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Abstract

Let S be a set of n points in IRd and let t > 1 be a real
number. A t-spanner for S is a directed graph having
the points of S as its vertices, such that for any pair
p and q of points there is a path from p to q of length
at most t times the Euclidean distance between p and
q. Such a path is called a t-spanner path. The spanner
diameter of such a spanner is defined as the smallest
integer D such that for any pair p and q of points there
is a t-spanner path from p to q containing at most D
edges.

Randomized and deterministic algorithms are given
for constructing t-spanners consisting of O(n) edges and
having O(log n) diameter. Also, it is shown how to
maintain the randomized t-spanner under random in-
sertions and deletions.

Previously, no results were known for spanners with
low spanner diameter and for maintaining spanners un-
der insertions and deletions.

1 Introduction

Given a set S of n points in IRd and a real number
t > 1, a t-spanner for S is a directed graph on S such
that for each pair p and q of points of S there is a path
from p to q having length at most t times the Euclidean
distance between p and q. We call such a path a t-
spanner path. The problem of constructing t-spanners
has received great attention. In [3, 5, 11, 12, 15], efficient
algorithms are given for constructing a t-spanner with
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O(n) edges. In [13], it is shown how a t-spanner can be
computed having O(n) edges such that each point has
a degree that is bounded by a constant. This result was
extended in [1, 4]. In these papers it is shown how to
efficiently construct a t-spanner with O(n) edges, such
that each point has bounded degree and the total length
of all edges is bounded by O(log n) (resp. O(1)) times
the length of a minimum spanning tree for S.

All spanners referred to above have a disadvantage
in comparison with the complete Euclidean graph. Al-
though the Euclidean lengths of t-spanner paths are
within a constant factor of the Euclidean distance be-
tween points, the number of edges in these paths may
generally be as large as Ω(n). The resulting inefficiency
of computing spanner paths, storing them, and travers-
ing them is a significant limitation in their usefulness.

In this paper, we consider the problem of constructing
t-spanners with O(n) edges and small spanner diameter.
The latter is defined as the smallest number D such that
for any pair p and q of points there is a t-spanner path
from p to q containing at most D edges. Moreover, it
should be possible to compute such a t-spanner path
efficiently. To our knowledge, this natural problem has
not been considered before.

We also consider the problem of maintaining a t-
spanner if points are inserted and deleted in S. All
spanners referred to above are static.

1.1 Summary of results

Given a t-spanner for a set S, define a path query to be a
pair of points p, q ∈ S. The answer to a path query is a
t-spanner path from p to q, that is, a path whose length
is at most t times the Euclidean distance between p and
q.

Intuitively, our results may be viewed as one way of
generalizing skip lists to higher dimensions (also see [8]).
Assume that the points of S are one-dimensional. Con-
sider a skip list [10] for the points of S. We can regard
this data structure as a directed graph. This graph has



an expected number of O(n) edges. For each pair p and
q of points, there is a path from p to q having length
|p − q| and containing an expected number of O(log n)
edges. In fact, even the expected maximum number
of edges on any such path is bounded by O(log n).
(See [8].) As a result, the skip list is a 1-spanner with
expected spanner diameter O(log n). This spanner can
be maintained in O(log n) expected time per insertion
and deletion.

In the first part of this paper, we generalize this idea
to the d-dimensional case, for any fixed d, by combining
the Θ-graph of [5, 11] with skip lists and range trees [7,
9]. This gives a randomized spanner.

Theorem 1 Let t > 1, and let S be a set of n points
in IRd.

1. There exists a t-spanner for S having an expected
number of O(n) edges and whose expected spanner
diameter is bounded by O(log n).

2. Using an associated data structure of size O(n), the
expected maximum time to answer any path query
is bounded by O(log n). Such a path query computes
a t-spanner path containing an expected number of
O(log n) edges.

3. Using O(n logd−2 n) expected space, we can build
this t-spanner in O(n logd−1 n) expected time.

4. Using O(n logd n) expected space, we can maintain
this t-spanner under random insertions and dele-
tions [8], in O(logd n log log n) expected amortized
time per random update.

5. In all these bounds, the expectation is taken over
all coin flips that are used to build the t-spanner.
Moreover, all bounds hold with high probability.

