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Abstract Approximating convex bodies succinctly by convex polytopes is a funda-
mental problem in discrete geometry. A convex body K of diameter diam(K ) is given
in Euclidean d-dimensional space, where d is a constant. Given an error parameter
ε > 0, the objective is to determine a polytope of minimum combinatorial complexity
whoseHausdorff distance from K is at most ε ·diam(K ). By combinatorial complexity
we mean the total number of faces of all dimensions of the polytope. A well-known
result by Dudley implies that O(1/ε(d−1)/2) facets suffice, and a dual result by Bron-
shteyn and Ivanov similarly bounds the number of vertices, but neither result bounds
the total combinatorial complexity. We show that there exists an approximating poly-
tope whose total combinatorial complexity is ˜O(1/ε(d−1)/2), where ˜O conceals a
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polylogarithmic factor in 1/ε. This is a significant improvement upon the best known
bound, which is roughly O(1/εd−2). Our result is based on a novel combination of
both old and new ideas. First, we employ Macbeath regions, a classical structure from
the theory of convexity. The construction of our approximating polytope employs a
new stratified placement of these regions. Second, in order to analyze the combi-
natorial complexity of the approximating polytope, we present a tight analysis of a
width-based variant of Bárány and Larman’s economical cap covering. Finally, we
use a deterministic adaptation of the witness-collector technique (developed recently
by Devillers et al.) in the context of our stratified construction.

Keywords Convex polytopes · Polytope approximation · Combinatorial complexity ·
Macbeath regions

Mathematics Subject Classification 52C45

1 Introduction

Approximating general convex bodies by convex polytopes is a fundamental geometric
problem. It has been extensively studied in the literature under various formulations
(see Bronstein [14] for a survey). Consider a convex body K , that is, a closed, convex
set of bounded diameter, in Euclidean d-dimensional space. At issue is the structure
of the simplest polytope P that approximates K .

There are various ways to define the notions of “simplest” and “approximates.” Our
notion of approximation will be based on the Hausdorff metric, that is, the maximum
distance between a point in the boundary of P or K and the boundary of the other
body.Normally, approximation error is defined relative to K ’s diameter. Itwill simplify
matters to assume that K has been uniformly scaled to unit diameter. For a given error
ε > 0, we say that a polytope P is an ε-approximating polytope to K if the Hausdorff
distance between K and P is at most ε. The simplicity of an approximating polytope
P will be measured in terms of its combinatorial complexity, that is, the total number
of k-faces, for 0 ≤ k ≤ d − 1. For the purposes of stating asymptotic bounds, we
assume that the dimension d is a constant.

The bounds given in the literature for convex approximation are of two common
types [14]. In both cases, the bounds hold for all ε ≤ ε0, for some ε0 > 0. Innonuniform
bounds, the value of ε0 depends on K (for example, on K ’s maximum curvature). Such
bounds are often stated as holding “in the limit” as ε approaches zero, or equivalently
as the combinatorial complexity of the approximating polytope approaches infinity.
Examples include bounds by Gruber [21], Clarkson [16], and others [11,20,27]. Our
interest is in uniform bounds, where the value of ε0 is independent of K . Examples
include the results of Dudley [18] and Bronshteyn and Ivanov [13]. Such bounds hold
without any assumptions on K .

Dudley showed that, for ε ≤ 1, any convex body K of unit diameter can be
ε-approximated by a convex polytope P with O(1/ε(d−1)/2) facets. This bound is
known to be optimal in the worst case and is achieved when K is a Euclidean ball (see,
e.g., [14]). Alternatively, Bronshteyn and Ivanov showed the same bound holds for the
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number of vertices, which is also the best possible. No convex polytope approximation
is known that attains both bounds simultaneously.1

Establishing good uniform bounds on the combinatorial complexity of convex
polytope approximations is a major open problem. The Upper-Bound Theorem [25]
implies that a polytope with n vertices (resp., facets) has total combinatorial com-
plexity O(n�d/2�). Applying this to the results of either Dudley or Bronshteyn and
Ivanov directly yields a bound of O(1/ε(d2−d)/4) on the combinatorial complexity
of an ε-approximating polytope. Better uniform bounds without d2 in the exponent
are known, however. Consider a uniform grid Ψ of points with spacing Θ(ε), and let
P denote the convex hull of Ψ ∩ K . It is easy to see that P is an ε-approximating
polytope for K . The combinatorial complexity of any lattice polytope2 is known to be
O(V (d−1)/(d+1)), where V is the volume of the polytope [2,9]. This implies that P
has combinatorial complexity O(1/εd(d−1)/(d+1)) ≈ O(1/εd−2). While this is signif-
icantly better than the bound provided by the Upper-Bound Theorem, it is still much
larger than the lower bound of Ω(1/ε(d−1)/2).

We show that this gap can be dramatically reduced. In particular, we establish an
upper bound on the combinatorial complexity of convex approximation that is optimal
up to a polylogarithmic factor in 1/ε.

Theorem 1.1 Let K ⊂ R
d be a convex body of unit diameter, where d is a fixed

constant. For all sufficiently small positive ε (independent of K ) there exists an
ε-approximating convex polytope P to K of combinatorial complexity O(1/̂ε (d−1)/2),
where ε̂ = ε/ log(1/ε).

This is within a factor of O(log(d−1)/2(1/ε)) of the aforementioned lower bound.
Our approach employs a classical structure from the theory of convexity, calledMac-
beath regions [24].Macbeath regions have foundnumerous uses in the theoryof convex
sets and the geometry of numbers (see Bárány [8] for an excellent survey). They have
also been applied to a small but growing number of results in the field of computational
geometry (see, e.g., [3,4,6,12]). Our construction of the approximating polytope uses
a new stratified placement of these regions. In order to analyze the combinatorial
complexity of the approximating polytope, in Sect. 3 we present a tight analysis of
a width-based variant of Bárány and Larman’s economical cap covering. This result
plays a central role in our recent work on approximate polytope membership queries
[5] and may find use in other applications. Finally, we employ a deterministic version
of the witness-collector technique, developed recently by Devillers et al. [17], in the
context of our stratified construction.

The paper is organized as follows. In Sect. 2,we define concepts related toMacbeath
regions and present some of their key properties. In Sect. 3, we prove the width-based
economical cap covering lemma. The stratified placement of the Macbeath regions
and the bound on the combinatorial complexity of approximating polytopes follow in
Sect. 4. We conclude with several open problems in Sect. 5.

1 Jeff Erickson noted that both bounds can be attained simultaneously but at the cost of sacrificing convex-
ity [16].
2 A lattice polytope is the convex hull of any set of points with integer coordinates.
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2 Geometric Preliminaries

Recall that K is a convex body of unit diameter in R
d . Let ∂K denote its boundary.

Let O denote the origin of Rd , and for x ∈ R
d and r ≥ 0, let Br (x) denote the

Euclidean ball of radius r centered at x . It will be convenient to first map K to a
convenient form. We say that a convex body K is in canonical form if B1/2d(O) ⊆
K ⊆ B1/2(O). Given a parameter 0 < γ ≤ 1, we say that a convex body K is
γ -fat if there exist concentric Euclidean balls B and B ′, such that B ⊆ K ⊆ B ′,
and radius(B)/radius(B ′) ≥ γ . Thus, a body in canonical form is (1/d)-fat and has
diameter Θ(1). We will refer to point O as the center of K .

The following lemma shows that, up to constant factors, the problem of approxi-
mating an arbitrary convex body can be reduced to approximating a convex body in
canonical form. The proof follows from a combination of John’s Theorem [23] and
Lemma 3.1 of Agarwal et al. [1] and is included for completeness.

Lemma 2.1 Let K be a convex body of unit diameter in R
d . There exists a non-

singular affine transformation T such that T (K ) is in canonical form and if P is any
(ε/d)-approximating polytope to T (K ), then T−1(P) is an ε-approximating polytope
to K .

