
Efficient Construction of a Bounded Degree Spanner

with Low Weight

Sunil Arya∗ Michiel Smid∗

Abstract

Let S be a set of n points in IRd and let t > 1 be a real number. A t-spanner
for S is a graph having the points of S as its vertices such that for any pair p, q

of points there is a path between them of length at most t times the Euclidean
distance between p and q.

An efficient implementation of a greedy algorithm is given that constructs a
t-spanner having bounded degree such that the total length of all its edges is
bounded by O(log n) times the length of a minimum spanning tree for S. The
algorithm has running time O(n logd n).

Applying recent results of Das, Narasimhan and Salowe to this t-spanner
gives an O(n logd n) time algorithm for constructing a t-spanner having bounded
degree and whose total edge length is proportional to the length of a minimum
spanning tree for S. Previously, no o(n2) time algorithms were known for con-
structing a t-spanner of bounded degree.

In the final part of the paper, an application to the problem of distance
enumeration is given.

1 Introduction

Given a set S of n points in IRd and a real number t > 1, a t-spanner for S is a graph
having the points of S as its vertices such that for any pair p, q of points there is a path
between them having total length at most t times the Euclidean distance between p
and q.

Much research has been recently done on the problem of efficiently constructing
spanners that satisfy additional constraints. Quantities that are of interest are the
number of edges in the spanner, the maximum degree, and the weight, which is defined
as the total length of all edges. It is clear that each t-spanner must have at least n−1
edges. Also, the weight must be at least equal to the weight of a minimum spanning
tree for S. We denote the latter by wt(MST).

We give a brief overview of known results on spanner constructions. See also
Table 1.

∗Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany. E-mail:
{arya,michiel}@mpi-sb.mpg.de. This work was supported by the ESPRIT Basic Research Actions
Program, under contract No. 7141 (project ALCOM II).

1

degree weight time reference

O(1) ⋆ O(n2 log n) [14, 17]
O(1) O(wt(MST)) O(n3 log n) [2, 4, 6]

⋆ O(wt(MST)) O(n log2 n) [5]

O(1) O(wt(MST)) O(n logd n) this paper

Table 1: Results for constructing a t-spanner for a set of n points in IRd. All constant
factors depend on t and d. A ⋆ indicates that the quantity can be very large.

Feder and Nisan gave a simple O(n2 log n) time algorithm for constructing spanners
with bounded degree. (See [14, 17].) However, these spanners can have a very large
weight.

Chandra et al.[2] present a path greedy algorithm for constructing a spanner with
bounded degree. Recent results of Das et al. [4, 6] prove that this spanner has weight
O(wt(MST)). The algorithm of [2] has running time O(n3 log n).

Das and Narasimhan [5] present a fast implementation of a variant of the path
greedy algorithm using graph clustering techniques that runs in O(n log2 n) time.
Again applying the results of [4, 6] shows that the resulting spanner has weight
O(wt(MST)). Its degree, however, can be very large.

In [14], it is shown that there exists a t such that a t-spanner of degree four can be
constructed. In [3], the analogous result is proved for degree-3 spanners. Hence, there
has been much interest in spanners of small degree.

In this paper, we present an O(n logd n) time algorithm for constructing a bounded
degree spanner having weight O(wt(MST)). The importance of this result lies in the
fact that this is the first algorithm that constructs such a spanner in o(n2) time. In
fact, it is even the first o(n2) time algorithm for constructing a spanner of bounded
degree.

A set of directed edges is said to possess the gap property if the sources and sinks of
any two edges in the set are separated by a distance at least proportional to the length
of the shorter of the two edges. Chandra et al.[2] have shown that if the edges of a graph
can be partitioned into a constant number of subsets such that within each subset the
gap property holds, then the weight of the graph is bounded by O(wt(MST) log n)
and it has bounded degree.

The idea of the path greedy algorithm is to consider pairs of points in order of
increasing distance, adding an edge (p, q) if and only if the partial spanner built until
then does not already contain a path between p and q of length at most t times
the distance between p and q. It is obvious that the resulting graph is a t-spanner.
Additionally, Chandra et al. prove that the edges in this spanner can be partitioned
into a constant number of subsets such that each subset satisfies the gap property.
Hence, it has bounded degree and weight O(wt(MST) log n).

In this paper we show that we can in some sense reverse the emphasis of this greedy
strategy. We consider pairs of points in order of increasing distance, adding an edge
(p, q) if and only if it does not violate the gap property. More precisely, the edges
of the partial spanner built until then can be partitioned into a constant number of
subsets such that within each subset the gap property holds. (We call this the gap

2

greedy strategy). It is obvious that the resulting graph has weight O(wt(MST) log n)
and bounded degree. We are able to show that this graph is also a t-spanner.

The major advantage of the gap greedy approach is that we can give an efficient
implementation for a minor variant of it that runs in O(n logd n) time. One of the
main ideas is that we do not have to consider the pairs in increasing order of their
exact distance. It suffices to consider them in increasing order of their approximate
distance. If an edge (p, q) is added to the spanner, then several points become “for-
bidden” as source or destination end points for later edges. Using range trees, we
can implicitly maintain the non-forbidden points and their approximate distances. In
each iteration, we then take a pair p, q of non-forbidden points having “minimal ap-
proximate” distance, add this pair as an edge to the graph, determine the points that
become forbidden and remove the approximate distances they induce from the data
structure.

Hence, in O(n logd n) time, we construct a spanner of bounded degree having weight
O(wt(MST) log n). By applying the results of [5] to this spanner, we get an O(n logd n)
time algorithm for constructing a spanner of bounded degree with weight O(wt(MST)).

In the final part of this paper we show how spanners can be used to enumerate
distances efficiently. More precisely, given the spanner that results from our algorithm,
we can enumerate the k smallest distances in the set S in sorted order, in time O(n +
k log k). The value of k need not be known at the start of the enumeration. We show
similar results for enumerating approximate distances.

For the problem of enumerating the k smallest distances, the following was known.
Salowe [13] and Lenhof and Smid [9] achieve O(n logn + k) time for any dimension,
but in both algorithms, the value of k must be known in advance and the distances are
not enumerated in sorted order. In the plane, Dickerson et al.[8] show that given the
Delaunay triangulation, the k smallest distances can be enumerated in O(n + k log k)
time. In this algorithm, the value of k need not be known in advance and the distances
are enumerated in sorted order.

Hence our spanner can be regarded as an efficient data structure that can be used
for distance enumeration.

The rest of this paper is organized as follows. In Section 2, we define the basic
geometric notions that are used in the paper and prove the main lemmas that we will
use in order to show that a graph is a spanner. In Section 3, we give the simple gap
greedy algorithm. In Section 4, we introduce cones and define approximate distance
functions based on them. Using these, we give a variant of the algorithm of Section 3.
In Section 5, we give the efficient implementation of this variant. Section 6 gives the
application of bounded degree spanners to the problem of distance enumeration. In
Section 7, we conclude with some remarks and open problems.

2 Preliminaries

In this section, we introduce the basic terminology and recall and prove some facts
that will be used in the rest of the paper.

Let S be a set of n points in IRd. We will consider graphs having the points of S
as their vertices. For convenience, we only consider directed graphs. The weight of an

3

edge (p, q) is defined as the Euclidean distance between p and q. The weight of a path
in a graph is defined as the sum of the weights of all edges on the path. If (p, q) is an
edge, then p is called its source and q is called its sink.

The Euclidean distance between the points p and q in IRd is denoted by |pq|. We
denote by |pq|∞ the L∞-distance between p and q, i.e., |pq|∞ = max1≤i≤d |pi − qi|.

Let t > 1. A graph G = (S, E) is called a t-spanner for S if for any pair p, q of
points of S there is a path in G from p to q having weight at most t times the Euclidean
distance between p and q. Any path satisfying this condition is called a t-spanner path
from p to q.