The constant factors are of the form (c/(t − 1))d−1

(for a suitably chosen constant c), except in the bound
on the number of edges on the path from p to q (where
the constant factor is independent of t and d) and in
the time for constructing a t-spanner path (where the
constant is proportional to log(c/(t − 1))).

In the second part of the paper, we consider deter-
ministic spanners. This construction is based on a well-
separated pair decomposition of the point set [2]. Con-
struction of spanners is asymptotically more efficient,
but path query processing is slower, and updates are
not considered.

Theorem 2 Let t > 1, and let S be a set of n points
in IRd.

1. There exists a t-spanner for S having O(n)
edges and whose spanner diameter is bounded by
O(log n).

2. Using an associated data structure of size O(n), we
can answer any path query in O(log2 n) time. Such
a path query computes a t-spanner path containing
O(log n) edges.

3. Alternatively, using an associated data structure of
size O(n log n), we can answer any path query in
O(log n) time. Such a path query computes a t-
spanner path containing O(log n) edges.

4. Using O(n) space, we can build this t-spanner in
O(n log n) time.

Regarding the constant factors in these results, the
size of the spanner is O((c/(t− 1))dn), the construction
time is O(n log n + (c/(t − 1))dn), and query time is
O(d log2 n + d2 log(c/(t− 1)) logn). As before, constant
factors for path length are independent of t and d.

2 Spanners, simplicial cones and

the Θ-graph

In this section we review some results that we will later
use to construct randomized spanners. Let S be a set
of n points in IRd. We will consider graphs having the
points of S as their vertices. For convenience, we assume
that all graphs are directed. The weight of an edge (p, q)
is defined as the Euclidean distance between p and q.
The weight of a path in a graph is defined as the sum
of the weights of all edges on the path. If (p, q) is an
edge, then p is called its source and q is called its sink.
The Euclidean distance between the points p and q in
IRd is denoted by |pq|. Let t > 1. A graph G = (S, E)
is called a t-spanner for S if for any pair p, q of points
of S there is a path in G from p to q having weight at
most t times the Euclidean distance between p and q.
Any path satisfying this condition is called a t-spanner
path from p to q.

We introduce the notion of cones. A (simplicial) cone
is the intersection of d halfspaces in IRd. The hyper-
planes that bound these halfspaces are assumed to be
in general position, in the sense that their intersection
is a point, called the apex of the cone. In the plane, a
cone having its apex at the point p is a wedge bounded
by two rays emanating from p that make an angle at
most equal to π.

Let C be any cone in IRd having its apex at the point
p. The angular diameter of C is defined as the maximum
angle between any two vectors −→pq and −→pr, where q and



r range over all points of C ∩ IRd. For d = 2, this is
exactly the angle between the two rays that form the
boundary of C.

Let θ be a fixed real number such that 0 < θ ≤ π. Let
C be a collection of cones such that (i) each cone has its
apex at the origin, (ii) each cone has angular diameter
at most θ, (iii) all cones cover IRd.

In Yao [16], it is shown how such a collection C, con-
sisting of O((c/θ)d−1) cones for a suitable constant c,
can be obtained. In the plane and for θ = 2π/k, we just
rotate the positive x-axis over angles of i · θ, 0 ≤ i < k.
This gives k rays. The wedge between two successive
rays defines a cone of C.

For each cone C ∈ C, let lC be a fixed ray that em-
anates from the origin and that is contained in C.

Let C be any cone of C and let p be any point in IRd.
We define Cp := C +p := {x+p : x ∈ C}, i.e., Cp is the
cone obtained by translating C such that its apex is at
p. Similarly, we define lC,p := lC + p. Hence, lC,p is a
ray that emanates from p and that is contained in the
translated cone Cp.

Now we can introduce Θ-graphs. Keil and Gutwin [5]
defined these for the case d = 2. Ruppert and Seidel [11]
defined them for arbitrary dimensions d ≥ 2. The fol-
lowing technical result is needed to prove the spanner
bounds. A proof can be found in [11].

Definition 1 ([5, 11]) Let k ≥ 2 be an integer and
let θ = 2π/k. Let S be a set of points in IRd. The
directed graph Θ(S, k) is defined as follows: The vertices
of Θ(S, k) are the points of S. For each point p of S
and each cone C of C such that the translated cone Cp

contains points of S \ {p}, there is an edge from p to
the point r in Cp ∩S \ {p} whose orthogonal projection
onto lC,p is closest to p.

