t is
bounded from above by a polynomial in 1/ε, since otherwise this lower bound holds trivially. It
follows that log t = O(log(1/ε)). Recall that m′ = mn′/n and n′ = (t/εr) log(t/εr). Substituting
these values of m′ and n′ into Eq. (15) and then simplifying yields the following lower bound on
the query time (up to constant factors)

t ≥
(

n

m εr(d−r−1+ 2
d+1) logr 1

ε

) 1

r+1− 2
d+1 ≥

(n

m

) 1
r+1

(
1
ε

) r(d−r−1)
r+1

, (16)

which holds for all integer values 1 ≤ r ≤ d.
Let us consider how to select r to achieve the strongest lower bound. To put the lower bound

into a somewhat nicer form, let us express the space as m = n (1/ε)f2d2
, where f ≥ 0 is a real

parameter. We obtain

t ≥
(

1
ε

) r(d−r−1)−f2d2

r+1

=
(

1
ε

) rd−r2−r−f2d2

r+1

.

Let E(r) denote the exponent of the (1/ε)-term. Let r0 =
√

f2d2 + d−1. Note that if 0 ≤ f ≤ 1
then 0 ≤ r0 ≤ d. By examining the sign of the derivative of E(r), it is easy to verify that E(r) is
an increasing function of r for 0 < r < r0, and is a decreasing function of r for r > r0. Therefore
E(r) has a local maxima at r = r0. Since r0 may not be an integer and may not lie between 1 and
d, we select rI to obtain our best lower bound, where rI is the smallest integer satisfying rI ≥ r0

and 1 ≤ rI ≤ d. We have

E(rI) ≥ E(r0 + 1) =

(√
f2d2 + d

)(
d−

√
f2d2 + d− 1

)
− f2d2

√
f2d2 + d + 1

= d− 2
√

f2d2 + d +

√
f2d2 + d√

f2d2 + d + 1
≥ d− 2

√
f2d2 + d ≥ d− 2(fd +

√
d)

= d(1− 2f)− 2
√

d.

This completes the proof of Theorem 3.1(i), the lower bound in the case of idempotent semi-
groups. In the next section we consider integral semigroups.

26

3.4 Lower Bound for Rotated Hypercubes: The Integral Case

In this section we prove part (ii) of Theorem 3.1. As mentioned earlier, throughout this section we
assume that the set of generators G satisfies the convex generator assumption, which states that
for all G ∈ G we have G = P ∩ conv(G).

We recall that in the integral case, the generators used to answer a query are required to be
disjoint. Intuitively, it seems that this requirement should reduce the usefulness of large generators.
This idea was first formalized in [5], where it was used in the context of exact halfspace range
searching and approximate spherical range searching. The proof proceeds along the same lines as
in the idempotent case. The key idea is a different notion of generator usefulness that is more
appropriate for the integral case. Toward this end, define a generator G to be relatively fat with
respect to a d-corner L ∈ L if |G ∩ RL| > εr|G| and G ⊆ ¤+

L . As in the idempotent case, it is
possible to limit consideration to generators that are fat, but now both in the absolute and relative
senses. Combining this with the generalized Macbeath region machinery results in the desired
bound.

We now give the details, highlighting the differences in the analysis from the idempotent case.
The proof is identical to that for the idempotent case up to Lemma 3.16, where it is argued that a
constant fraction of the points in the region of interest are covered by generators that are absolutely
fat. Recall that t denotes the worst-case query time in the arithmetic model over all the ranges.
Also recall that at that point of the proof we have restricted attention to a subset P ′ of data points
that satisfy the following conditions:

(i) P ′ is a scattered set of n′ points contained within Ud, where n′ = (t/εr) log(t/εr).
(ii) Let G′ be the set of generators that contain only points from P ′. Then |G′| ≤ m′ where

m′ = mn′/n.
(iii) Let L denote the set of all d-corners L such that the corresponding ε-expanded quad, ¤+

L ,
lies entirely within Ud, and let Q′ denote the corresponding set of (unexpanded) quads, ¤L.
For any L ∈ L, let AL ⊆ G′ denote the smallest set of generators that provide a valid answer
for the query ¤L, that is,

P ′ ∩¤L ⊆
⋃

G∈AL

G ⊆ P ′ ∩¤+
L .

Then t ≥ |AL|.

Exploiting the fact that in the integral case the generators used to answer a query are disjoint
allows us to strengthen Lemma 3.16 to include generators that are both absolutely and relatively
fat.

Lemma 3.17 For any d-corner L ∈ L, a constant fraction of the points of P ′ lying within RL are
covered by generators in G′ that are both absolutely and relatively fat with respect to L.

Proof : Given L ∈ L, let AL ⊆ G′ denote the smallest set of generators that provide a valid answer
for the query ¤L. That is,

P ′ ∩¤L ⊆
⋃

G∈AL

G ⊆ P ′ ∩¤+
L , (17)

27

and the generators in AL are all disjoint. Note that |AL| ≤ t. Let A1
L denote the subset of AL

consisting of those generators that are not absolutely fat with respect to L, and A2
L denote the

subset of AL consisting of those generators that are not relatively fat with respect to L. The proof
of Lemma 3.16 shows that the generators in A1

L cover at most 4t log(t/εr) points of P ′ in RL. Since
each generator G ∈ A2

L covers at most εr|G| points of P ′ in RL, the generators in A2
L together

cover at most εr
∑

G∈A2
L
|G| points of P ′ in RL. Since the generators in A2

L are disjoint, we have∑
G∈A2

L
|G| ≤ |P ′|. Recalling that |P ′| = (t/εr) log(t/εr), it follows that the generators in A2

L cover
at most t log(t/εr) points of P ′ in RL. Recall that P ′∩RL = 8t log(t/εr). Since the generators in A1

L

cover at most 4t log(t/εr) points of P ′∩RL and the generators in A2
L cover at most t log(t/εr) points

of P ′ ∩ RL, it follows that a constant fraction of the points of P ′ ∩ RL are covered by generators
in the set AL \ (A1

L ∪ A2
L). As these generators are both absolutely and relatively fat, the lemma

follows. ¤
Arguing as in the idempotent case, but using generators that are both absolutely and relatively

fat (i.e., Lemma 3.17 in place of Lemma 3.16), we can easily see that Eq. (10) holds with ∆G

redefined as follows:

∆G =
{

L ∈ L : |G ∩R≥
L| > max

(
4 log

t

εr
, εr|G|

)
and G ⊆ ¤+

L

}
.