Remark 1 It is not a restriction to consider only directed graphs. Any directed t-
spanner can be converted into an undirected t-spanner by making the edges undirected.
Similarly, given an undirected t-spanner, we get a directed t-spanner by replacing each
undirected edge {p, q} by a pair (p, q) and (q, p) of directed edges.

Given a t-spanner G = (S, E) and a point p of S, we define the degree of p as the
sum of its in-degree and its out-degree in G. Define the weight of a set of edges as the
sum of the weights of all its elements. The weight of a t-spanner is the weight of its
edge set.

In order to estimate the weight of a t-spanner, Chandra et al.[2] introduced the
gap property: Let w ≥ 0. A set E of directed edges satisfies the w-gap property if for
any two edges (p, q) and (r, s) in E, we have

min(|pr|, |qs|) > w · min(|pq|, |rs|),
i.e., the sources and sinks of any two edges are separated by at least w times the weight
of the shorter edge. Clearly, this implies that no two edges of E share a source, and
no two edges share a sink.

Lemma 1 (Chandra et al.[2]) Let E be a set of directed edges that satisfies the w-
gap property. If w ≥ 0, then no two edges share a source, and no two edges share a
sink. Further, if w > 0, then the weight of E is O((1/w) logn) times the weight of a
minimum spanning tree for S.

Let p and q be points in IRd, both not equal to the origin 0, and let H be the
two-dimensional plane that contains p, q and 0. (If p = q, then we take for H any
plane that contains p and 0.) Then the vectors

−→
0p and

−→
0q are both contained in H .

The angle between these vectors, which is a real number in the interval [0 : π], is
denoted by angle(p, q).

The following lemma enables us to prove that a graph is a t-spanner. Its proof is
closely related to the proof of Lemma 4.1 in Chandra et al.[2]. Intuitively the lemma
says that a graph is a spanner if for any edge e missing from the graph there is a
similarly-directed edge e′ close by (relative to the length of e′) with length not much
greater than e.

Lemma 2 Let t, θ and w be real numbers such that 0 < θ < π/4, 0 ≤ w < (cos θ −
sin θ)/2 and t ≥ 1/(cos θ−sin θ−2w). Let S be a set of points in IRd and let G = (S, E)
be a directed graph such that the following holds. For any two points p and q of S there
is an edge (r, s) ∈ E, such that

4

1. angle(q − p, s − r) ≤ θ, |rs| ≤ |pq|/ cos θ and |pr| ≤ w|rs|,

2. or angle(p − q, r − s) ≤ θ, |rs| ≤ |pq|/ cos θ and |qs| ≤ w|rs|.

Then the graph G is a t-spanner for S.

Proof: We use induction on the rank of the interpoint distance. Let p, q be any pair
of points in S. If p = q, then there is nothing to show. So assume p 6= q. Let (r, s) be
the edge guaranteed by the lemma. We will prove that (i) |pr| < |pq|, (ii) |sq| < |pq|,
and (iii) there is a t-spanner path from p to q.

Assume that edge (r, s) satisfies condition 1. (The case that condition 2. holds can
be treated by a symmetric argument.) Since |rs| ≤ |pq|/ cos θ and 0 < θ < π/4, we
have |rs| < |pq| ·

√
2. Also, since w < 1/2 and |pr| ≤ w|rs|, we have |pr| < |rs|/2.

Combining this gives |pr| < |pq| ·
√

2/2 < |pq|, which proves (i).
To prove (ii) and (iii) we need to consider two cases. Let l be the ray that emanates

from r and that has the same direction as the vector −→pq. Let v be the point on l such
that |rv| = |pq|. Note that |pr| = |vq|. Let u be the orthogonal projection of s onto
l. Let H be the two-dimensional plane that contains the ray l and the point s. Then
the points r, s, u and v are all contained in H . Let α be the angle between −→rs and
l. Then α = angle(q − p, s − r) ≤ θ, sin α = |su|/|rs| and cos α = |ru|/|rs|. The two
cases depend on whether |ru| ≤ |rv| or |ru| > |rv|. (See Figure 1.)
Case 1: |ru| ≤ |rv|.

To show that |sq| < |pq|, we apply the triangle inequality and simplify:

|sq| ≤ |su| + |uv|+ |vq|
= |su| + |rv| − |ru| + |vq|
= |su| + |pq| − |ru|+ |pr|
≤ |rs| sinα + |pq| − |rs| cosα + w|rs|
≤ |rs| sin θ + |pq| − |rs| cos θ + w|rs|
= |pq| − |rs|(cos θ − sin θ − w). (1)

Since w < (cos θ − sin θ)/2, we conclude that |sq| < |pq|, which proves (ii).
It remains to prove (iii). By the induction hypothesis, there are t-spanner paths

from p to r and from s to q. Consider the path that starts in p, takes the t-spanner
path to r, then takes the edge to s, and finally takes the t-spanner path from s to
q. The weight W of this path is at most equal to t|pr| + |rs| + t|sq|. Using (1), the
assumptions of condition 1. and simplifying we get

W ≤ tw|rs| + |rs| + t|pq| − t|rs|(cos θ − sin θ − w)

= t|pq| − |rs|(t(cos θ − sin θ − 2w) − 1)

≤ t|pq|.

Hence the graph G contains a t-spanner path from p to q.
Case 2: |ru| > |rv|.

5

p p

α v

q

α u

q

r

s

u
r

s

v

Figure 1: Cases 1 and 2 in Lemma 2.

As in Case 1, we apply the triangle inequality and simplify:

|sq| ≤ |su| + |uv| + |vq|
= |su| + |ru| − |rv| + |vq|
= |rs| sinα + |rs| cosα − |pq| + |pr|
≤ |rs|(sin θ + cos θ + w) − |pq|
≤ |rs|(sin θ + w) (2)

≤ |pq|
cos θ

(

sin θ +
cos θ − sin θ

2

)

=
1

2
|pq|(1 + tan θ).

Since 0 < θ < π/4, we have tan θ < 1. Therefore, |sq| < |pq|, which proves (ii).
As in Case 1, we prove that the path formed by combining the t-spanner path from

p to r, followed by the edge (r, s), followed by the t-spanner path from s to q, is a
t-spanner path from p to q. This will prove (iii) and complete the proof of the lemma.
Let W denote the weight of this path. Then W ≤ t|pr| + |rs| + t|sq|. Using (2), the
assumptions of condition 1. and simplifying we get

W ≤ tw|rs|+ |rs| + t|rs|(sin θ + w)

= t|pq| − t|pq| + |rs|(t(sin θ + 2w) + 1)

≤ t|pq| − t|rs| cos θ + |rs|(t(sin θ + 2w) + 1)

= t|pq| − |rs|(t(cos θ − sin θ − 2w) − 1)

≤ t|pq|,

i.e., there is a t-spanner path in G from p to q.

Remark 2 Given t > 1, let w and θ be assigned any values consistent with the
expressions 0 < θ < π/4, 0 ≤ w < (cos θ− sin θ)/2 and t ≥ 1/(cos θ− sin θ− 2w). The
undirected spanner built by the path greedy algorithm (see [2]) may be regarded as a

6

directed spanner as indicated in Remark 1. It has the following property: Given any
two edges (p, q) and (r, s) in the spanner, if the angle between them is at most θ, then
they satisfy the w-gap property.

To show that this is true, assume w.l.o.g. that edge (r, s) was added first to the
spanner. Then |rs| ≤ |pq|. For the sake of contradiction, assume that the edges
(p, q) and (r, s) do not satisfy the w-gap property. Then |pr| ≤ w|rs| or |qs| ≤ w|rs|.
Assume first that |pr| ≤ w|rs|. From the proof of Lemma 2, we know that |pr| < |pq|
and |sq| < |pq|. Consider the moment when (p, q) is added to the spanner. Then the
pairs (p, r) and (s, q) have been tested already, so there are t-spanner paths from p to
r and from s to q. It follows from the proof of Lemma 2 that there must already be a
t-spanner path from p to q and, therefore, edge (p, q) would not be added. The case
|qs| ≤ w|rs| can be treated in a similar way.