Lemma 1 Let k ≥ 8 be an integer, let θ = 2π/k, let
p and q be any two distinct points in IRd, and let C be
the cone of C such that q ∈ Cp. Let r be any point in

IRd ∩ Cp such that the projection of r onto the ray lC,p

is at least as close to p as the projection of q onto lC,p.
Then |rq| ≤ |pq| − (cos θ − sin θ)|pr|.

We introduce some notation. Let C be any cone of
C. Recall that C is the intersection of d halfspaces.
Let h1, h2, . . . , hd be the hyperplanes that bound these
halfspaces, and let H1, H2, . . . , Hd be lines through the
origin such that Hi is orthogonal to hi, 1 ≤ i ≤ d.
We give the line Hi a direction such that the cone C is
“above” hi. Let L be the line that contains the ray lC .
We give L the same direction as lC .

Let p be any point in IRd. We write the coordinates
of p with respect to the standard coordinate axes as
p1, p2, . . . , pd. For 1 ≤ i ≤ d, we denote by p′i the

signed Euclidean distance between the origin and the
orthogonal projection of p onto Hi, where the sign is
positive or negative according to whether this projec-
tion is to the “right” or “left” of the origin. Simi-
larly, p′d+1

denotes the signed Euclidean distance be-
tween the origin and the orthogonal projection of p
onto L. In this way, we can write the cone C as
C = {x ∈ IRd : x′

i ≥ 0, 1 ≤ i ≤ d}. For p ∈ IRd,
we can write the translated cone Cp with apex p as

Cp = {x ∈ IRd : x′

i ≥ p′i, 1 ≤ i ≤ d}. We define
−Cp := −C + p := {−x + p : x ∈ C}. Then we have

−Cp = {x ∈ IRd : x′

i ≤ p′i, 1 ≤ i ≤ d}.
Let p be a point of S. Computing the edge of Θ(S, k)

with source p and sink in the cone Cp is equivalent to
finding among all points q ∈ S \ {p} such that q′i ≥ p′i,
1 ≤ i ≤ d, a point with minimal q′d+1

-coordinate. This
problem can be solved using a d-layer range tree TC

([9]). Note that this data structure depends on the cone
C.

Lemma 2 ([6]) Let S be a set of n points in IRd, and
let C be a cone of C. The d-layered range tree has size
O(n logd−1 n) and can be built in O(n logd−1 n) time.
We can maintain this data structure in O(logd n) amor-
tized time per insertion and deletion. Given any point
p ∈ IRd, we can compute in O(logd n) time a point q in
Cp ∩ S \ {p} for which q′d+1

is minimal, or determine
that such a point does not exist.

Hence, we can construct the graph Θ(S, k) in
O(n logd n) time by building the above data structure
for each cone C separately and by querying it with each
point of S. We can save a factor of log n by using a
sweep algorithm. The result is as follows. (We remark
that this result was proved already in [5] for the planar
case and in [11] for the case where d ≥ 2. Our algorithm
uses a factor of O(log n) less space than the algorithm
of [11].)

Theorem 3 ([5, 11]) Let k > 8 be an integer, let
θ = 2π/k, and let S be a set of n points in IRd. The
graph Θ(S, k) is a t-spanner for t = 1/(cos θ− sin θ). It
contains O((c/θ)d−1n) edges, for some constant c. Us-
ing O((c/θ)d−1n + n logd−2 n) space, this graph can be
constructed in time O((c/θ)d−1n logd−1 n).

3 The skip list spanner

We have seen that the graph Θ(S, k) is a t-spanner for
t = 1/(cos θ− sin θ). Suppose that all points of S lie on
a line. Then, Θ(S, k) can be seen as a list containing
the points of S in the order in which they occur on this
line. Clearly, this graph has spanner diameter n − 1.



In this section, we construct a t-spanner whose span-
ner diameter is bounded by O(log n) with high proba-
bility. The basic idea is to generalize skip lists [10].