Proof Let E denote a maximum volume ellipsoid enclosed within K (that is, the John
ellipsoid). Since K is of unit diameter, E’s semi-principal axes are all of length at
most 1/2. Consider a frame centered at E’s center and whose axes coincide with E’s
semi-principal axes. Let T be an affine transformation that maps this frame’s origin to
the origin of the space, and scales all of the frame’s basis vectors to length 1/2d. This
affine transformation maps E to B1/2d(O). Since each of the frame’s basis vectors is
scaled from a length of at most 1/2 to a length of 1/2d, it follows that T maps any
vector v to a vector of length at least ‖v‖/d. Thus, T−1 maps any vector v to a vector
of length at most d‖v‖. Therefore, if P is any (ε/d)-approximating polytope to T (K ),
T−1(P) is an ε-approximating polytope to T−1(T (K )) = K , as desired. 
�

We assume henceforth that K is given in canonical form and that ε has been appro-
priately scaled. This scaling only affects the constant factors in our asymptotic bounds.

A cap C is defined to be the nonempty intersection of the convex body K with a
halfspace H (see Fig. 1a). Let h denote the hyperplane bounding H . We define the
base of C to be h ∩ K . The apex of C is any point in the cap such that the supporting
hyperplane of K at this point is parallel to h. The width of C is the distance between
h and this supporting hyperplane. Given any cap C of width w and a real λ ≥ 0, we
define its λ-expansion, denoted Cλ, to be the cap of K cut by a hyperplane parallel to
and at distance λw from this supporting hyperplane. (Note thatCλ = K , if λw exceeds
the width of K along the defining direction.) An easy consequence of convexity is that,
for λ ≥ 1, Cλ is a subset of the region obtained by scaling C by a factor of λ about
its apex. It follows that, for λ ≥ 1, vol(Cλ) ≤ λd · vol(C). For a given ε > 0, let
K (ε) ⊂ K denote the points of K within distance at most ε from ∂K (equivalently,
the union of all ε-width caps).
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Fig. 1 a Cap concepts. b Macbeath regions

Given a point x ∈ K and real parameter λ ≥ 0, the Macbeath region Mλ(x) (also
called an M-region) is defined as

Mλ(x) = x + λ((K − x) ∩ (x − K )).

It is easy to see that M1(x) is the intersection of K and the reflection of K around x
(see Fig. 1b), and so M1(x) is centrally symmetric about x . Mλ(x) is a scaled copy
of M1(x) by the factor λ about x . We refer to x as the center of Mλ(x) and to λ as its
scaling factor. As a convenience, we define M(x) = M1(x) and M ′(x) = M1/5(x).

We begin with two lemmas that encapsulate relevant properties of Macbeath
regions. Both were proved originally by Ewald, Larman, and Rogers [19], but our
statements follow the forms given by Brönnimann, Chazelle, and Pach [12]. (Lem-
mas 2.2 and 2.3 below are restatements of Lemmas 2.5 and 2.6 from [12], respectively.)

Lemma 2.2 Let K be a convex body. If x, y ∈ K such that M ′(x) ∩ M ′(y) �= ∅, then
M ′(y) ⊆ M(x).

Lemma 2.3 Let K ⊂ R
d be a convex body in canonical form, and let Δ0 = 1/(6d)

be a constant. Let C be a cap of K of width at most Δ0. Let x denote the centroid of
the base of this cap. Then C ⊆ M3d(x).

The following lemma is an immediate consequence of the definition of Macbeath
region.

Lemma 2.4 Let K be a convex body and λ > 0. If x is a point in a cap C of K , then
Mλ(x) ∩ K ⊆ C1+λ. Furthermore, if λ ≤ 1, then Mλ(x) ⊆ C1+λ.

The next lemma is useful in situations when we know that a Macbeath region
partially overlaps a cap of K . It allows us to conclude that a constant factor expansion
of the cap will fully contain the Macbeath region.

Lemma 2.5 Let K be a convex body. Let C be a cap of K and x be a point in K such
that C ∩ M ′(x) �= ∅. Then M ′(x) ⊆ C2.

Proof Let y be any point inC∩M ′(x). Since M ′(x)∩M ′(y) �= ∅ obviously holds, we
can apply Lemma 2.2 to conclude that M ′(x) ⊆ M(y). By Lemma 2.4 (with λ = 1),
M(y) ⊆ C2. It follows that M ′(x) ⊆ C2. 
�
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Next, we give two straightforward lemmas dealing with scaling of centrally sym-
metric convex bodies. As Macbeath regions are centrally symmetric, these lemmas
will be useful in conjunction with their standard properties. A proof of Lemma 2.6
appears in Bárány [7]. For any centrally symmetric convex body A, define Aλ to be
the body obtained by scaling A by a factor of λ about its center.

Lemma 2.6 Let λ ≥ 1. Let A and B be centrally symmetric convex bodies such that
A ⊆ B. Then Aλ ⊆ Bλ.

Lemma 2.7 Let λ ≥ 1. Let A be a centrally symmetric convex body. Let A′ be the
body obtained by scaling A by a factor of λ about any point in A. Then A′ ⊆ A2λ−1.

Proof We take the origin to be at the center of A. Let A′ be the body obtained by
scaling A by a factor of λ about a point a ∈ A. Any point u in A′ is of the form
a + λ(x − a), where x ∈ A. This can be expressed as

(2λ − 1)
[ λ

2λ − 1
x + λ − 1

2λ − 1
(−a)

]

.

Since λ ≥ 1, the point (λ/(2λ − 1))x + ((λ − 1)/(2λ − 1))(−a) lies on the segment
joining x and −a. Since both x and −a lie within A, it follows that u ∈ A2λ−1, as
desired. 
�

The following lemma is an easy consequence of Lemmas 2.3 and 2.7.

Lemma 2.8 Let λ ≥ 1 and let K ,C, and x be as defined in Lemma 2.3. Then Cλ ⊆
M3d(2λ−1)(x).

Proof By Lemma 2.3, C ⊆ M3d(x). Recall that Cλ is contained within the region
obtained by scaling C by a factor of λ about its apex. Applying Lemma 2.7 (applied
to M3d(x) and the apex point), it follows that Cλ ⊆ M3d(2λ−1)(x). 
�

The well-known Lemma 2.2 states that if two (1/5)-shrunken Macbeath regions
have a nonempty intersection, then a constant factor expansion of one contains the
other [12,19]. We show next that this holds for the associated caps as well. (Note
that this does not hold in general for overlapping caps. If two caps C1 and C2 have a
nonempty intersection, there is no constant β that guarantees that C1 ⊆ Cβ

2 .)

Lemma 2.9 Let Δ0 be the constant of Lemma 2.3 and let λ ≥ 1 be any real. There
exists a constant β ≥ 1 such that the following holds. Let K ⊂ R

d be a convex body
in canonical form. Let C1 and C2 be any two caps of K of width at most Δ0. Let
x1 and x2 denote the centroids of the bases of the caps C1 and C2, respectively. If
M ′(x1) ∩ M ′(x2) �= ∅, then Cλ

1 ⊆ Cβλ
2 .

Proof By Lemma 2.8, Cλ
1 ⊆ Mα(x1), where α = 3d(2λ − 1). Since M ′(x1) and

M ′(x2) overlap, by Lemma 2.2, M ′(x1) ⊆ M(x2). By definition, M ′(x1) = M1/5(x1)
and so Mα(x1) = (M ′(x1))5α . Since M ′(x1) and M(x2) are centrally symmetric
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Fig. 2 Illustrating Lemma 3.1

bodies and M ′(x1) ⊆ M(x2), by Lemma 2.6, it follows that (M ′(x1))5α ⊆ M5α(x2).
Putting it together, we obtain

Cλ
1 ⊆ Mα(x1) = (M ′(x1))5α ⊆ M5α(x2).