(Throughout our analysis, ∆G will refer to this revised definition.) As before, we will refer to the
quantity

∫
∆G

|G ∩ RL| dL as the usefulness of generator G, denoted u(G). Our strategy again is
to compute an upper bound on the usefulness of any generator G ∈ G′, which will lead to a lower
bound on t.

Using the scattered set properties, the fact that RL ⊂ R≥
L, and the definition of ∆G, we can

establish Eqs. (11)–(14) as before. For convenience let us write Eq. (14) here again:

u(G) ≤ an′
∫

∆G

µ(conv(G) ∩R≥
L) dL. (18)

Let G ∈ G′ and L ∈ ∆G. Recall that in order to bound the integral in Eq. (18) via the generalized
Macbeath region machinery (Lemma 3.5), we need to compute a lower bound on the ratio of
µ(conv(G) ∩R≥

L) to µ(conv(G)).
By Eqs. (12) and (13), we have µ(conv(G)∩R≥

L) ≥ (1/an′)|G∩R≥
L|. Using the definition of ∆G,

we have |G∩R≥
L| > εr|G|. Thus µ(conv(G)∩R≥

L) ≥ (εr/an′)|G|. Next we compute an upper bound
on µ(conv(G)). Obviously |P ′ ∩ conv(G)| ≥ |G| > |G ∩ R≥

L|. By the definition of ∆G, we have
|G∩R≥

L| > 4 log(t/εr) ≥ log n′, and so |P ′∩conv(G)| ≥ log n′. We may, therefore, apply Property 3
of scattered point sets (with K = conv(G)) to obtain µ(conv(G)) ≤ (a/n′)|P ′ ∩ conv(G)|. By the
assumption of convex generators, G = P ′ ∩ conv(G), and so µ(conv(G)) ≤ (a/n′)|G|. Therefore

β =
µ(conv(G) ∩R≥

L)
µ(conv(G))

≥ (εr/an′)|G|
(a/n′)|G| =

εr

a2
.

Note that our lower bound on β is t times larger than in the idempotent case (ignoring constant
factors). Thus, in the integral case, we can apply Lemma 3.5 with a larger value of β, which yields
a smaller upper bound on the usefulness u(G) of any generator G. The rest of the calculations are
similar to that in the idempotent case and are omitted. We finally obtain (up to constant factors)

t ≥
(

n

mεr(d−r−1+ 2
d+1) logr 1

ε

) 1
r

≥
(n

m

) 1
r

(
1
ε

)d−r−1

, (19)

28

which holds for all integer values 1 ≤ r ≤ d. Expressing the space as m = O(n · (1/ε)f2d2
), where

f ≥ 0 is a real parameter, and optimizing for r, we can show that t ≥ (
1
ε

)d(1−2f)−2
, which proves

Theorem 3.1(ii).

4 Smooth Convex Ranges

In this section we present lower and upper bounds on the complexity of range searching for κ-smooth
convex ranges over idempotent semigroups.

4.1 Lower Bound

We begin by presenting the lower bound for κ-smooth ranges. If κ is greater than some fixed
constant, then for all sufficiently small ε and sufficiently large n the lower bound is Ω(log n +
(1/ε)(d−1)/2). This lower bound holds in the algebraic decision-tree model. Thus, it holds irre-
spective of space, and no space-time tradeoffs are possible. We present the bound in the following
theorem, which includes the dependency on κ.

Theorem 4.1 Let d > 1 be a fixed dimension, and consider any real κ > 1. Consider a range
space consisting of all κ-smooth convex bodies and a weight function over any idempotent semigroup.
Then for all sufficiently small ε and sufficiently large n, the worst-case query time for ε-approximate
range searching among n points in the algebraic decision-tree model is at least

Ω

(
log n +

(
κ− 1
ε κ

) d−1
2

)
.

The proof is based on a construction that first builds a maximal set of m = Ω(((κ−1)/(εκ))(d−1)/2)
points on the unit sphere such that each pair is separated by a distance of Ω(

√
ε). At each point

x we create a ball of radius 1/κ that lies within the sphere and is tangent at x. For each of the
2m subsets of points, we create a range consisting of the convex hull of the corresponding tangent
balls. We show that no two of these ranges are equivalent to within an ε error, and so any decision
tree must have at least 2m leaves, which implies a depth of at least Ω(m), and hence query time of
Ω(m).
Proof : The proof is based on a standard algebraic decision-tree argument. We show that any
decision tree must distinguish between some number L of distinct possible outcomes, and hence
the worst-case query time is Ω(log L). Two ranges are ε-distinct if one contains a point that lies
outside the other’s ε expansion. By the faithfulness of the semigroup, distinct ranges must be
handled differently by the decision tree.

First observe that the Ω(log n) term is easy to prove. Consider n Euclidean ball ranges, each
centered at a point, but so small that its ε expansion contains no other point. This bound holds
irrespective of the point distribution.

To prove the other part of the bound, we generate a large collection of ε-distinct ranges. Given
δ > 0, we say that a set of points is δ-sparse if the distance between any pair of distinct points is
at least δ. Let δ =

√
6εκ/(κ− 1). Let us assume that ε is small enough that δ < 1. Consider any

δ-sparse point set P on a unit sphere in Rd centered at the origin O. It is well known that such a

29

set exists having at least nδ points, where

nδ = Ω
(

1
δ

)d−1

= Ω
(

κ− 1
6εκ

) d−1
2

.

Assume that n ≥ nδ. The point set is constructed by taking nδ points from P , and placing the
remaining n− nδ points arbitrarily (since they will play no role in the rest of the argument).

One approach to construct the ranges would be to consider the convex hulls of each of the 2nδ−1
nonempty subsets of P . Although this would work, the resulting ranges would not be smooth. Our
approach is to “round off” the sharp edges of these ranges. For each p ∈ P , let b(p) be a ball
of radius 1/κ that lies within the unit sphere and is tangent to the sphere at p. For each subset
P ′ ⊆ P , let η(P ′) be the convex hull of the union of b(p) for p ∈ P ′, that is,

η(P ′) = conv

 ⋃

p∈P ′
b(p)

 .