Let S be a set of n points in IRd. We construct a
sequence of subsets, as follows: Let S1 = S. Let i ≥ 1
and assume that we already have constructed the subset
Si. For each point of Si, we flip a fair coin. (All coin
flips are independent.) The set Si+1 is defined as the set
of all points of Si whose coin flip produced heads. The
construction stops if Si+1 = ∅. Let h denote the num-
ber of iterations of this construction. Then we have sets
∅ = Sh+1 ⊆ Sh ⊆ Sh−1 ⊆ Sh−2 ⊆ . . . ⊆ S2 ⊆ S1 = S.
It is well known that (i) h = O(log n) with high prob-
ability; in particular, E(h) = O(log n), (ii) E(|Si|) =

n/2i−1, 1 ≤ i ≤ h, and (iii)
∑h

i=1
|Si| = O(n) with high

probability; in particular, E(
∑h

i=1
|Si|) = O(n).

Definition 2 Let k ≥ 2 be an integer and let θ = 2π/k.
Let S be a set of n points in IRd. Consider the subsets
Si, 1 ≤ i ≤ h, that are constructed by the given coin
flipping process. The skip list spanner, SLS (S, k), for
S is defined as follows. For each 1 ≤ i ≤ h, there is a
graph Θ(Si, k), and a reversed graph Θ′(Si, k), which
is obtained from Θ(Si, k) by reversing the direction of
each edge. We say that the points of Si are at level i
of the data structure. We will regard SLS (S, k) as a
directed graph with vertex set S and edge set the union
of the edge sets of the graphs Θ(Si, k) and Θ′(Si, k).

Now we give the algorithm for solving path queries.
That is, given points p and q of S, we show how to
construct a t-spanner path from p to q. Of course, we
can construct such a path by using only edges of Θ(S, k).
In order to reduce the number of edges on the path,
however, we do the following.

We start in the occurrence of p at level one of the
skip list spanner and construct a path from p towards
q. Suppose we have already constructed a path from p
to x. If x = q, then we have reached our destination.
Assume that x 6= q. We check if x occurs at level two.
Assume this is not the case. Then we extend the path
as follows. Let C be the cone of C such that q ∈ Cx. Let
x′ be the point of Cx ∩S1 such that (x, x′) is an edge of
Θ(S1, k). Then x′ is the next point on the path from p
towards q, i.e., we set x := x′. We keep on growing this
path until x = q or the point x occurs at level two of the
skip list spanner. In the latter case, we start growing
a path from q towards x. Suppose we have already
constructed a path from q to y. We stop growing this
path if y is equal to one of the points on the path from p
to x, or y occurs at level two. If y is equal to the point,
say, p′ on the path from p to x, then we report the path
in Θ(S1, k) from p to p′, followed by the reverse of the
path in Θ(S1, k) from q to p′. Otherwise, if y occurs

at level two, then we move with x and y to the second
level of the skip list spanner and use the same procedure
to extend the paths. The formal algorithm is given in
Figure 1.

Algorithm walk (p, q)
(∗ p and q are points of S. This algorithm

constructs a t-spanner path in the skip list
spanner SLS(S, k) from p to q.

∗)
begin
p0 := p; q0 := q;
a := b := r := s := 0;
i := 1;
(∗ p0 = p, p1, . . . , pr, . . . , pa and

q0 = q, q1, . . . , qs, . . . , qb are paths in SLS(S, k),
r = min{j : pj ∈ Si}, s = min{j : qj ∈ Si},
and pr, pr+1, . . . , pa, qs, qs+1, . . . , qb ∈ Si.

∗)
stop := false ;
while stop = false
do while pa 6= qb and pa 6∈ Si+1

do C := cone of C such that qb ∈ Cpa
;

pa+1 := point of Cpa
∩ Si such that

(pa, pa+1) is an edge of Θ(Si, k);
a := a + 1

od;
(∗ pa = qb or pa ∈ Si+1 ∗).
while qb 6∈ {pr, pr+1, . . . , pa} and qb 6∈ Si+1

do C := cone of C such that pa ∈ Cqb
;

qb+1 := point of Cqb
∩ Si such that

(qb, qb+1) is an edge of Θ(Si, k);
b := b + 1

od;
(∗ qb ∈ {pr, pr+1, . . . , pa} or both pa and

qb occur in Si+1.
∗)
if qb ∈ {pr, pr+1, . . . , pa}
then l := index such that qb = pl;

output the path p0, p1, . . .
. . . , pl, qb−1, qb−2, . . . , q0;

stop := true
else i := i + 1; r := a; s := b
fi

od
end

Figure 1: Constructing a t-spanner path from p to q in
the skip list spanner.