By Lemma 2.4, M5α(x2) ∩ K ⊆ C1+5α
2 . Since Cλ

1 ⊆ M5α(x2) and Cλ
1 ⊆ K , we have

Cλ
1 ⊆ M5α(x2) ∩ K ⊆ C1+5α

2 . Recalling that α = 3d(2λ − 1), we have Cλ
1 ⊆ C30dλ

2 .
This proves the lemma for constant β = 30d. 
�

3 Economical Cap Covering

In this section we present a tight analysis of a width-based variant of Bárány and
Larman’s economical cap covering [10]. The lemma applies generally to any convex
body K that has constant diameter and isγ -fat for someconstantγ (where the constants
may depend on d). The proof of this lemma follows from the ideas in [7,10,19]. Our
principal contribution is an optimal bound of O(1/ε(d−1)/2) on the number of bodies
needed.

Lemma 3.1 (Width-based economical cap covering lemma)Let ε > 0bea sufficiently
small parameter. Let K ⊂ R

d be a convex body in canonical form. There exists
a collection R of k = O(1/ε(d−1)/2) disjoint centrally symmetric convex bodies
R1, . . . , Rk (see Fig. 2a) and associated caps C1, . . . ,Ck such that the following hold
(for some constants β and λ, which depend only on d):

1. For each i , Ci is a cap of width βε, and Ri ⊆ Ci ⊆ Rλ
i .

2. Let C be any cap of width ε. Then there is an i such that Ri ⊆ C and C1/β2

i⊆ C ⊆ Ci (see Fig. 2b).

The Ri ’s in this lemma areMacbeath regions with scaling factor 1/5. Since any cap
of width ε is contained in some cap Ci , it follows that the Ci ’s together cover K (ε).
Further, from Property 1, we can see that the sum of the volume of the Ci ’s is no more
than a constant times the volume of K (ε). It is in this sense that the Ci ’s constitute an
economical cap covering.

It is worth mentioning that Property 2 is stronger than similar properties given
previously in the literature in the following sense. For any cap of width ε, we show
not merely that it is contained within some cap Ci of the cover, but it is effectively
“sandwiched” between two caps with parallel bases, each of width Θ(ε).
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Fig. 3 Illustrating Lemma 3.3
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A key technical contribution of our paper is the following lemma. It will help us
bound the number of bodies needed in the width-based cap covering lemma. Because
of its broader utility, this lemma is given in a slightly more general form than is needed
here.

Lemma 3.2 Let K ⊂ R
d be a convex body in canonical form. Let 0 < δ ≤ Δ0/2,

where Δ0 is the constant of Lemma 2.3. Let C be a set of caps, whose widths lie
between δ and 2δ, such that the Macbeath regions M ′(x) centered at the centroids x
of the bases of these caps are disjoint. Then |C | = O(1/δ(d−1)/2).

Our proof of Lemma 3.2 will require the following geometric observation, which is
a straightforward extension of Dudley’s convex approximation construction (see [18,
Lem. 4.4]). It is similar to other results based on Dudley’s construction (including [1,
Lem. 3.6] and [22,Lem. 23.12]).Wewill present the proof for the sake of completeness.
Let S denote the sphere of radius 2 centered at the origin O , which we call the
Dudley sphere. Given vectors u and v, let 〈u, v〉 denote their dot product and let
‖u‖ = 〈u, u〉1/2 denote u’s Euclidean length.

Lemma 3.3 Let K be a convex body that lies within a unit sphere centered at the
origin, and let 0 < δ ≤ 1. Let x ′ and y′ be two points of S. Let x and y be the points of
∂K that are closest to x ′ and y′, respectively. Let h denote the supporting hyperplane
at x orthogonal to the segment xx ′. Let C denote the cap cut from K by a hyperplane
parallel to and at distance δ from h. If y /∈ C, then ‖x ′ − y′‖ ≥ √

δ.

Proof Before starting the proof, we recall a technical result (Lemma 4.3) from Dud-
ley [18], which states that given vectors x , y, u, v in Rd such that 〈x − y, u〉 ≥ 0 and
〈x − y, v〉 ≤ 0, ‖(x + u) − (y + v)‖ ≥ max(‖x − y‖, ‖u − v‖). This follows from
the observation that

‖(x + u) − (y + v)‖2 = ‖x − y‖2 + ‖u − v‖2 + 2 〈x − y, u − v〉
≥ ‖x − y‖2 + ‖u − v‖2.

Returning to the proof, suppose towards a contradiction that y /∈ C but ‖x ′ − y′‖ <√
δ. Let u = x ′ − x and v = y′ − y, and let û = u/‖u‖ and v̂ = v/‖v‖ (see Fig. 3).

Clearly, ‖(x + u) − (y + v)‖ = ‖x ′ − y′‖ <
√

δ. A direct consequence of convexity
is that 〈x − y, u〉 ≥ 0 and 〈x − y, v〉 ≤ 0, and so by the above result it follows that

123



Discrete Comput Geom (2017) 58:849–870 857

‖x − y‖ and ‖u − v‖ are both less than
√

δ. Clearly, u and v are of at least unit length,
and thus ‖û − v̂‖ ≤ ‖u − v‖ <

√
δ. Let θ denote the angle between û and v̂. Since

‖x ′ − y′‖ <
√

δ ≤ 1 and the radius of S is 2, it follows that θ < π/2.
Consider the right triangle whose hypotenuse is xy and whose third vertex is

the orthogonal projection of y onto the supporting hyperplane h, which we denote
by z. Letting φ = � zxy, it follows from convexity that φ ≤ θ . (This is because
any supporting hyperplane through y cannot pass below x .) Because θ < π/2,
sin θ ≥ sin φ. Also, since y /∈ C , we have ‖z − y‖ > δ, and therefore

sin θ ≥ sin φ = ‖z − y‖
‖x − y‖ >

δ√
δ

= √
δ.

Observe that ‖û − v̂‖ is the length of a chord of a unit circle that subtends an arc of
angle θ , and therefore ‖û − v̂‖ = 2 sin θ

2 . Given our earlier bound on this distance,
we obtain the following contradiction:

√
δ < sin θ = 2 sin

θ

2
cos

θ

2
≤ 2 sin

θ

2
= ‖û − v̂‖ <

√
δ. 
�

We are now ready to present the proof of Lemma 3.2.

Proof of Lemma 3.2 Let A be the set of disjoint Macbeath regions M ′(x) described in
the lemma. For each region M ′(x), let C(x) denote the cap whose base centroid point
generatesM ′(x).We begin by pruning A to obtain a subset B, which towithin constant
factors has the same cardinality as A.We construct B incrementally as follows. Initially
B is the empty set. In each step, from among the Macbeath regions that still remain
in A, we choose a Macbeath region M ′(x) that has the smallest volume, and insert it
into B. We then prune all the Macbeath regions from A that intersect the cap C4(x).
We continue in this manner until A is exhausted.

We claim that in each step, we prune a constant number of Macbeath regions from
A. Let M ′(x) denote the Macbeath region inserted into B in this step. If M ′(y) is a
Macbeath region that is pruned in this step, then M ′(y) intersects the cap C4(x). It
then follows from Lemma 2.5 that M ′(y) ⊆ C8(x). Note that

vol(C8(x)) ≤ 8dvol(C(x)) = O(vol(C(x))).

Since C(x) is of width at most 2δ ≤ Δ0, we may apply Lemma 2.3, which yields
C(x) ⊆ M3d(x). It follows that

vol(M(x)) ≥ vol(C(x))/(3d)d = Ω(vol(C(x))).

Recall that each Macbeath region pruned has volume greater than or equal to the
volume of M ′(x). It follows that the volume of each Macbeath region pruned is
Ω(vol(M(x))) = Ω(vol(C(x))). Since the pruned Macbeath regions are disjoint and
contained in a region of volume O(vol(C(x))), a straightforward packing argument
implies that the number of Macbeath regions pruned is O(1).
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Fig. 4 Cases arising in the proof of Lemma 3.2 (figure not to scale)

The claim immediately implies that |A| = O(|B|). In the remainder of the proof,
we will show that |B| = O(1/δ(d−1)/2), which will complete the proof.

Let X denote the set of centers of the Macbeath regions of B, that is,
X = {x : M ′(x) ∈ B}. We map each point x ∈ X to a point x ′ on the Dudley
sphere such that xx ′ is normal to the base of the cap C(x). We claim that the distance
between any pair of the projected points x ′ on the Dudley sphere is at least

√
δ. Note

that this claim would imply the desired bound on |B| and complete the proof.
To see this claim, consider any twoMacbeath regionsM ′(x) andM ′(y) in the set B.