Let the range space Q consist of the 2nδ −1 ranges η(P ′) corresponding to all the nonempty subsets
P ′ of P . Note that the diameter of each range in Q is at most 2, because they all lie within the
unit sphere.

We assert that every pair of distinct ranges of Q is ε-distinct. Consider two ranges arising from
distinct subsets P ′ and P ′′. There is some point y that is in one set and not the other. Assume
without loss of generality that y ∈ P ′ but y /∈ P ′′. Clearly y ∈ η(P ′), and so it suffices to show
that y lies outside the ε expansion of η(P ′′). To prove this fact, consider the line segment Oy, and
the hyperplane H that is orthogonal to Oy and at distance 2ε from y. We assert that all the balls
b(x) for x ∈ P ′′ lie on the opposite side of H from y. It will follow that the convex hull of these
balls also lies below H, implying that the minimum distance of y to η(P ′′) is at least 2ε. Since
diam(η(P ′′)) ≤ 2 it follows that y lies outside the ε expansion of η(P ′′), as desired.

O

cos θ

b(x)

θ
1/κ

θ
x

z z′

x′

H

y

(1/κ)(1− cos θ)

Fig. 9: Lower bound for smooth convex ranges.

To prove this assertion, consider any x in P ′′. The orthogonal projection of b(x) onto line Oy
is a line segment. We will show that this segment’s closest endpoint to y is at least at distance
2ε, from which it follows that b(x) lies entirely below H. Consider the intersection of b(x) with

30

the plane containing x, y, and O. For the sake of illustration, imagine that the ray
−→
Oy is directed

upwards, let z be the highest point of b(x), and let x′ and z′ be the orthogonal projections of x
and z onto the line Oy. (See Fig. 9.) Let θ = ∠xOy. By basic trigonometry, the distance ‖O x′‖ is
cos θ, and because b(x) is of radius 1/κ, we have ‖x′ z′‖ = (1/κ)(1− cos θ). Thus, we find that the
vertical distance from y to the upper endpoint of b(x)’s orthogonal projection is

‖z′ y‖ = 1− (‖O x′‖+ ‖x′ z′‖)

= 1− cos θ − 1
κ

(1− cos θ) =
κ− 1

κ
(1− cos θ).

To bound this distance, we use the fact that if θ < 1 then 1− cos θ ≥ θ2/3. By the definition of θ
we obtain

‖z′ y‖ ≥ κ− 1
κ

· θ2

3
≥ κ− 1

κ
· 6εκ/(κ− 1)

3
= 2ε,

as desired.
Therefore, the decision tree must have at least 2nδ − 1 leaves, corresponding to these ε-distinct

ranges. Its depth is at least log2(2nδ − 1) = Ω(nδ), and this establishes the desired lower bound on
the query time. ¤

4.2 Upper Bound

In this section we present a data structure that can answer approximate nearest neighbor queries
for idempotent semigroups for smooth convex ranges. Assuming any fixed degree of smoothness,
the query time is quite similar to the lower bound proved in the previous section. This result
demonstrates that the improvements offered by idempotence for spherical range searching also
apply to ranges that are sufficiently smooth. Our results apply to the range space of all κ-smooth
convex bodies, for any fixed κ ≥ 1. (The hidden constants increase with κ.) As in [7] make the
unit-cost test assumption, which states that given any ball or hypercube and range η, in constant
time we can determine whether the ball or hypercube is contained within η+, is disjoint of η+, or
neither. Here is our main result.

Theorem 4.2 Consider a range space consisting of all κ-smooth convex bodies for any real constant
κ ≥ 1. Let P be a set of n points in Rd. Let 0 < ε ≤ 1/2 be a real parameter. Then we can construct
a data structure of O(n/ε) space that allows us to answer ε-approximate range queries over any
idempotent semigroup in time O

(
log n + (1/ε)(d−1)/2 log(1/ε)

)
. The time to construct the data

structure is O
((

n/ε(d+1)/2
)
log(n/ε) log(1/ε)

)
.

The data structure is similar in spirit to that described in [4], [5], and [6] for Euclidean balls.
This structure is based on the concept of an approximate Voronoi diagram, or AVD, as described
in [2] and [3]. This is a quadtree-like structure in which space is subdivided recursively until the leaf
cells satisfy certain “separation properties” with respect to the surrounding points. Each node of
the tree (internal and leaf) is responsible for handling query ranges that overlap the corresponding
cell and whose diameter is proportional to the size of the cell. Each node is associated with a small
collection of generators, each of which is the semigroup sum of points lying within a judiciously
chosen Euclidean ball.

The critical fact that enables us to answer queries efficiently is that any κ-smooth range can
be ε-approximated using O

(
1/ε(d−1)/2

)
balls of radius Ω(diam(η)/κ), that are suitably placed just

31

touching the boundary of η+. The generator subsets are chosen so that it is possible to compute
an appropriate subset of them that approximate each of these O

(
1/ε(d−1)/2

)
balls. To avoid an

excessive repetition of details, we will refer to results proved in our earlier works on approximate
spherical range searching, which can be found in [4], [5], and [6]. The principal new elements arise
from the lack of symmetry in arbitrary smooth ranges, but these obstacles are more technical than
fundamental in nature.

Let P be a set of n points in Rd and let 0 < ε ≤ 1/2 be a real parameter. We assume that the
weights assigned to the points of P belong to an idempotent semigroup. Without loss of generality,
we may assume that the set of points P has been scaled and translated to lie within a ball of radius
ε/2 placed at the center of the unit hypercube Ud. This allows us to easily dispense the case of a
query η that is not contained within Ud as follows. If η contains the center of Ud, we output w(P)
(i.e., the semigroup sum of all the points in P), otherwise we output the special null symbol, which
represents the empty set. Henceforth, we assume that η ⊆ Ud, and show how to construct a data
structure to handle such a query.