Lemma 3 Let k > 8 and θ = 2π/k. For any pair p and
q of points in S, this algorithm constructs a t-spanner
path in SLS(S, k) from p to q, for t = 1/(cos θ − sin θ).

Proof: Consider the paths p0 = p, p1, p2, . . . and
q0 = q, q1, q2, . . . that are constructed by the algorithm.
Then, by Lemma 1, we have |pa+1qb| ≤ |paqb|− (cos θ−
sin θ)|papa+1| < |paqb| and |qb+1pa| ≤ |qbpa| − (cos θ −
sin θ)|qbqb+1| < |qbpa|. This proves that the algorithm
terminates. Using the two given inequalities, it can be
shown that it constructs a t-spanner path from p to q.

Remark 1 Consider the t-spanner path p0 =
p, p1, . . . , pl = qb, qb−1, . . . , q0 = q that is computed by
algorithm walk (p, q). In the full paper it is shown that
for each fixed i, all p-points and all q-points that are
added during the iteration of the outer while-loop that
takes place at level i are pairwise distinct.

In the rest of this section, we analyze the expected
behavior of algorithm walk . Let p and q be two fixed
points of S. Consider again the paths p0 = p, p1, p2, . . .
and q0 = q, q1, q2, . . . that are constructed by the algo-
rithm. Let i, 1 ≤ i ≤ h, be fixed. We estimate the
expected number of points that are added to the paths
at level i of the skip list spanner.

Intuitively, the expected number of points added at
level i is bounded by a constant. During the first inner
while-loop, the p-path is extended until it meets the q-
path or the last point on it occurs at level i + 1. Since
each point of Si occurs at level i + 1 with probabil-
ity 1/2, we expect that—at level i—at most a constant
number of points are added to the p-path. During the
second inner while-loop, the q-path is extended. By a
similar argument, we expect that—at level i—at most
a constant number of points are added to this path.

To make this rigorous, we have to show that each
point added to one of these paths indeed occurs at level
i + 1 with probability 1/2. In particular, we have to
show that it is not the case that the coin flips that are
used to build the skip list spanner cause the algorithm
to visit points at level i for which it is more likely that
they do not occur at level i + 1.

Fix the sets S1, S2, . . . , Si. Let r and s be the minimal
indices such that pr ∈ Si and qs ∈ Si, respectively. Note
that r and s are completely determined once p, q and
S1, . . . , Si are fixed.

For the sake of analysis, assume that we have not yet
flipped our coin for determining the set Si+1. Consider
the path p′r = pr, p

′

r+1, p
′

r+2, . . . , p
′

m = qs that the algo-
rithm would have constructed if all points of Si did not
occur at level i + 1. (By Remark 1, all points on this
path are distinct.) Now let z be the number of points

that are added—at level i—to the p-path by the actual
algorithm. Note that z is a random variable.

Let l ≥ 0 and assume that z = l. It is easy to see that
p′r = pr, p

′

r+1 = pr+1, . . . , p
′

r+l = pr+l. It follows from
the actual algorithm that p′a 6∈ Si+1 for all a, r ≤ a ≤
r + l − 1. Therefore,

Pr(z = l) ≤ Pr

(

r+l−1
∧

a=r

(p′a 6∈ Si+1)

)

.

Since the path p′r, p
′

r+1, . . . , p
′

m is completely deter-
mined by the points p and q and the sets S1, . . . , Si,
each of the points on this path is contained in Si+1

with probability 1/2. Therefore, using the fact that all
coin flips are independent, it follows that Pr(z = l) ≤
∏r+l−1

a=r Pr(p′a 6∈ Si+1) = (1/2)l. That is, the random
variable z has a geometric distribution with parameter
1/2.

Again, for the sake of analysis, consider the following
experiment. We assume that we have not yet flipped our
coin for determining the set Si+1. Now we flip the coin
for the points p′r, p

′

r+1, p
′

r+2, . . ., in this order, stopping
as soon as we obtain heads or after having obtained
m−r times tails. Clearly, the number of times we obtain
tails has the same distribution as the random variable
z above.