Without loss of generality, suppose that M ′(y) is inserted into B after M ′(x). By our
construction, it follows that y is not contained in C4(x) (because otherwise M ′(y)
would intersect C4(x) and would have been pruned after inserting M ′(x) into B). We
now consider two cases, depending on whether or not x is contained in C(y).

Case 1 (x /∈ C(y)) Consider the convex body K ′ that is the closure of K \(C(x)∪C(y))
(outlined in red in Fig. 4a). Note that x and y are on the boundary of the convex body K ′
and these are the points of ∂K ′ that are closest to x ′ and y′, respectively. Next, consider
the cap of K ′ whose apex is x and width is δ. Call this cap C ′(x). Since the width of
C(x) is at least δ, and y /∈ C4(x), it is easy to see that y /∈ C ′(x). Applying Lemma 3.3
to the convex body K ′ and the points x ′, y′, x , and y, it follows that ‖x ′y′‖ ≥ √

δ.

Case 2 (x ∈ C(y)) Let h denote the hyperplane that forms the base of C(y) (see
Fig. 4b). Let h′ denote the hyperplane parallel to h that passes through x . Let v denote
the vector normal to h, whose magnitude is the distance between h and h′. Note that
h′ = h + v. Since C(y) is a cap of width at most 2δ, the magnitude of the translation
vector v is at most 2δ. Let y∗ = y+v. Let Hy denote the halfspace bounded by h′ that
contains the origin. Let Hx denote the halfspace that contains the origin and whose
boundary is the hyperplane forming the base of C(x). Define the convex body K ′ as
the intersection of Hx and Hy and a ball of unit radius centered at the origin. Note
that x and y∗ lie on the boundary of K ′ (since ‖Ox‖ < 1 and ‖Oy∗‖ < 1; ‖Ox‖ < 1
holds trivially since x ∈ K and K ⊆ B1/2(O), and ‖Oy∗‖ ≤ ‖Oy‖ + ‖yy∗‖ ≤
1/2 + 2δ ≤ 1/2 + 2Δ0 < 1).
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Further, the points x and y∗ are the points of ∂K ′ that are closest to x ′ and y′,
respectively. Next, consider the cap of K ′ whose apex is x and width is δ and whose
base is parallel to the base of C(x). Call this cap C ′(x). Recall that y /∈ C4(x), the
width of C(x) is at least δ, and the distance between y and y∗ is at most 2δ. It follows
that y∗ is at distance bigger than 3δ −2δ = δ from the hyperplane passing through the
base of C(x). Since the distance between the hyperplanes passing through the bases
of C(x) and C ′(x), respectively, is δ, it follows that y∗ /∈ C ′(x). Applying Lemma 3.3
to the convex body K ′ and the points x ′, y′, x , and y∗, it follows that the distance
between x ′ and y′ is at least

√
δ. This establishes the above claim and completes the

proof. 
�
The remainder of this section is devoted to proving Lemma 3.1.

Proof of Lemma 3.1 Assume that ε ≤ Δ0, where Δ0 is the constant of Lemma 2.3.
Let β = 30d be the constant of Lemma 2.9. Let C be a maximal set of caps, each
of width ε/β, such that the (1/5)-scaled Macbeath regions centered at the centroids
of the bases of these caps are disjoint. Let A1, . . . , Ak denote the caps of C . Let xi
denote the centroid of the base of cap Ai . With each cap Ai , we associate a convex

body Ri = M ′(xi ) and a cap Ci = Aβ2

i . We will show that the convex bodies Ri and
caps Ci satisfy the properties given in the lemma.

By Lemma 3.2, |C | = O(1/ε(d−1)/2), which implies the desired upper bound
on k. Since Ci is a β2-expansion of Ai , its width is βε. To prove Property 1, it remains
to show that M ′(xi ) ⊆ Ci ⊆ (M ′(xi ))λ. By Lemma 2.4, M ′(xi ) ⊆ A6/5

i . Since

A6/5
i ⊆ Aβ2

i = Ci , we obtain M ′(xi ) ⊆ Ci . Also, applying Lemma 2.8, we obtain

Ci = Aβ2

i ⊆ M3d(2β2−1)(xi ) = (M ′(xi ))15d(2β2−1) ⊆ (M ′(xi ))λ,

where λ = 30dβ2. Thus, M ′(xi ) ⊆ Ci ⊆ (M ′(xi ))λ.
To show Property 2, let C be any cap of width ε. Let x denote the centroid of the

base of C1/β . By maximality of C , there must be a Macbeath region M ′(xi ) that has
a nonempty intersection with M ′(x) (note xi may be the same as point x). Applying
Lemma 2.2, it follows that M ′(xi ) ⊆ M(x). By Lemma 2.4, M(x) ⊆ C2/β . Putting it
together, we obtain M ′(xi ) ⊆ M(x) ⊆ C2/β ⊆ C , which establishes the first part of
Property 2.

It remains to show that C1/β2

i ⊆ C ⊆ Ci . Since M ′(xi ) ∩ M ′(x) �= ∅, we can
apply Lemma 2.9 to caps Ai and C1/β (for λ = 1) to obtain Ai ⊆ (C1/β)β . Applying

Lemma 2.9 again to caps C1/β and Ai (for λ = β), we obtain (C1/β)β ⊆ Aβ2

i . Thus

Ai ⊆ C ⊆ Aβ2

i . Recalling that Ci = Aβ2

i , we obtain C1/β2

i ⊆ C ⊆ Ci , as desired. 
�

4 Polytope Approximation

In this section, we will show how to obtain an ε-approximating convex polytope P
of low combinatorial complexity. Let K be a convex body in canonical form. Our
strategy is as follows. First, we build a set R of disjoint centrally symmetric convex
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bodies lying within K and close to its boundary. These bodies will possess certain key
properties to be specified later. For each R ∈ R, we select a point arbitrarily from
this body, and let S denote this set of points. The approximation P is defined as the
convex hull of S. In Lemma 4.10, we will prove that P is an ε-approximation of K
and, in Lemma 4.11, we will apply a deterministic variant of the witness-collector
approach [17] to show that P has low combinatorial complexity.

Before delving into the details, we provide a high-level overview of the witness-
collector method, adapted to our context. LetH denote the set of all halfspaces inRd .
We define a setW of regions called witnesses and a set C of regions called collectors,
which satisfy the following properties:

(1) Each witness of W contains a point of S in its interior.
(2) Any halfspace H ∈ H either contains a witness W ∈ W or H ∩ S is contained

in a collector C ∈ C .
(3) Each collector C ∈ C contains a constant number of points of S.

The key idea of the witness-collector method is encapsulated in the following
lemma.

Lemma 4.1 Given a set of witnesses and collectors satisfying the above properties,
the combinatorial complexity of the convex hull P of S is O(|C |).
Proof Wemap each face f of P to anymaximal subset S f ⊆ S of affinely independent
points on f . Note that this is a one-to-one mapping and |S f | ≤ d. In order to bound
the combinatorial complexity of P it suffices to bound the number of such subsets S f .

For a given face f , let H be any halfspace such that H ∩ P = f . Clearly H does
not contain any witness since otherwise, by Property 1, it would contain a point of S in
its interior. By Property 2, H ∩ S is contained in some collectorC ∈ C . Thus S f ⊆ C .
Since |S f | ≤ d, it follows that the number of such subsets S f that are contained in
any collector C is at most

∑

1≤ j≤d

(|C ∩ S|
j

)

= O(|C ∩ S|d) = O(1),

where in the last step we have used the fact that |C ∩ S| = O(1) (Property 3).
Summing over all the collectors, it follows that the total number of sets S f , and hence
the combinatorial complexity of P is O(|C |). 
�

Anatural choice for the witnesses and collectors would be the convex bodies Ri and
the caps Ci , respectively, from Lemma 3.1. Unfortunately, these bodies do not work
for our purposes. The main difficulty is that Property 3 could fail, since a cap Ci could
intersect a non-constant number of bodies of R, and hence contain a non-constant
number of points of S. (To see this, suppose that K is a cylinder in 3-dimensional
space. A cap of width Θ(ε) that is parallel to the circular flat face of K intersects
Ω(1/

√
ε) bodies, which will be distributed around the circular boundary of this face.)