We will use the following terminology. A quadtree box is defined recursively as Ud or any d-cube
that can be obtained by splitting a quadtree box into 2d identical subcubes by d axis-orthogonal
hyperplanes passing through its center. We define a cell to be either a quadtree box or the set-
theoretic difference of two quadtree boxes, an outer box and an inner box. The size of a cell is
defined to be the side length of its outer box. Throughout, for a cell u, we define the following
three items. We define su to be its size, we define ru to be sud/2, and we define bu to be the ball
of radius ru whose center coincides with the center of u’s outer box. (Note that u ⊆ bu.) Finally,
for any ball b and any positive real γ, we use γb to denote the ball with the same center as b and
whose radius is γ times the radius of b. Because of the close association between each node and its
cell, when it is clear from context, we will often use the same name to refer to both of them.

In Lemma 4.1 below we abstract the main features of the data structure used in [4–6] for
spherical range queries. This data structure is based on a hierarchical subdivision of the unit
hypercube into cells. We classify each cell u of this subdivision into three types. Let γ ≥ 16 and
0 < f ≤ 1 be two real parameters.

Type-1: u enjoys no separation property in general.
Type-2: There exists a ball b′u such that |P ∩ (γbu \ b′u)| = O(1/f), and the ball γb′u does not

overlap u. (See Fig. 10).
Type-3: u is a quadtree box (not the difference of two boxes), and there is an associated quadtree

box v such that u ⊆ v and |P ∩ (γbv \ 8bu)| = O(1/f). (See Fig. 10).

Note that these definitions are not mutually exclusive. The construction algorithm assigns a unique
type to each cell.

To provide a somewhat better understanding of the usefulness of this classification, let us
imagine for now that the O(1/f) term is simply zero. In our application, we will set γ to a
sufficiently large constant depending on the smoothness parameter κ. We first find a cell u such
that the query range is roughly centered about u and satisfies certain properties, depending on u’s
type. If u is of type 1, the range’s diameter will be proportional to the diameter of u. Because of
smoothness, such a range can be well approximated by a small collection of covering balls. If u is
of type 2, the range’s diameter can be arbitrarily small relative to u’s diameter (but is at most a
constant factor larger). In this case, the problematic points are densely clustered within b′u. Either
b′u lies entirely outside the range (in which case they do not contribute to the result) or else the

32

Type-2 cell Type-3 cell

γbv

u

γbu

b′u

γb′u

v
u

8bu

Fig. 10: Generic separation properties for cells. (Not drawn to scale.) The O(1/f) points that do
not satisfy the separation properties are shown as white points.

fact that γb′u does not overlap u implies that they are at a certain distance from u and can be well
approximated by a small collection of covering balls. Finally, if u is of type 3, the range will lie
between a certain constant expansion of bu and γbv, where v is the quadtree box associated with
u. In this case, as all the points in γbv are very close to u, they can be treated as a lump and all
inferred to lie within the range.

What about the O(1/f) points that fail to satisfy the separation properties? These points arise
as the leftovers of a sampling process (implicit in Lemma 4.1) that we employ to minimize the space
requirements. They are called pollutants. The value f will be selected so that 1/f is proportional
to the query time. This implies that we can simply inspect all of the pollutants one-by-one without
increasing the overall asymptotic query time.

We now present the lemma, proved in [6], that establishes the existence of a data structure
satisfying the desired separation properties for a given range. Although this lemma is provided
without explicit reference to the type of range, the point q can be thought of as the center of the
range and D as its diameter.

Lemma 4.1 (Generic Separation Properties) Let P be a set of n points in Rd. Let γ ≥ 16 and
0 < f ≤ 1 be two real parameters. In O(nγd log(nγ) log γ) time, it is possible to construct a data
structure with O(nfγd) cells of type-1, type-2, and type-3, respectively, such that the following holds.
For any pair (q,D), where q is a point in Ud and 0 ≤ D ≤

√
d is a real number, in O(log(nγ))

time, we can find a cell u such that q ∈ u and u satisfies one of the following properties.

(i) u is of type-1 and γru/4 < D ≤ γru/2.
(ii) u is of type-2 and D ≤ γru/4.

(iii) u is of type-3 and γru/4 < D ≤ γrv/4, where v denotes the quadtree box associated with u.
(See properties of type-3 cells given above.)

In case (ii) the node u stores the ball b′u and the set of points P ∩ (γbu \ b′u). In case (iii)
the node u stores the weight of points in the ball 8bu (that is, w(P ∩ 8bu)) and the set of points
P ∩ (γbv \ 8bu).

We will now show how to apply the above lemma in our particular context of smooth convex
ranges. Recall that the query range η being considered lies entirely within Ud. Let diam(η) denote
its diameter. In order to apply the previous lemma, which is stated in terms of pair (q, D), we need
to introduce the notion of a center point q and diameter D for a convex range query. In particular

33

we shall assume that the query algorithm is given a pair (qη, Dη), where qη ∈ η is a point that is
at distance at least diam(η)/(2κ) from the boundary of η (by smoothness such a point exists), and
Dη is the diameter of the range.

Throughout this section, let γκ denote the constant 72κ. (Any sufficiently large multiple of κ
would work, and no attempt was made to optimize its value.) In the definition of type-1, type-2,
and type-3 cells given above, let γ = γκ = 72κ, and let f = ε(d−1)/2. That is, we replace the
previous definitions of cell types with the following.

Type-1: u enjoys no separation property in general.
Type-2: There exists a ball b′u such that |P ∩ (γκbu \ b′u)| = O

(
1/ε(d−1)/2

)
, and the ball γκb′u does

not overlap u.
Type-3: u is a quadtree box (not the difference of two boxes). There is an associated quadtree

box v such that u ⊆ v and |P ∩ (γκbv \ 8bu)| = O
(
1/ε(d−1)/2

)
.

We now tailor the generic separation properties of Lemma 4.1 to a form that can be conveniently
applied to the space of κ-smooth convex ranges. The cases are illustrated in Fig. 11.

Lemma 4.2 (Separation Properties) Let κ ≥ 1 be a constant. Let Q be a set of κ-smooth convex
ranges. Let P be a set of n points in Rd. In O(n log n) time, it is possible to construct a data
structure with O

(
nε(d−1)/2

)
cells of type-1, type-2, and type-3, respectively, such that the following

holds. For any range η ∈ Q that is contained within Ud, in O(log n) time, we can find a cell u such
that qη ∈ u and u satisfies one of the following properties.