Let l, 0 ≤ l ≤ m − r, be fixed and assume that z =
l. If l = m − r, then the p-path constructed by the
actual algorithm has reached point qs and the algorithm
terminates. So assume that l < m − r. Then, at this
moment, we know that p′r, p

′

r+1, . . . , p
′

r+l−1
do not occur

at level i+1, p′r+l occurs at level i+1, and for all points
of S′

i := Si \ {p′r, p
′

r+1, . . . , p
′

r+l} we have not yet flipped
the coin. Let q′s = qs, q

′

s+1, q
′

s+2, . . . be the path that
would have been constructed during the second inner
while-loop if all points of S′

i did not occur at level i+1.
Let y be the number of points of Si that are added—at
level i—to the q-path by the actual algorithm. Then, y
is a random variable.

Let t ≥ 0 and assume that y = t. Then, q′s =
qs, q

′

s+1 = qs+1, . . . , q
′

s+t = qs+t. By Remark 1,
all points p′r, p

′

r+1, . . . , p
′

r+l, q
′

s, q
′

s+1, . . . , q
′

s+t−1 are pair-
wise distinct. In particular, q′b ∈ S′

i for all b, s ≤ b ≤
s+ t− 1. As a result, we can say that in the actual skip
list spanner, each q′b occurs at level i + 1 with probabil-
ity 1/2. Since q′b 6∈ Si+1 for all b, s ≤ b ≤ s + t − 1, it
follows that

Pr(y = t) ≤ Pr

(

s+t−1
∧

b=s

(q′b 6∈ Si+1)

)



i.e.,

Pr(y = t) ≤
s+t−1
∏

b=s

Pr(q′b 6∈ Si+1) = (1/2)t.

We have shown that, conditional on fixed subsets
S1, S2, . . . , Si and a fixed value of the random variable z,
the random variable y has a geometric distribution with
parameter 1/2. Since this distribution does not depend
on z, y also has a geometric distribution conditional on
S1, . . . , Si only.

To summarize, we have shown that, conditional on
fixed subsets S1, S2, . . . , Si, the random variables that
count the number of points that are added—at level
i—to the p- and q-paths both have a geometric distri-
bution with parameter 1/2. Since both distributions
do not depend on S1, . . . , Si, this statement also holds
unconditionally.

Now we can analyze the expected behavior of algo-
rithm walk (p, q) in exactly the same way as for standard
skip lists. (See e.g. Section 1.4 in Mulmuley [8].) Let N
denote the number of edges on the t-spanner path from
p to q that is constructed by the algorithm.

For 1 ≤ i ≤ h, let Mi (resp. Ni) denote the num-
ber of edges that are added at level i to the p-path
(resp. q-path). Then N =

∑h

i=1
(Mi + Ni). Moreover,

M1, N1, M2, N2, . . . , Mh, Nh are random variables, and
each one is distributed according to a geometric distri-
bution with parameter 1/2. Each of these variables is
independent of the ones that come later in the given
enumeration. Using the Chernoff bound and the fact
that h = O(log n) with high probability, it follows that
N = O(log n) with high probability. (See e.g. [8].) It is
clear that the time for constructing this t-spanner path
is proportional to N + h. Therefore, the running time
of algorithm walk (p, q) is also bounded by O(log n) with
high probability.

These bounds hold for fixed points p and q of S. Since
there are only a quadratic number of such pairs, it fol-
lows that the maximum running time of algorithm walk ,
and the maximum number of edges on any t-spanner
path computed by this algorithm are both bounded by
O(log n) with high probability. (See Observation 1.3.1
on page 10 of [8].) That is, with high probability, the
skip list spanner has spanner diameter O(log n). In par-
ticular, this proves that there exists a t-spanner for S
having O(n) edges and O(log n) spanner diameter.

Let k > 8 be an integer, let θ = 2π/k and let t =
1/(cos θ−sin θ). Then the skip list spanner SLS(S, k) is
the t-spanner for which parts 1., 2. and 3. of Theorem 1
hold.

4 Maintaining the skip list span-

ner

In this section, we consider the problem of maintain-
ing the skip list spanner when points are inserted and
deleted in S. Unfortunately, it is not possible—for our
spanner—to achieve polylogarithmic update time for ar-
bitrary insertions and deletions. Since there may be
points in Θ(S, k) having Ω(n) in-degree, the worst-case
update time is doomed to be Ω(n).