In this section, we show that it is possible to construct a set of witnesses and collectors
that satisfy all the requirements by scaling and translating the convex bodies from

123



Discrete Comput Geom (2017) 58:849–870 861
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Fig. 5 Illustrating Lemma 4.2

Lemma 3.1 into a stratified placement according to their volumes. The properties we
obtain are specified below in Lemma 4.5.

We begin with some easy geometric facts about a convex body K in canonical form.
For any point x ∈ K , define δ(x) to be the minimum distance from x to any point
on ∂K . Further, define the ray-distance of a point x to the boundary as follows. Con-
sider the ray emanating from O and passing through x . Let p denote the intersection
of this ray with ∂K . We define ray(x) = ‖xp‖. Clearly ray(x) ≥ δ(x). Lemma 4.2
shows that these two quantities are the same to within a constant factor.

Lemma 4.2 Let K ⊂ R
d be a convex body in canonical form. For any point x ∈ K,

ray(x) ≤ d · δ(x).

Proof Let p denote the intersection with ∂K of the ray emanating from O and passing
through x (see Fig. 5a). Let K ′ denote the convex hull of the point p and the ball
B1/2d(O). By convexity, K ′ contains the segment Op and K ′ ⊆ K . It follows that
the distance between x and ∂K ′ is a lower bound on δ(x).

To compute the distance between x and ∂K ′, consider any 2-flat P containing the
line Op and let K ′′ = K ′ ∩ P (see Fig. 5b). By symmetry, the distance between x
and ∂K ′ is the same as the distance between x and ∂K ′′. Note that ∂K ′′ consists of a
portion of a circle of radius 1/(2d) centered at O , and the two tangents to this circle
from point p. It is straightforward to see that the points of ∂K ′′ that are closest to x
lie on the two tangent lines (one on each tangent). Let t ′ denote the point where one
of these tangents touches the circle, and let t denote the point on segment pt ′ that
is closest to x . Since triangles �Ot ′ p and �xtp are similar, we have ‖xp‖/‖xt‖ =
‖Op‖/‖Ot ′‖. Since ‖Op‖ ≤ 1/2 and ‖Ot ′‖ ≥ 1/(2d), we have ‖xp‖/‖xt‖ ≤ d.
That is, ray(x) = ‖xp‖ ≤ d‖xt‖ ≤ d · δ(x), as desired. 
�

The following technical lemma gives upper and lower bounds on the volume of a
cap of width α.

Lemma 4.3 Let K ⊂ R
d be a convex body in canonical form and let α < 1 be a

positive real. Then the volume of any cap C of width α is O(α) and Ω(αd).
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Proof Let h1 be the hyperplane passing through the base ofC and let h2 be the parallel
hyperplane passing through the apex x of C . Since C is contained in the intersection
of ball B1/2(O) with the slab bounded by h1 and h2, it follows that vol(C) = O(α).

To prove the lower bound, let y denote the pointwhere the ray Ox intersects the base
of the cap. We have ray(y) = ‖xy‖ ≥ α. By Lemma 4.2, we have δ(y) ≥ ray(y)/d.
It follows that δ(y) ≥ α/d. Note that the ball of radius δ(y) centered at y is contained
within K and half this ball lies within the cap C . Therefore, vol(C) = Ω(αd). 
�

The following lemma states that containment of caps is preserved if the halfspaces
defining both caps are consistently scaled about a point that is common to both caps.

Lemma 4.4 Let K be a convex body and let λ ≥ 1. Let C1 and C2 be two caps of K
such thatC1 ⊆ C2. Let H1 and H2 be the defininghalfspaces ofC1 andC2, respectively.
Let H ′

1 and H ′
2 be the halfspaces obtained by scaling H1 and H2, respectively, by a

factor of λ about p, where p is any point in K ∩C1. Let C ′
1 and C

′
2 be the caps K ∩H ′

1
and K ∩ H ′

2, respectively. Then C
′
1 ⊆ C ′

2.

Proof Given λ and p, consider the affine transformation f (q) = λ(q− p)+ p, which
scales space by a factor of λ about p. Thus, H ′

1 = f (H1) and H ′
2 = f (H2). Since

p ∈ K and λ ≥ 1, it follows directly from convexity that K ⊆ f (K ). Given any
halfspace H such that p ∈ K ∩ H , it follows that K ∩ f (H) = K ∩ f (K ∩ H). Since
C1 ⊆ C2, we have f (K ∩ H1) ⊆ f (K ∩ H2), and thus,

C ′
1 = K ∩ f (H1) = K ∩ f (K ∩ H1) ⊆ K ∩ f (K ∩ H2) = K ∩ f (H2) = C ′

2,

as desired. 
�
Our choice of witnesses and collectors will be based on the following lemma.

Specifically, the convex bodies R1, . . . , Rk , will play the role of the witnesses and
the regions C1, . . . ,Ck , will play the role of the collectors. The lemma strengthens
Lemma 3.1, achieving the critical property that any collector Ci intersects only a
constant number of convex bodies of R. As each witness set Ri will contain one
point, this ensures that a collector contains only a constant number of input points
(Property 3 of the witness-collector system). This strengthening is achieved at the
expense of only an extra polylogarithmic factor in the number of collectors needed,
compared with Lemma 3.1. Also, the collectors are no longer simple caps, but have a
more complex shape as described in the proof (this, however, has no adverse effect in
our application).

Lemma 4.5 Let ε > 0 be a sufficiently small parameter, and ε̂ = ε/ log(1/ε).
Let K ⊂ R

d be a convex body in canonical form. There exists a collection R of
k = O(1/̂ε (d−1)/2) disjoint centrally symmetric convex bodies R1, . . . , Rk and asso-
ciated regions C1, . . . ,Ck such that the following hold:

1. Let C be any cap of width ε. Then there is an i such that Ri ⊆ C.
2. Let C be any cap. Then there is an i such that either (i) Ri ⊆ C or (ii) C ⊆ Ci .
3. For each i , the region Ci intersects at most a constant number of bodies of R.
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(a) (b)

R i
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Fig. 6 a Stratified placement of the bodies Ri and b the region Ci corresponding to a body Ri (figure not
to scale)

As mentioned earlier, our proof of this lemma is based on a stratified placement of
the convex bodies from Lemma 3.1, which are distributed among O(log(1/ε)) layers
that lie close to the boundary of K . Let α = c1 ε/ log(1/ε), where c1 is a suitable
constant to be specified later. We begin by applying Lemma 3.1 to K using ε = α.
This yields a collectionR ′ of k = O(1/α(d−1)/2) disjoint centrally symmetric convex
bodies {R′

1, . . . , R
′
k} and associated caps C ′ = {C ′

1, . . . ,C
′
k}. Our definition of the

convex bodies Ri and regions Ci required in Lemma 4.5 will be based on R′
i and C ′

i ,
respectively. In particular, the convex body Ri will be obtained by translating a scaled
copy of R′

i into an appropriate layer, based on the volume of R′
i .

Before describing the construction of the layers, it will be convenient to group the
bodies inR ′ based on their volumes. We claim that the volume of any convex body R′

i
lies between c2αd and c3α for suitable constants c2 and c3.ByProperty 1ofLemma3.1,
R′
i ⊆ C ′

i ⊆ (R′
i )

λ and C ′
i has width βα, for constants β and λ depending only on d.

By Lemma 4.3, the volume of C ′
i is O(α) and Ω(αd). Since vol(R′

i ) = Θ(vol(C ′
i )),

the desired claim follows.
We partition the setR ′ of convex bodies into t groups, where each group contains

bodieswhose volumes differ by a factor of atmost 2.More precisely, for 0 ≤ j ≤ t−1,
group j consists of bodies in R ′ whose volume lies between c3α/2 j and c3α/2 j+1.
The lower and upper bound on the volume of bodies inR ′ implies that the number of
groups t can be expressed as �c4 log(1/α)� for a suitable constant c4 (depending on
c2 and c3).