Thus the path greedy spanner possesses the w-gap property for any pair of edges
with angle at most θ, such that w and θ are consistent with the above expressions.

3 A greedy algorithm

In this section, we give a simple greedy algorithm for computing a spanner with
bounded degree and low weight. In later sections, we modify this algorithm such
that it can be implemented efficiently.

Let S be a set of n points in IRd. The following algorithm gap greedy(S, θ, w)
constructs a spanner for S. If w > 0, then the edges of this spanner can be partitioned
into a constant number of subsets, such that within each subset the w-gap property
holds. This will guarantee that the spanner has bounded degree and low weight.

The algorithm considers all ordered pairs (p, q) of points in increasing order of their
distances. The edge (p, q) is added to the graph iff there is no edge (r, s) in the current
graph such that (p, q) and (r, s) have roughly the same direction and the sources p and
r are close to each other, or (q, p) and (s, r) have roughly the same direction and the
sources q and s are close to each other.

A formal description of our algorithm is given in Figure 2. We remark that for
w = 0, this is exactly Feder and Nisan’s algorithm. (See [14, 17].)

Lemma 3 Algorithm gap greedy(S, θ, w) computes a t-spanner for t = 1/(cos θ −
sin θ − 2w).

Proof: Consider the edge set E that is constructed by the algorithm. We prove that
this set satisfies the conditions of Lemma 2. This will prove that the graph (S, E) is
a t-spanner.

Let (p, q) be any ordered pair of points of S. If (p, q) is an edge of E, then the
conditions of Lemma 2 hold with r = p and s = q. Assume that (p, q) is not contained
in E. Consider the iteration where the pair (p, q) is inspected. We did not add (p, q)
to E because this set contained an edge (r, s) such that (i) angle(q − p, s− r) ≤ θ and
|pr| ≤ w|rs|, or (ii) angle(p − q, r − s) ≤ θ and |qs| ≤ w|rs|. Since (r, s) is contained
in E at the moment when we inspect the pair (p, q), we must have |rs| ≤ |pq|. This
proves that |rs| ≤ |pq|/ cos θ. Hence condition 1. or 2. of Lemma 2 is satisfied.

7

Algorithm gap greedy(S, θ, w)
(* S is a set of n points in IRd, 0 < θ < π/4, 0 ≤ w < (cos θ − sin θ)/2 *)
begin

sort the 2
(

n

2

)

ordered pairs of points according to their distances (ties are broken

arbitrarily) and store them in a list L;
E := ∅;
for all ordered pairs (p, q) ∈ L (* visit pairs in sorted order *)
do add := true;

for each edge (r, s) ∈ E
do if angle(q − p, s − r) ≤ θ

then add := add ∧ (|pr| > w|rs|)
fi;
if angle(p − q, r − s) ≤ θ
then add := add ∧ (|qs| > w|rs|)
fi

od;
if add = true then E := E ∪ {(p, q)} fi

od;
output the set E
end

Figure 2: The greedy algorithm.

8

Lemma 4 If w ≥ 0, then algorithm gap greedy(S, θ, w) computes a spanner of degree
at most O((c/θ)d−1), for a suitable constant c. Further, if w > 0, then the weight
of this spanner is bounded by O((c/θ)d−1(1/w) logn) times the weight of a minimum
spanning tree for S.

Proof: Consider any two edges (p, q) and (r, s) of the spanner (S, E) that is con-
structed by the algorithm. Assume that angle(q − p, s − r) ≤ θ. Then also angle(p −
q, r − s) ≤ θ. If (r, s) was added to E before (p, q) then it follows from our algorithm
that |rs| ≤ |pq|, |pr| > w|rs| and |qs| > w|rs|. If (p, q) was added before (r, s),
then we have |pq| ≤ |rs|, |rp| > w|pq| and |sq| > w|pq|. Therefore, we must have
|pr| > w · min(|pq|, |rs|) and |qs| > w · min(|pq|, |rs|), i.e., the w-gap property holds
for the edges (p, q) and (r, s).

Consider a collection of O((c/θ)d−1) cones having their apex at the origin, one
having angular diameter at most θ, such that the entire collection covers IRd, for a
suitable constant c. (In the next section, these notions are defined precisely.) Number
these cones C1, C2, . . . , Cm. Define Ei := {(p, q) ∈ E : q − p ∈ Ci}, 1 ≤ i ≤ m. Then
for each fixed i, the edges of Ei satisfy the w-gap property.

Lemma 1 implies that, if w ≥ 0, no two edges of Ei share a source, and no two
edges share a sink. Since the sets Ei, 1 ≤ i ≤ m, partition E, it follows that each point
of S has degree at most 2m = O((c/θ)d−1). Also, if w > 0, then Lemma 1 implies
that the total weight of Ei is bounded by ((1/w) logn) times the weight of a minimum
spanning tree for S. This proves that the total weight of the spanner is bounded by
((c/θ)d−1(1/w) logn) times the weight of a minimum spanning tree for S.

We briefly examine the question of what sorts of tradeoffs are possible between the
three quantities of interest for spanners, namely, the spanner constant t, the degree,
and the weight bound. For algorithm gap greedy , we can assign any values to θ and
w such that 0 < θ < π/4 and 0 ≤ w < (cos θ − sin θ)/2. Assume that t > 1 is given.
If we want the best bound on the degree, then we must choose the largest possible
cone angle. Thus we must choose θ such that t = 1/(cos θ − sin θ). In this case, since
w = 0, the weight bound can grow arbitrarily bad.

More interesting is the case of how to choose θ and w to achieve the best weight
bound. Assume that we want a (1 + ǫ)-spanner where ǫ is a small constant. We saw
in Lemma 4 that for w > 0, the spanner produced by algorithm gap greedy(S, θ, w)
has weight O((c/θ)d−1(1/w) logn) times the weight of a minimum spanning tree for S.
Hence, in order to minimize the weight, we have to maximize θd−1w. Since t = 1+ ǫ =
1/(cos θ − sin θ − 2w), we get

w =
1

2

(

cos θ − sin θ − 1

1 + ǫ

)

.

If ǫ is small, then θ will also be small, and we can approximate the expression for w
by

w ∼ 1

2
(1 − θ − (1 − ǫ))

∼ 1

2
(ǫ − θ).

9

Therefore, we have to maximize θd−1(ǫ − θ). Differentiating and equating to zero
we find that this expression is maximum for θ = (1 − 1/d)ǫ. This gives w = ǫ/(2d).
The corresponding (1 + ǫ)-spanner has a weight that is bounded by C · log n times the
weight of a minimum spanning tree for S, where

C = O
(

(c/θ)d−1(1/w)
)

= O

(

cd−1 2d

ǫ
(1 − 1/d)1−dǫ1−d

)

= O(dcd−1ǫ−d).

Since algorithm gap greedy inspects all pairs (p, q) of points explicitly, its running
time is Ω(n2). In the next section, we modify the algorithm. As we will see, the modi-
fied version can be implemented such that its running time is bounded by O(n logd n).

4 Towards an efficient implementation

We start by introducing the notion of cones. A (simplicial) cone is the intersection of
d halfspaces in IRd. The intersection of the hyperplanes that bound these halfspaces is
called the apex of the cone. We always assume that a cone is closed and that its apex
is a point. In the plane, a cone having its apex at the point p is a wedge bounded by
two rays emanating from p that make an angle at most equal to π.

Let C be any cone in IRd having its apex at the point p. The angular diameter of
C is defined as the maximum value of angle(q − p, r− p), where q and r range over all
points of C ∩ IRd. For d = 2, this is exactly the angle between the two rays that form
the boundary of C.