We will see, however, that in the model of random
insertions and deletions, we can obtain polylogarithmic
expected update time. For a detailed description of this
model, see [8].

Consider a set V of points and a sequence of updates
involving these points. For each i, let pi denote the
point of V that is involved in the i-th update, let Vi

denote the set of points in V that are “present” at the
start of the i-th update, and let ni denote the size of Vi.
If the update sequence is random in this model, then
for each i (i) pi is a random point of V , and (ii) Vi is a
random subset of V of size ni.

We first show how to maintain the graph Θ(S, k) un-
der insertions and deletions. Among other things, we
need a data structure solving the following query prob-
lem. Given any point q ∈ IRd \ S, find all points p of S
such that the graph Θ(S∪{q}, k) contains an edge from
p to q.

Let q ∈ IRd \ S, and let C be a cone of C. Let p
be any point of S such that q ∈ Cp. Then the graph
Θ(S∪{q}, k) contains an edge from p to q iff (a) there is
no edge (p, r) in Θ(S, k) such that r ∈ Cp, or (b) there
is an edge (p, r) in Θ(S, k) such that r ∈ Cp, and the
projection of q onto lC,p is closer to p than the projection
of r onto lC,p.

This suggests the following data structure. Fix any
cone C of C. Recall the coordinates p′1, p

′

2, . . . , p
′

d+1
that

we defined in Section 2. (These coordinates depend on
C.) We store the points of S in a (d+1)-layer data struc-
ture T ′

C , where each layer-j tree stores points sorted by
their p′j-coordinates, 1 ≤ j ≤ d. With each node u of
any layer-d tree, we store the following additional infor-
mation. Let Su be the subset of S that is stored in the
subtree of u. We store with u two layer-(d + 1) trees:

(i) A balanced binary search tree T u
1 storing all points

p of Su such that Θ(S, k) does not contain an edge
with source p and sink in Cp. These points are
stored in the leaves of the tree, sorted by their p′d+1

-
coordinates;

(ii) A balanced binary search tree T u
2 for the points in

the set {rp ∈ Cp ∩ S : p ∈ Su and Θ(S, k) contains
an edge from p to rp}. These points are stored



in the leaves of the tree, sorted by their (rp)
′

d+1
-

coordinates.

Given this data structure, we can query it with any
point q ∈ IRd \ S, as follows. We compute a set of
O(logd n) canonical nodes of layer-d trees such that all
subsets stored in the subtrees of these nodes partition
the set of all points of S \ {q} that are contained in
the cone −Cq. For each of these nodes u, we report
all points stored in its layer-(d + 1) tree T u

1 . Also, we
walk along the leaves of its layer-(d + 1) tree T u

2 , from
right to left, and report all points p ∈ Su for which
(rp)

′

d+1
> q′d+1

.
It follows from the above discussion that we report

exactly the set of all points p such that q ∈ Cp and the
graph Θ(S ∪ {q}, k) contains an edge from p to q.

The following data structure is used for maintaining
the graph Θ(S, k):

(i) We store the graph G = Θ(S, k). With each point
of S, we store a list of all points q of S such that
(p, q) is an edge, and a list of all points r of S such
that (r, p) is an edge.

(ii) For each cone C of C, we store the data structure
TC of Lemma 2 for the points of S.

(iii) For each cone C of C, we store the above (d + 1)-
layer data structure T ′

C for the points of S.

In the full paper, the complete insertion and deletion
algorithms are given. Let D be the in-degree of the new
point q in the graph Θ(S ∪ {q}, k). Then, the inser-
tion algorithm takes O(((c/θ)d−1 + D) logd n log log n)
amortized time. (Here, dynamic fractional cascading [7]
is used.) In a symmetric way, the amortized deletion
time can be bounded by the same quantity, but now D
is the in-degree of the point to be deleted before the
operation. Note that these update times hold for any
update. In the worst-case, the value of D can be n− 1.
The following lemma shows that for a random update,
the expected value of D is small.

Lemma 4 Let V be a set of points in IRd and let S
be a random subset of V of size n. Let q be a random
point of V . Then the expected in-degree of q in the graph
Θ(S∪{q}, k) is at most equal to the number of cones in
C.