Next we describe how the layers are constructed. We will construct t layers cor-
responding to the t groups of R ′. Let γ = 1 − 4dβα. For 0 ≤ j ≤ t , let Tj denote
the linear transformation that represents a uniform scaling by a factor of γ j about
the origin, and let K j = Tj (K ) (see Fig. 6a). Note that K0 = T0(K ) = K . For
0 ≤ j ≤ t − 1, define layer j , denoted L j , to be the difference K j \ K j+1. Whenever
we refer parallel supporting hyperplanes for two bodies Ki and K j , we assume that
both hyperplanes lie on the same side of the origin.

The following lemma describes some straightforward properties of these layers and
the scaling transformations. In particular, the lemma shows that the t layers lie close
to the boundary of K (within distance ε) and each layer has a “thickness” of Θ(α).

Lemma 4.6 Let ε > 0 be a sufficiently small parameter. For sufficiently small constant
c1 in the definition of α (depending on c4, β, and d), the layered decomposition and
the scaling transformations described above satisfy the following properties:
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(a) For 0 ≤ j ≤ t − 1, the distance between parallel supporting hyperplanes of K j

and K j+1 is at most 2dβα.
(b) For 0 ≤ j ≤ t − 1, the distance between parallel supporting hyperplanes of K j

and K j+1 is at least βα.
(c) The distance between parallel supporting hyperplanes of K and Kt is at most ε.
(d) For 0 ≤ j ≤ t , the scaling factor for Tj is at least 1/2 and at most 1.
(e) For 0 ≤ j ≤ t , Tj preserves volumes up to a constant factor.
(f) For 0 ≤ j ≤ t , and any point p ∈ K, the distance between p and Tj (p) is at

most 2 jdβα.

Proof To prove (a), let h1, h2 denote parallel supporting hyperplanes of K j , K j+1,
respectively. Since K is in canonical form, and the scaling factor of the transformation
Tj is at most 1, it follows that h1 is at distance at most 1/2 from the origin. Since h2
is the hyperplane obtained by scaling h1 by a factor of 1 − 4dβα about the origin, it
follows that the distance between h1 and h2 is at most 2dβα.

To prove (c), let h1, h2 denote parallel supporting hyperplanes of K , Kt , respec-
tively. The upper bound of (a) implies that the distance between h1 and h2 is at most
2tdβα. Recall that t ≤ c4 log(1/α) and α = c1 ε/ log(1/ε). By choosing a sufficiently
small constant c1 in the definition of α (depending on d, c4 and β), we can ensure that
the distance between h1 and h2 is at most 2tdβα ≤ ε.

In the rest of this proof, we will assume that c1 in the definition of α is sufficiently
small, so (c) holds. To prove (d), note that we only need to show the lower bound on the
scaling factor of Tj , since the upper bound is obvious. Again, let h1, h2 denote parallel
supporting hyperplanes of K , Kt , respectively. Since K is in canonical position, h1 is
at distance at least 1/(2d) from the origin. Recall that Tt maps h1 to h2 and, as shown
above, the distance between h1 and h2 is at most ε. It follows that the scaling factor
of Tt is at least 1 − ε/(1/2d) = 1 − 2dε. By choosing ε sufficiently small, we can
ensure that the scaling factor of Tt is at least 1/2. Clearly, this lower bound on the
scaling factor also applies to any transformation Tj , 0 ≤ j ≤ t . This proves (d). Note
that (e) is an immediate consequence.

To prove (b), let h1, h2 denote parallel supporting hyperplanes of K j , K j+1,
respectively. Let h′

1, h
′
2, denote the corresponding supporting hyperplanes of K , K1,

respectively. That is, h1 = Tj (h′
1) and h2 = Tj (h′

2). Since K is in canonical form,
h′
1 is at distance at least 1/(2d) from the origin. As h′

2 is obtained by scaling h′
1 by a

factor of 1 − 4dβα about the origin, it follows that the distance between h′
1 and h′

2 is
at least 2βα. Since h1 = Tj (h′

1) and h2 = Tj (h′
2) and, by (d), the scaling factor of Tj

is at least 1/2, (b) follows.
Finally, to prove (f), note that the distance of p from the origin is at most 1/2. It

follows that applying T1 to p moves it closer to the origin by a distance of at most
2dβα. Since Tj = (T1) j , (f) follows. 
�

We are now ready to define the regions Ri and Ci required in Lemma 4.5. Suppose
that R′

i is in group j and let C ′
i = K ∩ H ′

i , where H ′
i is a halfspace. We define

Ri = Tj (R′
i ). In order to define Ci , we first define caps Ci,r of Kr as Ci,r = Kr ∩

Tj (H ′
i ) for 0 ≤ r ≤ j . We then define
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Fig. 7 Proof of Lemma 4.8 a Case 1 and b Case 2 (figure not to scale)

Ci =
j

⋃

r=0

Cσ
i,r ∩ Lr ,

where σ = 4dβ2 (see Fig. 6b).
In Lemma 4.7, we show that the regions Ri are contained in layer j if R′

i is in
group j . In Lemma 4.8, we establish Properties 1 and 2 of Lemma 4.5. Finally, in
Lemma 4.9, we establish Property 3 of Lemma 4.5.

Lemma 4.7 Let Ri ∈ R. If R′
i is in group j , then Ci, j = Tj (C ′

i ) and Ri ⊆ Ci, j ⊆ L j .

Proof Let H ′
i denote the halfspace as defined above, that is, C ′

i = K ∩ H ′
i . By

definition,Ci, j = K j∩Tj (H ′
i ) = Tj (K∩H ′

i ) = Tj (C ′
i ). By Property 1 of Lemma 3.1,

R′
i ⊆ C ′

i andC
′
i is a cap of K of width βα. By Lemma 4.6(b), the distance between any

parallel supporting hyperplanes of K and K1, respectively, is at least βα. It follows
that R′

i ⊆ C ′
i ⊆ L0 = K \ K1. Applying the transformation Tj to all these sets yields

Ri ⊆ Ci, j ⊆ L j = K j \ K j+1. This completes the proof. 
�
Lemma 4.8 Let C be any cap of K . Then there is an i such that either (i) Ri ⊆ C or
(ii) C ⊆ Ci . Furthermore, if the width of C is ε, then (i) holds.

Proof Let C ′ ⊆ C be the cap of width α, whose base is parallel to the base of C . Let
H and H ′ denote the defining halfspaces of C and C ′, respectively. By Property 2
of Lemma 3.1, there is an i such that R′

i ⊆ C ′. Suppose that R′
i is in group j . We

consider two cases, depending on whether Tj (H ′) ⊆ H or H ⊂ Tj (H ′). To complete
the proof of the lemma, we will show that in the former case, Ri ⊆ C and, in the latter
case, C ⊆ Ci . Additionally, we will show that if C has width ε, then the former case
holds (implying that Ri ⊆ C).

Case 1 Tj (H ′) ⊆ H . Arguing as in the proof of Lemma 4.7 (but with C ′ in place
of C ′

i ), we have Ri ⊆ Tj (C ′) = K j ∩ Tj (H ′) ⊆ L j (see Fig. 7a). Observe that
K j ∩ Tj (H ′) ⊆ K ∩ H = C . Therefore Ri ⊆ C .

Also, by Lemma 4.6(c), the distance between any parallel supporting hyperplanes
of K and Kt is at most ε. Since K j ∩ Tj (H ′) ⊆ L j , it follows that the width of cap
K ∩ Tj (H ′) is at most ε. Therefore, if C has width ε, then Tj (H ′) ⊆ H and Case 1
holds.
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Case 2 H ⊂ Tj (H ′). Recall that we need to show that C ⊆ Ci . Clearly, it suffices to
show that K ∩ Tj (H ′) ⊆ Ci since C = K ∩ H ⊂ K ∩ Tj (H ′). In turn, the definition
of Ci implies that it suffices to show that for 0 ≤ r ≤ j , Tj (H ′) ∩ Kr ⊆ Cσ

i,r .