Let θ be a fixed real number such that 0 < θ < π/4. Let C be a collection of cones
such that

1. each cone has its apex at the origin,

2. each cone has angular diameter at most θ,

3. all cones cover IRd.

In [18], it is shown how such a collection C, consisting of O((c/θ)d−1) cones for a
suitable constant c, can be obtained. In the plane and for θ = π/k, we just rotate the
positive x-axis over angles of i ·θ, 0 ≤ i < 2k. This gives 2k rays. Each wedge between
two successive rays defines one cone of C.

For each cone C ∈ C, let lC be a fixed ray that emanates from the origin and that
is contained in C.

After having introduced the terminology, we can modify algorithm gap greedy .
There are three major modifications. Consider again the formal description of the
algorithm. First, we replace the condition “angle(q − p, s − r) ≤ θ” by “q − p and
s − r are contained in the same cone of C”. Clearly, the latter condition implies the
first one.

Second, we replace the condition “|pr| > w|rs|” by “|pr|∞ > (w/
√

d)|rs|”, i.e., for
the pair p, r, we switch from the Euclidean metric to the L∞-metric. Note that all
points r for which |pr|∞ ≤ δ are contained in the d-dimensional axes-parallel cube

10

centered at p having sides of length 2δ. Using range trees, we can find such points r
efficiently. (Finding all points r such that |pr| ≤ δ′ takes much more time.)

Third, instead of inspecting all pairs in increasing order of their distances, we
inspect them in order of their approximate distances, to be defined below. As we will
see, in this way we do not have to inspect all pairs explicitly.

Let C be any cone of C and let p and q be two points in IRd. Let Cp := C + p :=
{x + p : x ∈ C}, i.e., Cp is the cone obtained by translating C such that its apex is at
p. Similarly, let lC,p := lC + p. Then we define

δC(p, q) :=

Euclidean distance between p and
the orthogonal projection of q onto lC,p if q ∈ Cp

∞ if q 6∈ Cp.

α

q

lC,pp

δC(p, q)

Figure 3: The approximate distance δC(p, q).

See Figure 3. Note that δC is not a metric. The following lemma says that δC(p, q)
is a good approximation for the Euclidean distance between p and q, if q ∈ Cp.

Lemma 5 Let p and q be points in IRd. If q ∈ Cp, then |pq| cos θ ≤ δC(p, q) ≤ |pq|.

Proof: Assume that q ∈ Cp. Let H be the two-dimensional plane that contains the
point q and the ray lC,p. Note that H contains the vector −→pq. Let α be the angle
between lC,p and −→pq. (See Figure 3.) Then, 0 ≤ α ≤ θ and cosα = δC(p, q)/|pq|.
Hence, δC(p, q) = |pq| cosα ≥ |pq| cos θ and δC(p, q) = |pq| cosα ≤ |pq|.

11

Algorithm gap greedy ′(S, θ, w)
(* S is a set of n points in IRd, 0 < θ < π/4, 0 ≤ w < (cos θ − sin θ)/2 *)
begin
for each cone C
do for each r ∈ S and s ∈ S do dist(r, s) := δC(r, s) od;

EC := ∅;
while there are r 6= s such that dist(r, s) < ∞
do choose r 6= s such that dist(r, s) is minimal;

EC := EC ∪ {(r, s)};
for each p ∈ S such that |pr|∞ ≤ (w/

√
d)|rs|

do for each q ∈ S do dist(p, q) := ∞ od
od;

for each q ∈ S such that |qs|∞ ≤ (w/
√

d)|rs|
do for each p ∈ S do dist(p, q) := ∞ od
od

od
od;
output the set E :=

⋃

C EC

end

Figure 4: Towards an efficient implementation of the greedy algorithm.

Now we can give the modified algorithm. For each fixed cone C, we compute a set
EC of edges (p, q) such that q − p ∈ C. The union of all these sets will form the edge
set of our final spanner.

Consider a cone C. We find the pair (r, s) of distinct points for which δC(r, s) is
minimal and add the edge (r, s) to EC . Having added the edge (r, s), we do not want
to add edges (p, q) such that q − p ∈ C and the distance between p and r is small.
That is, after having added (r, s), all points p that are “close” to r should not occur as
sources of edges that are added later. Similarly, after having added the edge (r, s), all
points q that are “close” to s should not occur as sinks of edges that are added later.

That is, the addition of the edge (r, s) causes certain points to become “forbidden”
as a source or a sink.

In the next iteration, we find the pair (r′, s′) of non-forbidden points for which
δC(r′, s′) is minimal and proceed in the same way.

The formal algorithm is given in Figure 4. Consider the while-loop of this algo-
rithm. If the edge (r, s) is added to EC , then the value of dist(r, s) is set to ∞ during
the same iteration of this loop. That is, during each iteration, the number of pairs p, q
for which dist(p, q) < ∞ strictly decreases. This proves that the while-loop terminates.

Lemma 6 Algorithm gap greedy ′(S, θ, w) computes a t-spanner for t = 1/(cos θ −
sin θ − 2w).

Proof: The proof is similar to that of Lemma 3. Consider the set E of edges that

12

is computed by the algorithm. Let (p, q) be any ordered pair of points of S. If
(p, q) ∈ E, then the conditions of Lemma 2 hold. So, assume that (p, q) is not contained
in E. Let C be a cone such that q ∈ Cp. Consider the iteration during which
the edge set EC is constructed. At the start of this iteration, dist(p, q) has a finite
value. Since the edge (p, q) is not added to EC , the value of dist(p, q) changes to
∞ during some iteration of the while-loop. Let (r, s) be the edge that is added to
EC during that iteration. At the start of it, we have dist(r, s) ≤ dist(p, q) < ∞,
dist(r, s) = δC(r, s) and dist(p, q) = δC(p, q). Moreover, we have |pr|∞ ≤ (w/

√
d)|rs|

or |qs|∞ ≤ (w/
√

d)|rs|. We consider these two cases separately.
Case 1: |pr|∞ ≤ (w/

√
d)|rs|.

Then, |pr| ≤
√

d · |pr|∞ ≤ w|rs|. Since s − r and q − p are both contained in
C, we have angle(q − p, s − r) ≤ θ. By Lemma 5, we have |rs| ≤ δC(r, s)/ cos θ and
δC(p, q) ≤ |pq|. Since δC(r, s) ≤ δC(p, q), we conclude that |rs| ≤ |pq|/ cos θ. Hence,
condition 1. of Lemma 2 holds for the pair (p, q).
Case 2: |qs|∞ ≤ (w/

√
d)|rs|.

It follows in the same way as in Case 1 that |qs| ≤ w|rs|, angle(p − q, r − s) ≤ θ
and |rs| ≤ |pq|/ cos θ. Hence, condition 2. of Lemma 2 holds for the pair (p, q).

To summarize, we have shown that for each pair (p, q) of points one of the conditions
of Lemma 2 is satisfied. This proves that the graph (S, E) is a t-spanner.

Lemma 7 If w ≥ 0, then algorithm gap greedy ′(S, θ, w) computes a spanner of degree
at most O((c/θ)d−1), for a suitable constant c. Further, if w > 0, then the weight
of this spanner is bounded by O((c/θ)d−1(1/w) logn) times the weight of a minimum
spanning tree for S.

Proof: Consider any cone C. We will prove that the edges of EC satisfy the (w/
√

d)-
gap property. Then, the claim follows from Lemma 1.

Consider any two edges (p, q) and (r, s) of EC . Assume w.l.o.g. that (r, s) was added
to EC before (p, q). Then we must have |pr|∞ > (w/

√
d)|rs| and |qs|∞ > (w/

√
d)|rs|.

(Otherwise, the algorithm would have set dist(p, q) := ∞. Therefore, the pair (p, q)
would never have been chosen as a pair with minimal and finite dist(·, ·)-value and,
hence, the edge (p, q) would never have been added to EC .) But this implies that

|pr| ≥ |pr|∞ > (w/
√

d)|rs| ≥ (w/
√

d) · min(|pq|, |rs|),

and
|qs| ≥ |qs|∞ > (w/

√
d)|rs| ≥ (w/

√
d) · min(|pq|, |rs|),

i.e., the (w/
√

d)-gap property holds.