(i) u is of type-1 and η ⊆ γκbu and the diameter of η is at least γκru/4.
(ii) u is of type-2 and η ⊆ γκbu.

(iii) u is of type-3, 8bu ⊆ η ⊆ γκbv, where v denotes the quadtree box associated with u. (See
properties of type-3 cells given above.)

In case (ii) the node u stores the ball b′u and the set of points P ∩ (γκbu \ b′u). In case (iii)
the node u stores the weight of points in the ball 8bu (that is, w(P ∩ 8bu)) and the set of points
P ∩ (γκbv \ 8bu).

γκbu γκbvγκbu

u

≥ γκru

4

Type-1 cell Type-2 cell Type-3 cell

γκb′u

η

b′u

u v 8buu

ηη

Fig. 11: Separation properties for cells for smooth ranges. (Not drawn to scale.) The O(1/f) points
that do not satisfy the separation properties are shown as white points.

34

Proof : We construct the data structure of Lemma 4.1 for γ = γκ = 72κ, and f = ε(d−1)/2. Let
D = diam(η). By smoothness we have b(qη, D/(2κ)) ⊆ η ⊆ b(qη, D). Also, since η ⊆ Ud, it follows
that 0 ≤ D ≤

√
d. By Lemma 4.1, for the query (qη, D), in O(log n) time, we can find a cell u such

that qη ∈ u and u satisfies one of the three properties listed therein.
If u satisfies Lemma 4.1(i), then u is of type-1 and γκru/4 < D ≤ γκru/2. By the triangle

inequality, it follows that the distance of any point in η from the center of u is at most D + ru ≤
γκru/2 + ru ≤ γκru. Thus η ⊆ γκbu. Noting that D > γκru/4, it follows that property (i) holds.

If u satisfies Lemma 4.1(ii), then u is of type-2 and D ≤ γκru/4. Arguing as for property (i), it
follows that the distance of any point in η from the center of u is at most D+ru ≤ γκru/4+ru ≤ γκru.
Thus η ⊆ γκbu, and so property (ii) holds.

Finally, if u satisfies Lemma 4.1(iii), then u is of type-3 and γκru/4 < D ≤ γκrv/4, where v is
the quadtree box associated with u. By the triangle inequality, it follows that the distance of any
point on the boundary of η from the center of u is at least D/(2κ) − ru. Since D > γκru/4 and
γκ = 72κ, this quantity is at least 8ru. Thus 8bu ⊆ η. The same calculation as for property (ii)
implies that η ⊆ γκbv. This establishes (iii) and completes the proof. ¤

During preprocessing, for each cell in the data structure of Lemma 4.2, we compute the weight
of certain clusters and store them with the cell. To answer a query η, we first apply the above data
structure to find the cell u that satisfies one of the three properties listed in Lemma 4.2. The cluster
sums for the case of type-1 and type-2 cells are described in Lemma 4.5 below. Before presenting
this lemma, we establish some useful geometric facts. The first is a useful trigonometric inequality
due to Chan and Snoeyink [12]. The second is a technical result, which will be applied below in
Lemma 4.5 for processing queries.

Lemma 4.3 (Chan and Snoeyink) Let 4xyz be a triangle with ∠xzy = θ, ∠yxz = φ, and ∠xyz ≥
π/2. Then

‖xy‖+ ‖yz‖ ≤ (1 + sin θ sinφ)‖xz‖.
Lemma 4.4 Let 0 < ε ≤ 1/2 be a real parameter. Let b be a ball of radius r centered at o, x be a
point on the boundary of b, and p be a point on ox such that ‖px‖ ≥ rε. Let y be a point such that
‖oy‖ ≤ r/4 and ∠yox ≤ √

ε. Let b̂ be a ball of radius at least (r − ‖oy‖)/(1 + ε/2) centered at y.
Then p ∈ b̂.

Proof : Observe that b̂ ⊆ b. Let r̂ denote the radius of the ball b̂. We are given that r̂ ≥
(r − ‖oy‖)/(1 + ε/2). Since ‖oy‖ ≤ r/4 and ε ≤ 1/2, it follows that r̂ ≥ 3r/5. Thus o ∈ b̂. Let t
denote the point of intersection of the boundary of b̂ with ox (it is clear that such a point exists).
By convexity, all the points on segment ot are contained in b̂. We will show that ‖ot‖ ≥ r(1 − ε).
This will imply that the point p described in the statement of the lemma belongs to b̂, which will
complete the proof.

Let z denote the point on ox such that ‖oy‖ = ‖oz‖. Since ‖oy‖ ≤ r/4 and ∠yoz ≤ √
ε, it

follows that ‖yz‖ ≤ r
√

ε/4 ≤ r/4. Since ‖yt‖ = r̂ ≥ 3r/5, we have ‖yt‖ > ‖yz‖. By elementary
trigonometry, it follows that ∠ytz < π/2. Applying the law of sines to the triangle 4yzt, we have

sin∠ytz

‖yz‖ =
sin∠yzt

‖yt‖ ≤ 1
‖yt‖ .

Since ‖yt‖ = r̂ ≥ 3r/5, we obtain

sin∠ytz ≤ ‖yz‖
‖yt‖ ≤ r

√
ε/4

3r/5
=

5
√

ε

12
.

35

r̂ ≥ r − ‖oy‖
1 + ε/2

√
ε

y

o
z

p
t x

≤ r/4

Fig. 12: Proof of Lemma 4.4.

Consider the triangle 4oyt. Let θ denote ∠yot and φ denote ∠ytz. Since θ ≤ √
ε and ε ≤ 1/2,

it follows that θ < π/4. Also, we showed above that φ < π/2 and sinφ ≤ 5
√

ε/12. It follows that
φ < π/4. Thus ∠oyt > π/2. We can therefore apply Lemma 4.3 to 4oyt to obtain

‖ot‖ ≥ ‖oy‖+ ‖yt‖
1 + sin θ sinφ

≥ ‖oy‖+ (r − ‖oy‖)/(1 + ε/2)
1 + (

√
ε)(5

√
ε/12)

=
r + ε‖oy‖/2

(1 + 5ε/12)(1 + ε/2)

≥ r

(1 + 5ε/12)(1 + ε/2)
.