By Property 2 of Lemma 3.1, there is an i such that (C ′
i )

φ ⊆ C ′ ⊆ C ′
i , where

φ = 1/β2. By Property 1 of Lemma 3.1, the widths of the caps (C ′
i )

φ and C ′
i are α/β

and βα, respectively. Recall that H ′
i denotes the defining halfspace for the cap C ′

i .
Also, let x denote the apex of C ′

i , and let hi denote the supporting hyperplane to K
passing through x and parallel to C ′

i ’s base.
Let C1,C2, and C3 denote the caps of Kr obtained by applying the transformation

Tr to the caps (C ′
i )

φ , C ′, and C ′
i , respectively (see Fig. 7b.) We have C1 ⊆ C2 ⊆ C3.

Let a, b and c denote the point of intersection of the bases of the caps C1,C2 and
C3, respectively, with the line segment Ox . Let b′ denote the point of intersection of
the base of the cap K ∩ Tj (H ′) with the segment Ox . Let xr denote the point Tr (x).
Consider scaling caps C2 and C3 as described in Lemma 4.4, about the point xr with
scaling factor ρ = ‖b′xr‖/‖bxr‖. Let C ′

2 and C
′
3 denote the caps of Kr obtained from

C2 and C3, respectively, through this transformation. By Lemma 4.4, C ′
2 ⊆ C ′

3. Our
choice of the scaling factor implies that C ′

2 is the cap Tj (H ′) ∩ Kr . We claim that
C ′
3 ⊆ Cσ

i,r . Note that this claim would imply that Tj (H ′) ∩ Kr ⊆ Cσ
i,r , and complete

the proof.
To prove the above claim, we first show that ρ = O( j − r + 1). Observe that

ρ = (‖b′b‖ + ‖bxr‖)/‖bxr‖ = ‖b′b‖/‖bxr‖ + 1. We have

‖bxr‖ ≥ ‖axr‖ ≥ width(C1) ≥ width((C ′
i )

φ)

2
≥ α

2β
,

where in the third inequality, we have used Lemma 4.6(d) and the fact that
C1 = Tr ((C ′

i )
φ). Also, since Tj−r (b) = b′, it follows from Lemma 4.6(f) that ‖b′b‖ is

at most 2( j − r)dβα. Substituting the derived bounds on ‖b′b‖ and ‖bxr‖, we obtain
ρ ≤ 4dβ2( j − r) + 1.

Recall that C ′
3 and Ci,r are caps of Kr defined by parallel halfspaces. To prove that

C ′
3 ⊆ Cσ

i,r , it therefore suffices to show that width(C ′
3)/width(Ci,r ) ≤ σ . We have

width(C ′
3) = ρ · width(C3) ≤ ρ · width(C ′

i ) = ρβ α,

where in the second step, we have used Lemma 4.6(d) and the fact that C3 = Tr (C ′
i ).

Also, it is easy to see that the width of Ci,r is the sum of the width of the cap Tj (C ′
i )

and the distance between the hyperplanes Tr (hi ) and Tj (hi ). Since width(C ′
i ) = βα,

by Lemma 4.6(d), the width of the cap Tj (C ′
i ) is at least βα/2. Also, by Lemma 4.6(b),

the distance between the hyperplanes Tr (hi ) and Tj (hi ) is at least ( j−r)βα. It follows
that the width of Ci,r is at least βα/2 + ( j − r)βα = ( j − r + 1/2)βα. Thus,

width(C ′
3)

width(Ci,r )
≤ ρβ α

( j − r + 1/2)β α
= ρ

j − r + 1/2

≤ 4d β2( j − r) + 1

j − r + 1/2
≤ 4d β2 = σ,

as desired. 
�
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Fig. 8 Proof of Lemma 4.9 (figure not to scale)

Lemma 4.9 For each i , the region Ci intersects O(1) bodies of R.

Proof Suppose that R′
i is in group j . Recall that Ri = Tj (R′

i ), C
′
i = K ∩ H ′

i and

Ci = ⋃ j
r=0(C

σ
i,r ∩ Lr ). We begin by bounding the number of bodies ofR that overlap

Cσ
i, j ∩ L j . (See Fig. 8a.) By Lemma 4.7, Ci, j = Tj (C ′

i ) and Ri ⊆ Ci, j ⊆ L j .

By Property 1 of Lemma 3.1, we have C ′
i ⊆ (R′

i )
λ, which implies that vol(R′

i ) =
Ω(vol(C ′

i )). Recall that all the bodies of R ′ in group j have the same volumes to
within a factor of 2, and so they all have volumes Ω(vol(C ′

i )). By Lemma 4.6(e), the
scaling transformations used in our construction preserve volumes to within a constant
factor. Also, recall that the bodies ofR in layer j are scaled copies of the bodies ofR ′
in group j . It follows that the bodies of R in layer j all have volumes Ω(vol(Ci, j )).

Next, we assert that any body ofR that overlaps Cσ
i, j ∩ L j is contained within the

cap C2σ
i, j . To prove this, recall from the proof of Lemma 3.1 that the bodies of R ′ are

(1/5)-scaled disjoint Macbeath regions with respect to K . It follows that the bodies
of R in layer j are (1/5)-scaled disjoint Macbeath regions with respect to K j . By
Lemma 2.5, it now follows that any body of R that overlaps Cσ

i, j ∩ L j is contained

within the cap C2σ
i, j . Since vol(C

2σ
i, j ) = O(vol(Ci, j )), and all bodies of R in layer j

have volumes Ω(vol(Ci, j )), it follows by a simple packing argument that the number
of bodies ofR that overlap Cσ

i, j ∩ L j is O(1).
Next we bound the number of bodies ofR that overlapCσ

i,r ∩Lr , where 0 ≤ r < j .
(See Fig. 8b.) Recall that Ci,r = Kr ∩ Tj (H ′

i ). Roughly speaking, we will show that
the volume of Ci,r exceeds the volume of Ci, j by a factor that is at most polynomial
in j − r , while the volume of the bodies in layer r exceeds the volume of the bodies
in layer j by a factor that is exponential in j − r . This will allow us to show that the
number of bodies ofR that overlap Ci is bounded by a constant. We now present the
details.

Define C ′
i,r = Tr (C ′

i ). Recall that Ci, j = Tj (C ′
i ). By Lemma 4.6(e), Tj and Tr

preserve volumes up to constant factors, and so vol(C ′
i,r ) = Θ(vol(Ci, j )). Since the

width of C ′
i is βα, by Lemma 4.6(d), it follows that the width of C ′

i,r is at least βα/2.
Also, the width of Ci,r is upper bounded by the distance between parallel supporting
hyperplanes of Kr and K j+1 which by Lemma 4.6(a) is at most 2dβα( j − r + 1). It
follows that the width ofCi,r is O( j−r+1) times the width ofC ′

i,r . Recalling that, for

λ ≥ 1, the volume of a λ-expansion of a cap is at most λd times the volume of the cap,
it follows that vol(Ci,r ) = O(( j − r + 1)d) · vol(C ′

i,r ) = O(( j − r + 1)d) · vol(Ci, j ).
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Next, recall that the volume of the bodies of R ′ in group r exceeds the volume of
the bodies of R ′ in group j by a factor of Ω(2 j−r+1). It follows from Lemma 4.6(e)
and our construction that the volume of the bodies ofR in layer r exceeds the volume
of the bodies of R in layer j by a factor of Ω(2 j−r+1). For the same reasons as
discussed above, any body ofR that overlaps Cσ

i,r ∩ Lr is contained within C2σ
i,r , and

vol(C2σ
i,r ) = O(vol(Ci,r )). Putting this together with the upper bound on vol(Ci,r )

shown above, we have vol(C2σ
i,r ) = O(( j − r + 1)d) · vol(Ci, j ). By a simple packing

argument, it follows that the ratio of the number of bodies ofR that overlap Cσ
i,r ∩ Lr

to the number of bodies of R that overlap Cσ
i, j ∩ L j is O(( j − r + 1)d/2 j−r+1).