5 An efficient implementation

In this section, we show how to implement algorithm gap greedy ′ such that its running
time is bounded by O(n logd n). The main idea is to use range trees (see [11]) for
maintaining the minimal value dist(r, s) for all “non-forbidden” points r and s. The
technique is related to the ones in [7, 16] for maintaining the closest pair or k-point
cluster in a dynamically changing set of points.

13

Let C be any cone of C. Recall that C is the intersection of d halfspaces. Let
h1, h2, . . . , hd be the hyperplanes that bound these halfspaces, and let H1, H2, . . . , Hd

be lines through the origin such that Hi is orthogonal to hi, 1 ≤ i ≤ d. We give the
line Hi a direction such that the cone C is “above” hi. Let L be the line that contains
the ray lC . We give L the same direction as lC . (See Figure 5.)

p

h1 + p

lC,p

h2 + p

0L

H2

H1

Figure 5: The directed lines H1, H2 and L, and the translated cone Cp.

Let p be any point in IRd. We write the coordinates of p w.r.t. the standard
coordinate axes as p1, p2, . . . , pd. For 1 ≤ i ≤ d, we denote by p′i the signed Euclidean
distance between the origin and the orthogonal projection of p onto Hi, where the sign
is positive or negative according to whether this projection is to the “right” or “left”
of the origin. Similarly, p′d+1 denotes the signed Euclidean distance between the origin
and the orthogonal projection of p onto L.

In this way, we can write the cone C as C = {x ∈ IRd : x′
i ≥ 0, 1 ≤ i ≤ d}. For

p ∈ IRd, we can write the translated cone Cp with apex p as

Cp = {x ∈ IRd : x′
i ≥ p′i, 1 ≤ i ≤ d}.

We define −Cp := −C + p := {−x + p : x ∈ C}. Then we have

−Cp = {x ∈ IRd : x′
i ≤ p′i, 1 ≤ i ≤ d}.

If q ∈ Cp, then we have δC(p, q) = q′d+1 − p′d+1.

Let S be a set of n points in IRd. During our algorithm we will maintain a data
structure having the form of a (d+1)-layered range tree. This data structure depends
on the cone C. We describe it in detail.

There is a balanced binary search tree storing the points of S in its leaves, sorted
by their p′1-coordinates. (Points with equal p′1-coordinates are stored in lexicographical

14

order.) Let v be any node of this tree and let Sv be the subset of S that is stored in
the subtree of v. Then v contains a pointer to the root of a balanced binary search
tree storing the points of Sv in its leaves, sorted by their p′2-coordinates. (Points with
equal p′2-coordinates are stored such that the points (p′2, . . . , p

′
d) are in lexicographical

order.) Any node w of this tree contains a pointer to the root of a balanced binary
search tree storing the points of w’s subtree in its leaves, sorted by their p′3-coordinates,
etc. At the d-th layer, there is a balanced binary search tree storing a subset of S in
its leaves, sorted by their p′d-coordinates. The binary tree that stores points sorted by
their p′i-coordinates is called a layer-i tree.

Before we can define the last layer of the data structure, we need to introduce
some notation. Let u be any node of a layer-d tree. We inductively define a sequence
ud, ud−1, . . . , u1 of nodes such that ui belongs to a layer-i tree: Define ud = u. Given
ui, walk to the root r of its layer-i tree. Then ui−1 is the node of the layer-(i− 1) tree
that contains a pointer ro r. (See Figure 6.)

For 1 ≤ i ≤ d, let x′
ui be the maximal p′i-coordinate that is stored in the left subtree

of node ui. Let xu be the point with coordinates x′
u1, x

′
u2, . . . , x

′
ud. (Note that these

coordinates are w.r.t. the “axes” H1, H2, . . . , Hd. In general, xu is not a point of S.)
Now we can define the (d + 1)-st layer of the data structure. Consider again any

node u of a layer-d tree. Let Sud be the subset of S that is stored in the subtree of u.
Consider the point xu. Let S+

u,d+1 be a subset of {p ∈ Sud : p′i ≥ x′
ui, 1 ≤ i ≤ d} and

let S−
u,d+1 be a subset of {p ∈ Sud : p′i ≤ x′

ui, 1 ≤ i ≤ d}. (The algorithm determines
the sets S+

u,d+1 and S−
u,d+1. For the description of the data structure, we assume that

they are any subsets.) Note that all points of S+
u,d+1 and S−

u,d+1 are contained in the
cones Cxu

and −Cxu
, respectively.

Node u of the layer-d tree contains pointers to

1. a list L+
u,d+1 storing the points of S+

u,d+1, sorted by their p′d+1-coordinates,

2. a list L−
u,d+1 storing the points of S−

u,d+1, sorted by their p′d+1-coordinates,

3. a variable ηd+1(u) having value

ηd+1(u) = min{δC(p, q) : p ∈ S−
u,d+1, q ∈ S+

u,d+1},

4. and, in case, ηd+1(u) < ∞, a pair of points that realizes ηd+1(u).

These two lists are called layer-(d+1) lists. If S−
u,d+1 or S+

u,d+1 is empty, then ηd+1(u) =
∞. (In particular, this is true if u is a leaf.) Otherwise, we have ηd+1(u) = δC(p, q) =
q′d+1 − p′d+1, where p and q are the maximal and minimal elements that are stored in
the lists L−

u,d+1 and L+
u,d+1, respectively.

During our algorithm, the layer-i trees for 1 ≤ i ≤ d do not change, except for
certain η-variables that are defined below. For each node u of a layer-d tree, the
corresponding layer-(d + 1) lists initially store the sets {p ∈ Sud : p′i ≥ x′

ui, 1 ≤ i ≤ d}
and {p ∈ Sud : p′i ≤ x′

ui, 1 ≤ i ≤ d}. During the algorithm, elements will be deleted
from these lists.

In order to speed up searching during the algorithm, we store all points of S in a
dictionary. With each point p, we store

15

u1

x′
u1 x′

u2

η3(u)

η3(u)

h2 + xu

lC,xu

h1 + xu

L+
u,3

L−
u,3

u2 = u

xu

Figure 6: Illustration of the (d + 1)-layered data structure for d = 2. The points in
the cone Cxu

belong to the set S+
u,3; those in the cone −Cxu

belong to S−
u,3.

1. a list of pointers to the positions of the occurrences of p in all lists L+
u,d+1, and

2. a list of pointers to the positions of the occurrences of p in all lists L−
u,d+1.

We are almost done with the description of the data structure. We saw that for
each layer-(d + 1) structure there is a corresponding ηd+1-value. Let 1 ≤ i ≤ d and let
v be any node of a layer-i tree. If v is a leaf then v stores a variable ηi(v) having value
∞. If v is not a leaf, then let vl and vr be the left and right sons of v, respectively.
Also, let ηi+1(v) be the variable that is stored with the layer-(i + 1) structure that
corresponds to v. Then node v stores a variable ηi(v) having value

ηi(v) = min(ηi(vl), ηi(vr), ηi+1(v)), (3)

16

and, in case ηi(v) < ∞, a pair of points that realizes ηi(v).
This concludes the description of our (d + 1)-layered data structure. Recall that

the entire structure depends on the cone C.

Let q be any point of S. We can delete q from all lists L+
u,d+1 in which it occurs

and update the entire data structure, as follows: Search for q in the dictionary, and
follow the pointers to the positions of all occurrences of q in the lists L+

u,d+1. For each
such u, do the following:

1. Delete q from L+
u,d+1. If the list L−

u,d+1 is empty, then we are done. Otherwise,
let p be the maximal element of L−

u,d+1. Go to 2.