Since ε ≤ 1/2, we can easily verify that ‖ot‖ ≥ r(1− ε), as desired. ¤
We can now present the lemma that is used for processing cells of types 1 and 2. For these

cases, the subset of data points of interest all lie inside a ball of radius r and the query ranges
are known to be large relative to this ball. The lemma exploits the fact that such a range can be
approximated as the union of a small number of balls, denoted B. In particular, by precomputing
the weight of points inside each of the balls of B, we can answer such a query η by summing up the
weights associated with the balls in Bη.

Lemma 4.5 Let β > 0 and κ ≥ 1 be constants. Let Q be a set of κ-smooth convex ranges. Let
b be any ball of radius r. It is possible to find a set B of O

(
1/ε(d+1)/2

)
balls and store them in

O
(
1/ε(d+1)/2

)
space, such that for any range η ∈ Q whose diameter diam(η) is at least βr, the

following property holds: In O
(
(1/ε)(d−1)/2 log(1/ε)

)
time, it is possible to find a subset Bη ⊆ B

of size O
(
1/ε(d−1)/2

)
such that their union,

⋃
b̂∈Bη

b̂, covers η ∩ b and is contained within η+.
(Constants hidden in the O-notation depend only on β, κ, and d.)

Proof : Let r′ = βr/(2κ). For each of the d coordinate axes, consider an infinite set of hyperplanes
orthogonal to it such that the distance between successive hyperplanes is r′/(16

√
d). On each

of these hyperplanes overlay a regular (d − 1)-dimensional grid of side length r′
√

ε/(16
√

d− 1).
Let G denote the set of grid points on all these hyperplanes that are contained inside the ball
b̃ = (1 + β/(2κ))b. Note that O(1) hyperplanes intersect b̃ and each of these hyperplanes contains
O(1/ε(d−1)/2) grid points inside b̃. Thus |G| = O(1/ε(d−1)/2). For each point y ∈ G, consider a set of
concentric balls By centered at y whose radii span the range from 3r′/5 to r′, such that the radius
of any two successive balls differs by a multiplicative factor of 1 + ε/2. We store the balls in By in

36

an array in order of increasing radius. Finally we define B = ∪y∈GBy. Since |G| = O(1/ε(d−1)/2)
and |By| = O(1/ε) for each y ∈ G, it follows that |B| = O(1/ε(d+1)/2). Next we show that B satisfies
the property described in the lemma.

Let η be any range in Q with diameter Dη ≥ βr. For each y ∈ G, first we check if the smallest
ball in By is contained within η+. If it is not, we ignore all the balls in By. Otherwise, we use
binary search to find the largest ball in By that is contained within η+. Let Bη denote the set of
balls found using binary search over all groups By of concentric balls. Since it takes O(log(1/ε))
time for each binary search, the total time to find Bη is O((1/ε)(d−1)/2 log(1/ε)). (By using the
floor function, we can shave a log(1/ε) factor from this time, if we assume that we can compute the
distance from any point inside η+ to the closest point on ∂η+ in constant time. The straightforward
details of this relatively minor improvement are omitted.)

x′

b

b′

b′′

o′y

x′ x′′

p

o′
o′′

r′

r′′ b′

b′′
o′′
p

x′′ r

b

b′′

η
η+

≤ √
ε

p

(a) (b) (c)

Fig. 13: Proof of Lemma 4.5.

It remains to show that η∩b ⊆ ∪b̂∈Bη
⊆ η+. By construction, each ball in Bη is contained inside

η+, and so ∪b̂∈Bη
⊆ η+. To prove the first part, let p be a point in η ∩ b. We will show that p is

contained in some ball in Bη. Let x′′ denote the point on ∂η+ that is closest to p. Let b′′ denote
the largest ball inside η+ that is tangential to ∂η+ at x′′. Let o′′ denote the center of b′′ and let
r′′ denote its radius. Clearly p ∈ o′′x′′. As η is κ-smooth and η+ is the ε-expansion of η, it follows
that r′′ ≥ Dη/(2κ) + εDη ≥ Dη(1 + 2ε)/(2κ) = Dη+/(2κ), where Dη+ denotes the diameter of η+.
Since Dη+ ≥ βr, we have r′′ ≥ βr/(2κ). Also, since p ∈ η, it follows that ‖px′′‖ ≥ εDη. Since
Dη+ = Dη(1 + 2ε) and ε ≤ 1/2, we have ‖px′′‖ ≥ εDη+/2. Since b′′ ⊆ η+, we have Dη+ ≥ 2r′′.
Thus ‖px′′‖ ≥ r′′ε.

Let b′ be the ball of radius r′ = βr/(2κ) obtained by scaling b′′ about p as the origin. Let o′

denote the center of b′ and let x′ be the point on ∂b′ that is closest to p. Clearly b′ ⊆ b′′, p ∈ o′x′,
and ‖px′‖ ≥ r′ε.

We claim that there must be a point y ∈ G, such that ‖o′y‖ ≤ r′/4 and ∠yo′x′ ≤ √
ε. To prove

this, first observe that p ∈ b, and points o′ and x′ are both within distance r′ from p. It follows that
o′ and x′ are both contained in the ball b̃ = (1 + β/(2κ))b. Consider the coordinate axis that make
the smallest acute angle θ with segment o′x′. Clearly cos θ ≥ 1/

√
d. Recall that our construction

places hyperplanes intersecting ball b̃ that are orthogonal to this coordinate axis and separated
by a distance of r′/(16

√
d). Since cos θ ≥ 1/

√
d, these hyperplanes intersect o′x′, separated by a

distance of at most r′/16. Thus, there must be a hyperplane H in this set that intersects o′x′ at
a point whose distance from o′ is between r′/8 and 3r′/16. Let z denote this point of intersection.

37

Recall that we overlay a (d − 1)-dimensional grid on H of side length r′
√

ε/(16
√

d− 1). Let y
denote the grid point on H that is closest to z. It is easy to see that ‖zy‖ ≤ r′

√
ε/16. By the

triangle inequality, ‖o′y‖ ≤ ‖o′z‖+ ‖zy‖ ≤ 3r′/16 + r′
√

ε/16 ≤ r′/4, since ε ≤ 1/2. Also,

sin∠yo′x′ ≤ ‖zy‖
‖o′z‖ ≤

r′
√

ε/16
r′/8

=
√

ε

2
.