Recall that the number of bodies of R that overlap Cσ
i, j ∩ L j is O(1). It follows that

the number of bodies of R that overlap Ci = ⋃ j
r=0(C

σ
i,r ∩ Lr ) is on the order of

∑

0≤r≤ j ( j − r + 1)d/2 j−r+1 = O(1), as desired. 
�
Let S be a set of points containing one point inside each body of R defined in

Lemma 4.5 and no other points.

Lemma 4.10 The polytope P = conv(S) is an ε-approximation of K .

Proof A set of points S stabs every cap of width ε if every such cap contains at least
one point of S. It is well known that if a set of points S ⊂ K stabs all caps of width
ε of K , then conv(S) is an ε-approximation of K [13]. Let C be a cap of width ε. By
Lemma 4.5, Property 1, there is a convex body Ri ⊆ C . Since S contains a point that
is in Ri , we have that the cap C is stabbed. 
�

To bound the combinatorial complexity of conv(S), and hence conclude the proof
of Theorem 1.1, we use the witness-collector approach [17].

Lemma 4.11 The number of faces of P = conv(S) is O(1/̂ε (d−1)/2).

Proof Define the witness setW = R1, . . . , Rk and the collector set C = C1, . . . ,Ck ,
where the Ri ’s and Ci ’s are as defined in Lemma 4.5. As there is a point of S in each
body Ri , Property 1 of thewitness-collectormethod is satisfied. ToproveProperty 2, let
H be any halfspace. If H does not intersect K , then Property 2 of the witness-collector
method holds trivially. Otherwise let C = K ∩ H . By Property 2 of Lemma 4.5, there
is an i such that either Ri ⊆ C or C ⊆ Ci . It follows that H contains witness Ri or
H ∩ S is contained in collector Ci . Thus Property 2 of the witness-collector method is
satisfied. Finally, Property 3 of Lemma 4.5 implies Property 3 of the witness-collector
method. Thus, we can apply Lemma 4.1 to conclude that the number of faces of P is
O(|C |) = O(k), which proves the lemma. 
�

5 Conclusions and Open Problems

We considered the problem of ε-approximating a convex body K ⊂ R
d by a polytope

P of small combinatorial complexity. We proved an upper bound of ˜O(1/ε(d−1)/2)

to the combinatorial complexity, almost a square-root improvement over the previous
bound of O(1/εd(d−1)/(d+1)) ≈ O(1/εd−2). Our bound is optimal up to logarithmic
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factors. Two natural questions arise. First, can the logarithmic factors be removed or is
there a fundamental reason why they appear? Second, our construction is much more
complex than the ones of Dudley or Bronshteyn and Ivanov. Can we show that those
simpler constructions also attain a low combinatorial complexity or find a counterex-
ample? Furthermore, our bounds are purely existential. While our construction can be
turned into an algorithm, there are a number of nontrivial technical issues that would
need to be handled in order to obtain an efficient solution.

Our bounds are presented as a function of ε, but a natural question is whether it
is possible to obtain bounds that are sensitive to the polytope being approximated.
One may consider finding the polytope of minimum combinatorial complexity that
approximates a given polytope K as an optimization problem. Approximation algo-
rithms for minimizing the number of vertices of an ε-approximating polytope are well
known [15,26], but we know of no similar results for minimizing the combinatorial
complexity.

Acknowledgements We would like to thank the reviewers (of both the conference and journal versions)
for their many valuable suggestions. The work of S. Arya was supported by the Research Grants Council of
Hong Kong, China under Project Number 610012. The work of D.M. Mount was supported by NSF Grants
CCF-1117259 and CCF-1618866.

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM
51(4), 606–635 (2004)

2. Andrews, G.E.: A lower bound for the volumes of strictly convex bodies with many boundary points.
Trans. Am. Math. Soc. 106(2), 270–279 (1963)

3. Arya, S., Malamatos, T., Mount, D.M.: The effect of corners on the complexity of approximate range
searching. Discrete Comput. Geom. 41(3), 398–443 (2009)

4. Arya, S., da Fonseca, G.D., Mount, D.M.: Optimal area-sensitive bounds for polytope approximation.
In: Proceedings of the 28thAnnualACMSymposiumonComputationalGeometry, pp. 363–372 (2012)

5. Arya, S., da Fonseca, G.D., Mount, D.M.: Optimal approximate polytopemembership. In: Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (2017, to appear)

6. Arya, S., Mount, D.M., Xia, J.: Tight lower bounds for halfspace range searching. Discrete Comput.
Geom. 47(4), 711–730 (2012)

7. Bárány, I.: Intrinsic volumes and f -vectors of random polytopes. Math. Ann. 285(4), 671–699 (1989)
8. Bárány, I.: The technique of M-regions and cap-coverings: a survey. Rend. Circ. Mat. Palermo Suppl.

65, 21–38 (2000)
9. Bárány, I.: Extremal problems for convex lattice polytopes: a survey. In: Goodman, J.E., Pach, J.,

Pollack, R. (eds.) Surveys on Discrete and Computational Geometry. ContemporaryMathematics, vol.
453, pp. 87–103. American Mathematical Society, Providence (2008)

10. Bárány, I., Larman, D.G.: Convex bodies, economic cap coverings, random polytopes. Mathematika
35(2), 274–291 (1988)

11. Böröczky Jr., K.: Approximation of general smooth convex bodies. Adv.Math. 153(2), 325–341 (2000)
12. Brönnimann, H., Chazelle, B., Pach, J.: How hard is halfspace range searching? Discrete Comput.

Geom. 10(2), 143–155 (1993)
13. Bronshteyn, E.M., Ivanov, L.D.: The approximation of convex sets by polyhedra. Sib. Math. J. 16(5),

852–853 (1976)
14. Bronstein, E.M.: Approximation of convex sets by polytopes. J. Math. Sci. 153(6), 727–762 (2008)
15. Clarkson, K.L.: Algorithms for polytope covering and approximation. In: Proceedings of the Third

International Workshop Algorithms and Data Structures, pp. 246–252 (1993)
16. Clarkson, K.L.: Building triangulations using ε-nets. In: Proceedings of the 38th Annual ACM Sym-

posium on Theory Computing, pp. 326–335 (2006)

123



870 Discrete Comput Geom (2017) 58:849–870

17. Devillers,O.,Glisse,M.,Goaoc,X.: Complexity analysis of randomgeometric structuresmade simpler.
In: Proceedings of the 29thAnnualACMSymposiumonComputationalGeometry, pp. 167–176 (2013)

18. Dudley, R.M.:Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory
10(3), 227–236 (1974)

19. Ewald, G., Larman, D.G., Rogers, C.A.: The directions of the line segments and of the r -dimensional
balls on the boundary of a convex body in Euclidean space. Mathematika 17(1), 1–20 (1970)

20. Fejes Tóth, L.: Approximation by polygons and polyhedra. Bull. Am. Math. Soc. 54(4), 431–438
(1948)

21. Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum
Math. 5(6), 521–538 (1993)

22. Har-Peled, S.: Geometric Approximation Algorithms. Mathematical Surveys and Monographs, vol.
173. American Mathematical Society, Providence, RI (2011)

23. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Pre-
sented to R. Courant on his 60th Birthday, pp. 187–204. Interscience, New York (1948)

24. Macbeath, A.M.: A theorem on non-homogeneous lattices. Ann. Math. 56(2), 269–293 (1952)
25. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17(2), 179–184

(1970)
26. Mitchell, J.S.B., Suri, S.: Separation and approximation of polyhedral objects. Comput. Geom. 5(2),

95–114 (1995)
27. Schneider, R.: Polyhedral approximation of smooth convex bodies. J. Math. Anal. Appl. 128(2), 470–

474 (1987)

123


	On the Combinatorial Complexity of Approximating Polytopes
	Abstract
	1 Introduction
	2 Geometric Preliminaries
	3 Economical Cap Covering
	4 Polytope Approximation
	5 Conclusions and Open Problems
	Acknowledgements
	References