2. If q was not the minimal element of L+
u,d+1, then we are done. If q was the only

element in its list, then we set ηd+1(u) := ∞. Otherwise, if q was not the only
element in its list, then let r be the new minimal element of L+

u,d+1. Then, set
ηd+1(u) := δC(p, r) = r′d+1 − p′d+1, and store the pair (p, r).

Now, all layer-(d +1) structures are updated correctly. To update the rest of the data
structure, we do the following: We search for q in the layer-1 tree. For each node on
the path, we search for q in the corresponding layer-2 tree, etc., until we have located
q in all layer-d trees that contain this point. Then we walk back along all these paths.
During the walk, we update the values ηi(·) according to (3).

It is easy to see that the entire operation can be performed in time O(logd n). In
a completely symmetric way, we can delete a point p from all lists L−

u,d+1 and update
the entire data structure.

Now we can give the efficient implementation of algorithm gap greedy ′. As before,
we consider all cones separately. If C is the current cone, then we maintain besides
the above (d + 1)-layered data structure two d-layered range trees storing subsets of
S according to their standard coordinates p1, p2, . . . , pd. Recall that such a range tree
can be used to find all points that are contained in a d-dimensional rectangle having
sides that are parallel to the standard axes. A complete description of the algorithm
is given in Figure 7.

Lemma 8 Consider the iteration for the cone C. During the execution of this itera-
tion, if η < ∞, then

η = min{δC(p, q) : p ∈ RTsource , q ∈ RTsink , p 6= q}.

Proof: Since all ηi-variables, 1 ≤ i ≤ d + 1, either have value ∞ or δC(p, q) for some
p ∈ RTsource and q ∈ RTsink , it is clear that

η ≥ min{δC(p, q) : p ∈ RTsource , q ∈ RTsink , p 6= q}. (4)

If RTsource or RTsink is empty, then η = ∞, which is a contradiction to our assumption
that η < ∞. Hence, both these structures are non-empty. Let r ∈ RTsource and
s ∈ RTsink such that

δC(r, s) = min{δC(p, q) : p ∈ RTsource , q ∈ RTsink , p 6= q}.

17

Algorithm gap greedy ′′(S, θ, w)
(* S is a set of n points in IRd, 0 < θ < π/4, 0 ≤ w < (cos θ − sin θ)/2 *)
begin
for each cone C
do store the points of S in the (d + 1)-layered data structure T defined above;

the two layer-(d + 1) lists of each node u of each layer-d tree of T store
the sets S−

u,d+1 = {p ∈ Sud : p′i ≤ x′
ui, 1 ≤ i ≤ d} and

S+
u,d+1 = {p ∈ Sud : p′i ≥ x′

ui, 1 ≤ i ≤ d};
store the points of S in two d-layered range trees RTsource and RTsink

according to their standard coordinates;
EC := ∅;
η := value stored with the root of the layer-1 tree of T ;
while η < ∞
do let (r, s) be a pair such that η = δC(r, s);

EC := EC ∪ {(r, s)};
for each p ∈ RTsource such that |pr|∞ ≤ (w/

√
d)|rs|

do delete p from RTsource ;
delete p from all lists L−

u,d+1, and update T and
η as described in the text

od;

for each q ∈ RTsink such that |qs|∞ ≤ (w/
√

d)|rs|
do delete q from RTsink ;

delete q from all lists L+
u,d+1, and update T and

η as described in the text
od

od
od;
output the set E :=

⋃

C EC

end

Figure 7: The efficient implementation of the greedy algorithm.

18

If we can show that there is a node u in some layer-d tree of T such that ηd+1(u) =
δC(r, s), then we must have

η ≤ min{δC(p, q) : p ∈ RTsource , q ∈ RTsink , p 6= q}.

This will prove the lemma.
Consider the layer-1 tree of T . Let u1 be the highest node in this binary tree such

that r and s are contained in different subtrees of u1. Let 1 < i ≤ d and assume that
u1, u2, . . . , ui−1 have been defined already, and that ui−1 is a node of a layer-(i − 1)
tree. Then, let ui be the highest node in the layer-i tree that corresponds to ui−1 such
that r and s are contained in different subtrees of ui. In this way, we get a sequence
of nodes u1, u2, . . . , ud such that

• u1 is a node of the layer-1 tree of T ,

• ui is a node of the layer-i tree that corresponds to ui−1, 1 < i ≤ d,

• r and s are contained in different subtrees of ui, 1 ≤ i ≤ d.

We claim that ηd+1(ud) = δC(r, s), which will complete the proof.
Let u = ud and consider the point xu as defined in the description of T . (The

nodes ud, ud−1, . . . , u1 defined in the description of T are exactly the nodes that we
just defined. The difference is that they are defined in the reversed order.) Since
η < ∞, (4) implies that δC(r, s) < ∞. Hence s ∈ Cr. This shows that s′i ≥ r′i for
1 ≤ i ≤ d. Since r and s are in different subtrees of ui, we know that x′

ui separates
the coordinates r′i and s′i. Therefore, we must have r′i ≤ x′

ui ≤ s′i for 1 ≤ i ≤ d.
Since r ∈ RTsource and s ∈ RTsink , it follows that r and s are contained in the lists
L−

u,d+1 and L+
u,d+1, respectively. But then, since δC(r, s) is minimal, we must have

ηd+1(u) = δC(r, s).

We now prove that algorithms gap greedy ′ and gap greedy ′′ compute the same
graph (S, E). Assume for the sake of analysis, that we run both algorithms in parallel.
Consider a cone C. After the initialization of the iteration for C, we have

{dist(r, s) : r ∈ S, s ∈ S, r 6= s, dist(r, s) < ∞} =

{δC(r, s) : r ∈ RTsource , s ∈ RTsink , r 6= s, δC(r, s) < ∞}. (5)

Consider one iteration of the while-loop of both algorithms and assume that (5) holds
at the beginning of these iterations. Algorithm gap greedy ′ takes a pair (r′, s′) for
which dist(r′, s′) is a minimal element in the set on the left-hand side. By Lemma 8,
algorithm gap greedy ′′ takes a pair (r′′, s′′) for which δC(r′′, s′′) is a minimal element
in the set on the right-hand side. Hence we have dist(r′, s′) = δC(r′′, s′′). Note that
the sets in (5) may have several minimal elements. In that case, we force algorithm
gap greedy ′ to choose the same pair as gap greedy ′′. We denote the chosen pair by
(r, s). Both algorithms add the edge (r, s) to their edge sets EC . Then gap greedy ′

updates certain dist-values and gap greedy ′′ updates the structures RTsource , RTsink and
T . By comparing the algorithms, it follows immediately that (5) still holds after the
iteration.

19

This proves that algorithms gap greedy ′ and gap greedy ′′ compute the same edge
set E. We proved in Lemmas 6 and 7 that gap greedy ′ always produces a t-spanner
of bounded degree and, if w > 0, its weight is at most O(log n) times the weight of a
minimum spanning tree for S. Hence, the same is true for algorithm gap greedy ′′.

We analyze the complexity of our algorithm. Consider one cone C. The (d + 1)-
layered structure T has size O(n logd n) and can be built in time O(n logd n). The struc-
tures RTsource and RTsink have size O(n logd−1 n) and can be built in time O(n logd−1 n).
By applying dynamic fractional cascading ([10]) and observing that we only delete
points, their amortized deletion time is bounded by O(logd−1 n), and their query time
is bounded by O(logd−1 n) plus the number of reported points. Since each point of S is
reported in at most one query for each RT -structure, the total query time is bounded
by O(n logd−1 n).

Consider one point p of S. It is deleted at most once from RTsource , taking
O(logd−1 n) amortized time. If it is deleted from RTsource , then we delete p from
all lists L−

u,d+1 and update T and η. We saw already that this takes O(logd n) time.