It follows that ∠yo′x′ ≤ (π/2) sin∠yo′x′ ≤ √
ε. This completes the proof of the claim.

Let b̂ denote the largest ball in By that is contained within η+. Since b′ ⊆ η+, it is clear from
our construction that the radius of b̂ is at least (r′ − ‖o′y‖)/(1 + ε/2). Applying Lemma 4.4, it
follows that p ∈ b̂. Recalling that b̂ ∈ Bη completes the proof. ¤

The previous lemma suggests a simple approach to answering approximate range queries for
smooth ranges. First we construct the data structure of [4] for approximate spherical range queries,
and then apply the data structure directly to the approximating balls described in the lemma.
Unfortunately, this approach would result in an unacceptably high query time (larger by a factor
of O

(
1/ε(d−1)/2

)
assuming linear space). Instead, we will apply a more integrated solution. We

now explain how to use the above lemma, to process the various types of cells.

Type-1 cells. By property (i) of Lemma 4.2, a type-1 cell u handles query ranges η such that
η ⊆ γκbu and diam(η) ≥ γκru/4. A cell of type-1 does not generally satisfy any separation property.
But note that it only needs to handle ranges in its vicinity whose diameter is proportional to its
own size (i.e., neither too small nor too big), which makes the task manageable.

We first discuss the preprocessing phase. Setting b to γκbu and β to 1/4, we apply Lemma 4.5
to obtain the set B of O(1/ε(d+1)/2) balls. For each ball b̂ ∈ B, we compute w(P ∩ b̂) and associate
it with b̂. The space used for storing this information is on the order of the number of balls in B,
which is O(1/ε(d+1)/2).

Using these cluster sums, we compute the answer for a query η by first finding the set Bη ⊆ B of
balls described in the statement of Lemma 4.5 and then outputting

∑
b̂∈Bη

w(P ∩ b̂). To establish
the correctness of this method, first observe that η ⊆ b and the diameter of η is at least β times
the radius of b. By Lemma 4.5, we obtain

η ∩ b ⊆
⋃

b̂∈Bη

b̂ ⊆ η+.

Since η = η ∩ b, it follows that the query is answered correctly.
Finally, we consider the query time. By Lemma 4.5, it takes O((1/ε)(d−1)/2 log(1/ε)) time to

find the set Bη. Recall from Lemma 4.2 that it takes O(log n) time to find the cell u. Thus, the
total query time is O(log n + (1/ε)(d−1)/2 log(1/ε)).

Type-2 cells. By property (ii) of Lemma 4.2, a type-2 cell u handles query ranges η such that
qη ∈ u and η ⊆ γκbu. By the properties of type-2 cells mentioned earlier, the points P ∩ γκbu fall
into two groups. Points in one group lie in b′u and points in the other group (the pollutants) lie
in γκbu \ b′u. Recall that the number of pollutants is at most O(1/ε(d−1)/2). Since the number of
pollutants is few, preprocessing simply involves storing these points in a list. To answer query η
we scan the list and identify the points that lie inside η.

Next we consider the set of points P ∩ b′u. Clearly these points are relevant to a query only if
the range η overlaps the ball b′u. By properties of type-2 cells, recall that the ball γκb′u does not

38

overlap u. Since qη ∈ u, it is clear that if η overlaps b′u then diam(η) ≥ (γκ − 1)r′u, where r′u is the
radius of b′u. Thus, η is large relative to b′u and so we can use Lemma 4.5 to preprocess the ball b′u
and then answer such queries. To be precise, we set b to b′u and β to γκ − 1, and apply Lemma 4.5
to obtain the set B of O(1/ε(d+1)/2) balls. For each ball b̂ ∈ B, we compute w(P ∩ b̂) and associate
it with b̂. We answer a query η by finding the set Bη ⊆ B of balls described in the statement of
Lemma 4.5, and then outputting

∑
b̂∈Bη

w(P ∩ b̂). We have η ∩ b ⊆ ∪b̂∈Bη
b̂ ⊆ η+, which implies

that the query is answered correctly.
The space used is O(1/ε(d−1)/2) for the pollutants and O(1/ε(d+1)/2) for storing the structure

of Lemma 4.5. The query time is O(1/ε(d−1)/2) for scanning the list of pollutants. If η overlaps b′u,
it takes an additional O((1/ε)(d−1)/2 log(1/ε)) time for finding the clusters using Lemma 4.5. Thus
the space used for cell u is O(1/ε(d+1)/2) and the total query time, including the time for finding
cell u, is O(log n + (1/ε)(d−1)/2 log(1/ε)).

Type-3 cells. By property (iii) of Lemma 4.2, a type-3 cell u handles query ranges η such that
8bu ⊆ η ⊆ γκbv. Recall that a type-3 cell u is a quadtree box, and it is contained inside another
quadtree box v such that |P ∩ (γκbv \ 8bu)| = O(1/ε(d−1)/2). Thus, we can answer query η exactly
by taking the sum of w(P ∩ 8bu) and the weights of the pollutants in P ∩ (γκbv \ 8bu) that lie inside
η. Thus, by precomputing w(P ∩ 8bu) and storing the list of the pollutants, we can answer queries
in time O(log n + 1/ε(d−1)/2). The space used per cell is O(1/ε(d−1)/2).

In summary, we have shown that for all three types of cells the query time is bounded by
O(log n+(1/ε)(d−1)/2 log(1/ε)), and the space used per cell is bounded by O(1/ε(d+1)/2). Since the
total number of cells is O(nε(d−1)/2), it follows that the total space used by the data structure is
O(n/ε).