Hence for each point p of S, we spend O(logd n) time for updating RTsource and T .
The same bound holds for updating RTsink and T . It follows that the entire algorithm
has running time O(n logd n). This proves:

Theorem 1 Let t, θ and w be real numbers such that 0 < θ < π/4, 0 ≤ w <
(cos θ − sin θ)/2 and t ≥ 1/(cos θ − sin θ − 2w). Let S be a set of n points in
IRd. In O((c/θ)d−1n logd n) time and using O((c/θ)d−1n + n logd n) space, algorithm
gap greedy ′′(S, θ, w) computes a t-spanner for S such that each point of S has degree
at most O((c/θ)d−1), for some suitable constant c. If w > 0, then the weight of this
t-spanner is at most O((c/θ)d−1(1/w) logn) times the weight of a minimum spanning
tree for S.

Corollary 1 Let t and θ be real numbers such that 0 < θ < π/4 and t ≥ 1/(cos θ −
sin θ). Let S be a set of n points in IRd. In O((c/θ)d−1n logd n) time and using
O((c/θ)d−1n + n logd n) space, we can compute a t-spanner for S such that each point
of S has degree at most O((c/θ)d−1) and the weight of this t-spanner is at most a
constant times the weight of a minimum spanning tree for S.

Proof: Let θ′ be such that 0 < θ′ < π/4 and
√

t ≥ 1/(cos θ′−sin θ′). Let G be the
√

t-
spanner that is constructed by algorithm gap greedy ′′(S, θ′, 0). Das and Narasimhan [5]
show how to compute in O(n log2 n) time a

√
t-spanner G′ of G. Clearly, G′ is a t-

spanner for S. Also, since G′ is a subgraph of G, it has bounded degree. Das and
Narasimhan partition the edges of G′ into two sets E0 and E1. The total weight of the
edges in E0 is bounded by the weight of a minimum spanning tree for S. The edges
in E1 satisfy the so-called leap-frog property. Recent results of [4, 6] show that the
leap-frog property implies that the total weight of the edges in E1 is proportional to
the weight of a minimum spanning tree for S.

6 Application to distance enumeration

Salowe ([12, 15]) has suggested the use of Dijkstra’s algorithm with bounded degree
spanners for interdistance enumeration. Let S be a set of n points in IRd and let k be

20

an integer between 1 and
(

n

2

)

. Then we want to enumerate the k smallest distances,
sorted in non-decreasing order. The value of k may or may not be known in advance.

In Section 6.1, we show that we can use any bounded degree spanner to enumerate
the k smallest interpoint distances approximately in O(n+ k log k) time, not including
the time to construct the spanner. In Section 6.2, we show that we can also do exact
enumerations using any bounded degree spanner in O((n + k) log n) time. Finally, in
Section 6.3, we show how to improve the time bound for exact enumeration to O(n +
k log k) by exploiting special properties of the bounded degree spanner constructed in
this paper.

6.1 Approximate interdistance enumeration

Let G = (S, E) be any t-spanner for S having bounded degree. Although we describe
our algorithm for an undirected spanner, the enumeration technique can also be used
on a directed spanner of bounded out-degree. Let p and q be two points of S. The
weight of this pair is defined as the Euclidean distance between p and q, and its pseudo-
weight is defined as the Euclidean length of a shortest path in G between p and q.

The algorithm for approximate distance enumeration is similar to that of Dickerson
et al.[8]. We initialize a priority queue with all pairs of points corresponding to the
edges of G, with priority given by the pseudo-weight of the pair. In each iteration,
we extract the pair p, q with smallest priority and report it together with its weight.
For each edge (q, r) of G, we compute the priority of the pair p, r as the sum of the
priority of the pair p, q and the weight of the edge (q, r). We insert the pair p, r into
the priority queue if it has not already been reported and if it is not already in the
queue with a smaller priority. We do the symmetrical thing with all edges (p, s) of G.

It is easy to see that this algorithm is running Dijkstra’s shortest path algorithm
simultaneously from all the points of S and that the pairs are reported in order of non-
decreasing pseudo-weight. Our claim is that this implies that the pairs are reported
approximately in order of non-decreasing weight. We make this precise in the following
lemma.

Lemma 9 Consider the t-spanner G = (S, E). Arrange all pairs of points in order
of non-decreasing weight and assign an index to each pair based on its rank in this
sequence. Let wi and w′

i denote the weight and pseudo-weight of the pair with index
i, respectively. Let π be a permutation of the pairs that orders them on the basis
of non-decreasing pseudo-weight, i.e., w′

π(1) ≤ w′
π(2) ≤ w′

π(3) ≤ . . . Then for any i,

1 ≤ i ≤
(

n

2

)

,
wi

t
≤ wπ(i) ≤ twi (6)

and
wi ≤ w′

π(i) ≤ twi. (7)

Proof: It follows from the definition of a t-spanner that for any i

wi ≤ w′
i ≤ twi. (8)

21

First we show that (7) and (8) together imply (6). Applying (8) with π(i), we see
that wπ(i) ≤ w′

π(i). By (7), w′
π(i) ≤ twi. Hence, wπ(i) ≤ twi, which proves the right

inequality of (6). Again applying (8) with π(i), we get wπ(i) ≥ w′
π(i)/t, which by (7) is

at least equal to wi/t. This proves the left inequality of (6).
Thus it remains to prove (7). We first show that wi ≤ w′

π(i). There are two cases
to consider. First assume that π(i) ≥ i. Then wπ(i) ≥ wi. Using (8) with π(i), this
implies the desired result. Next assume that π(i) < i. Since π is a one-to-one function,
there is a j, 1 ≤ j < i, such that π(j) ≥ i. (Otherwise, all values π(1), π(2), . . . , π(i)
would belong to the set {1, 2, . . . , i − 1}.) Since j < i, we have w′

π(j) ≤ w′
π(i). Also,

since π(j) ≥ i, we have wπ(j) ≥ wi. Applying (8) with π(j), we see that w′
π(j) ≥ wπ(j).

Combining these inequalities, we get wi ≤ wπ(j) ≤ w′
π(j) ≤ w′

π(i), which is the desired
result.

To show that w′
π(i) ≤ twi, we again consider two cases. First assume that π(i) ≤ i.

Then wπ(i) ≤ wi. Applying (8) with π(i) gives w′
π(i) ≤ twπ(i). Hence, w′

π(i) ≤ twi.
Next assume that π(i) > i. Since π is a one-to-one function, there is a j, j > i,

such that π(j) ≤ i. (Otherwise, all values π(l), i ≤ l ≤
(

n

2

)

, would belong to the set

{i + 1, i + 2, . . . ,
(

n

2

)

}.) Since j > i, we have w′
π(j) ≥ w′

π(i). Also, since π(j) ≤ i, we

have wπ(j) ≤ wi. Applying (8) with π(j), we see that w′
π(j) ≤ twπ(j). It follows that

w′
π(i) ≤ w′

π(j) ≤ twπ(j) ≤ twi. This completes the proof.

The algorithm described above reports the sequence

wπ(1), wπ(2), . . . , wπ(k).

The right inequality in (6) implies that this sequence approximates the true k smallest
distances.

We estimate the running time of the algorithm. Assume that k is known in advance.
To improve the efficiency of the priority queue, we maintain only k pairs in it. The
time to initialize the priority queue is O(n). Since the spanner G has bounded degree,
the queue is updated O(k) times. Each operation on the priority queue takes O(log k)
time. Therefore, the total running time is bounded by O(n + k log k).

If k is not known, then we proceed as follows: First, we initialize the priority
queue with the O(n) pairs that correspond to the edges of G. Then we take an initial
constant value k0 and run the above algorithm. If we have reported k0 pairs, then
we undo all operations we performed so far, i.e., until we have our initial priority
queue again, and repeat the same procedure with value 2k0. We keep on doing this
until we have reported k pairs. The running time of this algorithm is bounded by
O(n +

∑

i≥0 k/2i log k) = O(n + k log k).

6.2 Exact interdistance enumeration

Consider again an arbitrary undirected t-spanner G = (S, E) of bounded degree.
(Again, the enumeration technique can also be used on a directed spanner of bounded
out-degree.) We can enumerate the k exact smallest distances, using basically the
same algorithm as in Section 6.1. There are two differences. First, the priority queue
is maintained at full size, i.e., we do not prune it to keep only k pairs. Second, we

22

do not immediately report the pairs as they are extracted from the queue; instead we
keep track of the k closest pairs seen so far. We continue to run the algorithm until the
pseudo-weight of the pair extracted from the queue is larger than t times the weight
of the k-th closest pair seen so far. At termination the k closest pairs seen by the
algorithm are reported.

We prove the correctness of this algorithm. Let x be the weight of the k-th closest
pair reported by the algorithm. We claim that any pair not seen by the algorithm has
weight at least equal to x. This will prove that the algorithm correctly reports the k
closest pairs of S.

Since pairs are enumerated in order of non-decreasing pseudo-weight, any pair not
seen by the algorithm must have pseudo-weight at least equal to tx. Using the notation
of Lemma 9, let i be the index of such a pair. Then w′

i ≥ tx. Then (8) implies that
wi ≥ w′

i/t ≥ x, which establishes the correctness of the algorithm.
Before we analyze the running time of the algorithm, we prove the following claim:

The algorithm terminates as soon as it extracts a pair from the queue with index i
such that wi > twk. (Note that during its execution, the algorithm does not know
wk.)

To prove this, consider such a pair with index i. Note that w′
i > wi, which implies

that w′
i ≥ twk. Since the algorithm extracts pairs in order of non-decreasing pseudo-

weight, it must already have extracted all pairs with pseudo-weight at most equal to
twk. It follows from (8) that if a pair has weight at most wk, then it has pseudo-weight
at most twk. Thus, all pairs with weight at most wk have been extracted already.
Therefore, at the moment when the pair with index i is extracted, wk is the weight
of the k-th closest pair seen so far. Hence, the algorithm terminates at this moment,
proving the claim.

Now we estimate the running time. The number of pairs extracted from the queue
is at most equal to the number of pairs having weight at most twk. In [9, 13], it is
shown that the latter is bounded by O(n+k). Hence, after initializing the queue, which
takes O(n) time, the algorithm performs O(n+k) queue operations. (This follows from
the fact that the spanner G has bounded degree.) Since each queue operation takes
O(log n) time, the entire running time is bounded by O((n + k) log n).

6.3 Improved solution for exact interdistance enumeration

We can improve the time bound of Section 6.2 by using the bounded degree spanner
that is constructed by algorithm gap greedy ′′(S, θ, w) for 0 < θ < π/4 and w = 0. To
enumerate the k exact closest pairs, we run the same algorithm as in Section 6.1, with
one change: The priority of a pair of points is given by its weight.

The running time of this algorithm is clearly the same as that of Section 6.1: it
is bounded by O(n + k log k). We give an inductive proof that the algorithm outputs
the k closest pairs in order of non-decreasing weight.

Consider the closest pair p, q in S. Since p and q are connected by an edge in the
spanner, this pair is put into the priority queue in the initialization step. Hence, it is
the first pair to be reported.

Let 1 < m ≤ k, and assume that the m−1 closest pairs have been reported by the
algorithm. Let p, q be the m-th closest pair in S. We show that this pair is the next

23

one to be reported. If p and q are connected by an edge in the spanner, then we are
done, because then this pair was put into the queue in the initialization step. Hence,
now this pair has smallest priority in the queue, and it will be reported.

Assume that p and q are not connected by an edge. Then it follows from the proof
of Lemma 2 that (i) there is a point s ∈ S such that (p, s) is an edge and |sq| < |pq|,
or (ii) there is a point r ∈ S such that (q, r) is an edge and |pr| < |pq|. Assume first
that (i) holds. Then s, q must be one of the m− 1 closest pairs. At the moment when
this pair was reported, the algorithm inserted the pair p, q into the queue. Hence,
after m − 1 pairs have been reported, the pair p, q has minimal priority in the queue.
Hence, it is the next pair to be reported. Case (ii) can be treated similarly.

7 Concluding remarks

We have given an O(n logd n) time algorithm that constructs a t-spanner of bounded
degree having a weight that is proportional to the weight of a minimum spanning tree
for the n points.

After the first version of this paper was written, the authors, together with Das,
Mount, and Salowe, gave an O(n logn) time algorithm—that is based on completely
different techniques—to construct a bounded degree spanner having weight propor-
tional to the weight of a minimum spanning tree. See [1].

Acknowledgements

The authors thank Andrea Eßer for producing the figures.

References

[1] S. Arya, G. Das, D.M. Mount, J.S. Salowe, M. Smid. Euclidean spanners: short,
thin, and lanky. Proc. 27th Annu. ACM Sympos. on the Theory of Computing,
1995, to appear.

[2] B. Chandra, G. Das, G. Narasimhan and J. Soares. New sparseness results on
graph spanners. Proc. 8th Annu. ACM Sympos. Comput. Geom., 1992, pp. 192–
201.

[3] G. Das and P.J. Heffernan. Constructing degree-3 spanners with other sparse-
ness properties. Proc. 4th Annual Intern. Symp. on Algorithms, Lecture Notes in
Computer Science, Vol. 762, Springer-Verlag, Berlin, 1993, pp. 11–20.

[4] G. Das, P. Heffernan and G. Narasimhan. Optimally sparse spanners in 3-
dimensional Euclidean space. Proc. 9th Annu. ACM Sympos. Comput. Geom.,
1993, pp. 53–62.

[5] G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean
spanners. Proc. 10th Annu. ACM Sympos. Comput. Geom., 1994, pp. 132–139.

24

[6] G. Das, G. Narasimhan and J. Salowe. A new way to weigh malnourished Eu-
clidean graphs. Proc. 6th Annu. ACM-SIAM Sympos. on Discrete Algorithms,
1995, pp. 215–222.

[7] A. Datta, H.P. Lenhof, C. Schwarz and M. Smid. Static and dynamic algorithms
for k-point clustering problems. Proc. 3rd WADS, Lecture Notes in Computer
Science, Vol. 709, Springer-Verlag, Berlin, 1993, pp. 265-276.

[8] M.T. Dickerson, R.L. Drysdale and J.R. Sack. Simple algorithms for enumerating
interpoint distances and finding k nearest neighbors. Internat. J. Comput. Geom.
Appl. 2 (1992), pp. 221–239.

[9] H.-P. Lenhof and M. Smid. Enumerating the k closest pairs optimally. Proc. 33rd
Annu. IEEE Sympos. Found. Comput. Sci., 1992, pp. 380–386.

[10] K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica 5 (1990),
pp. 215-241.

[11] F.P. Preparata and M.I. Shamos. Computational Geometry, an Introduction.
Springer-Verlag, New York, 1985.

[12] J.S. Salowe. Constructing multidimensional spanner graphs. Internat. J. Comput.
Geom. Appl. 1 (1991), pp. 99–107.

[13] J.S. Salowe. Enumerating interdistances in space. Internat. J. Comput. Geom.
Appl. 2 (1992), pp. 49–59.

[14] J.S. Salowe. On Euclidean spanner graphs with small degree. Proc. 8th Annu.
ACM Sympos. Comput. Geom., 1992, pp. 186–191.

[15] J.S. Salowe. Personal communication, 1994.

[16] M. Smid. Maintaining the minimal distance of a point set in polylogarithmic time.
Discrete Comput. Geom. 7 (1992), pp. 415-431.

[17] P.M. Vaidya. A sparse graph almost as good as the complete graph on points in
K dimensions. Discrete Comput. Geom. 6 (1991), pp. 369–381.

[18] A.C. Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM J. Comput. 11 (1982), pp. 721-736.

25