Finally, we make a few remarks regarding preprocessing time. The bottleneck is the computation
of the cluster sums for type-1 and type-2 cells. Recall that each cluster is the intersection of the
point set P with a suitable ball, and the total number of cluster sums is O(n/ε). For the sake of
simplicity, we assumed in our description that each cluster sum is computed exactly. However, this
would take too long, and it can be easily replaced by an approximate computation (i.e., we allow
errors O(ε)-close to the boundary of the ball). For this purpose, we can use the standard BBD-tree
data structure of Arya and Mount [7]. This structure takes O(n log n) time to construct and allows
us to answer an ε-approximate convex range query in time O(log n + 1/εd−1). Thus, the time to
compute all the cluster sums approximately is O((n log n)/ε + n/εd)

We can improve the ε-dependency in the construction time significantly by using the more
sophisticated data structure of [4], which is tailored to spherical range queries. This data structure
uses a parameter γ, 2 ≤ γ ≤ 1/ε, to control the space/time tradeoff. (The value γ here is not to
be confused with the value γκ = 72κ used in the earlier constructions.) The time to construct this
data structure is O(nγd log(n/ε) log(1/ε)), and it allows us to answer an ε-approximate spherical
range query in time O(log(nγ)+1/(εγ)d−1). To achieve our best bound, we construct this structure
for γ = 1/εd/(2d−1). The time to construct this structure and use it to compute all the cluster sums
approximately is O((n/ε(d+1)/2) log(n/ε) log(1/ε)). This completes the proof of Theorem 4.2.

39

5 Concluding Remarks

In this paper we have presented a number of results on the complexity of approximate range search-
ing in spaces of constant dimension. In particular we have considered how semigroup properties,
such as idempotence and integrality, interact with range shape properties, such as sharpness and
smoothness, in determining the space and time complexities of the problem. We have shown that
the advantages of idempotency do not apply to ranges with sharp corners. In particular, our results
imply that for the range space of rotated unit hypercubes, arbitrary (including idempotent) semi-
groups, and linear space, the query time is Ω(1/εd−2

√
d). For integral semigroups it is Ω

(
1/εd−2

)
.

These lower bounds nearly match the upper bound of O(log n + (1/ε)d−1), which holds for arbi-
trary semigroups. In contrast, we showed that the improvements offered by idempotence do apply
to smooth convex ranges. We presented a lower bound of Ω

(
log n + (1/ε)(d−1)/2

)
in the algebraic

decision-tree model of computation, and presented a nearly matching upper bound. Since the lower
bound is in the algebraic decision-tree model, it holds irrespective of space.

There are a few problems that would be nice to resolve. Our lower bounds in the integral case
(both here and in [5]) apply under the assumption of convex generators. Can this assumption be
removed? The above lower bound on the complexity of range searching for rotated unit hypercubes
contains a messy factor of

√
d in the exponent. An interesting question is whether this term can

be eliminated, either in the case of rotated hypercubes or by considering some other natural range
space involving ranges with sharp corners. Another problem is that of providing good upper bounds
with space-time tradeoffs for rotated hypercube ranges.

This line of work provokes a number of general questions about the computational complexity
of approximate range searching in spaces of constant dimension. In particular, what are the best
ε-dependencies that can be achieved? How do semigroup properties and the nature of the range
shapes affect the time and space complexity? What sorts of models, tools, and structures need to
be developed to provide meaningful lower and upper bounds? In contrast to exact range searching,
the landscape here is considerably richer and more complex.

6 Acknowledgments

We would like to thank the anonymous referees who read the conference version of this paper for
their many valuable suggestions.

References

[1] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, volume
223 of Contemporary Mathematics, pages 1–56. American Mathematical Society, Providence,
RI, 1999.

[2] S. Arya and T. Malamatos. Linear-size approximate Voronoi diagrams. In Proc. 13th Annu.
ACM-SIAM Sympos. Discrete Algorithms, pages 147–155, 2002.

[3] S. Arya, T. Malamatos, and D. M. Mount. Space-efficient approximate Voronoi diagrams. In
Proc. 34th Annu. ACM Sympos. Theory Comput., pages 721–730, 2002.

40

[4] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate spherical
range counting. In Proc. 16th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 535–
544, 2005.

[5] S. Arya, T. Malamatos, and D. M. Mount. On the importance of idempotence. In Proc. 38th
Annu. ACM Sympos. Theory Comput., pages 564–573, 2006.

[6] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate spherical
range counting. Technical Report CS–TR–4842, Dept. of Computer Science, University of
Maryland, 2006.

[7] S. Arya and D. M. Mount. Approximate range searching. Comput. Geom. Theory Appl.,
17:135–152, 2000.

[8] I. Bárány. Intrinsic volumes and f -vectors of random polytopes. Math. Annalen, 285:671–699,
1989.

[9] I. Bárány. The technique of M-regions and cap-coverings: A survey. In Proc. III International
Conference in Stochastic Geometry, Convex Bodies and Empirical Measures, Part II, volume 65
of Rendi. del Circ. Matemat. di Palermo, pages 21–38, 2000.

[10] I. Bárány and D. Larman. Convex bodies, economic cap coverings, random polytopes. Math-
ematika, 35:274–291, 1988.

[11] H. Brönnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching. Discrete
Comput. Geom., 10:143–155, 1993.

[12] T. M. Chan and J. Snoeyink. Algorithms for approximate nearest-neighbor queries.
Manuscript, 1995.

[13] B. Chazelle. Lower bounds on the complexity of polytope range searching. J. Amer. Math.
Soc., 2:637–666, 1989.

[14] B. Chazelle, D. Liu, and A. Magen. Approximate range searching in higher dimension. In
Proc. 16th Canad. Conf. Comput. Geom., pages 154–157, 2004.

[15] J. Erickson. Space-time tradeoffs for emptiness queries. SIAM J. Comput., 29:1968–1996,
2000.

[16] G. Ewald, D. G. Larman, and C. A. Rogers. The directions of the line segments and of the r-
dimensional balls on the boundary of a convex body in Euclidean space. Mathematika, 17:1–20,
1970.

[17] M. L. Fredman. Lower bounds on the complexity of some optimal data structures. SIAM J.
Comput., 10:1–10, 1981.

[18] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Op-
timization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin Heidelberg,
1988. 2nd edition 1994.

41

[19] J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,
10(2):157–182, 1993.

[20] J. Matoušek. Geometric range searching. ACM Comput. Surv., 26:421–461, 1994.

[21] A. C. Yao. On the complexity of maintaining partial sums. SIAM J. Comput., 14:277–288,
1985.

42