Proof: Let m denote the number of cones and let n′

denote the size of S ∪ {q}. Note that n′ is equal to n or
n + 1. The graph Θ(S ∪ {q}, k) contains at most mn′

edges. Hence, the average in-degree in this graph is at
most m. Since q is a random point in S∪{q}, the claim
follows.

Lemma 5 Using a data structure of size
O((c/θ)d−1n logd n), we can maintain the graph Θ(S, k)
in O((c/θ)d−1 logd n log log n) expected amortized time
per random update.

Recall that the skip list spanner, SLS (S, k), consists
of Θ-graphs at levels, 1 ≤ i ≤ h. For each level i of
SLS(S, k), we maintain the structure of Lemma 5 for
the points of Si.

To insert a point q, we flip our coin and determine
the number of levels into which q has to be inserted.
If this number is l, then we insert q into the Θ-graphs
corresponding to the levels 1, 2, . . . , l. To delete a point
q, we delete q from all Θ-graphs in which it occurs.

To analyze the update time, suppose we update the
Θ-graph of level i. Since Si is a random subset of S,
which in turn is a random subset of V , Lemma 4 also
holds for the graph that is stored at level i. Also, note
that during an update, we update a constant expected
number of levels. Therefore, Lemma 5 implies that the
expected amortized update time of the skip list spanner
is bounded by O((c/θ)d−1 logd n log log n) per random
update.

Let k > 8 be an integer, let θ = 2π/k and let
t = 1/(cos θ − sin θ). Then the dynamic skip list span-
ner SLS(S, k) is the t-spanner for which part 4. of The-
orem 1 holds.

5 Deterministic Construction

In this section we consider deterministic approaches to
constructing t-spanners of small diameter. As men-
tioned earlier, the construction is not based on a deran-
domization of the construction presented in the previous
section, but rather on a well-separated pair decomposi-
tion of the point set. Callahan and Kosaraju introduced
this structure as a mechanism for solving a number of
problems on point sets in d-dimensional space [2, 3], and
in [3] they show that such a decomposition can be used
to compute t-spanners. (Vaidya gave a similar construc-
tion, with a slightly slower running time [15].) They did
not consider the issues of the diameter of the resulting
spanners, or the time needed to answer path queries
(and indeed, the t-spanner paths that result may have
as many as n − 1 edges). In this section we present a
proof of Theorem 2, by showing that low diameter span-
ners can be constructed with the same time and space
bounds.

We begin with a short review of relevant definitions
from [2]. Let S be a set of n points in IRd. Let s > 0 be a
real value called the separation. We say that two point-
sets A and B are well-separated if and only if they can
each be enclosed in d-spheres of radius r, whose distance



of closest approach is at least sr. A well-separated pair
decomposition is a set of pairs of nonempty subsets of
S, {{A1, B1}, {A2, B2}, . . . {Am, Bm}}, such that

(1) Ai ∩ Bi = ∅, for all i = 1, 2, . . . , m.

(2) For each unordered pairs of distinct elements {a, b}
of S, there exists a unique pair {Ai, Bi} in the de-
composition such that a ∈ Ai and b ∈ Bi.

(3) Ai and Bi are well-separated, for all i = 1, 2, . . . , m.

In [2], Callahan and Kosaraju show that a well-
separated pair decomposition of size O(sdn) can be com-
puted for S in time O(n log n + sdn). In [3], they show
that a t-spanner can be computed from the decompo-
sition. We present a simplified explanation of the con-
struction, which suffices for our purposes. Given S and
t > 1, construct a well-separated pair decomposition
of S with separation s = 4/(t − 1). For each set Ai

(or Bi) in the decomposition, select a representative
point rep(Ai) ∈ Ai. For each pair {Ai, Bi} in the de-
composition, include in the spanner the undirected edge
{rep(Ai), rep(Bi)} between their respective representa-
tives.

Given a path query (a, b), we construct a path from
a to b in the spanner as follows.

(1) If a = b, then return the empty path.

(2) Otherwise, there is a unique pair of sets {Ai, Bi}
with a ∈ Ai and b ∈ Bi in the decomposition. Con-
struct a path πa recursively from a to the repre-
sentative rep(Ai). Construct a path πb recursively
from b to the representative rep(Bi).

(3) Return the concatenation of πa, the edge
(rep(Ai), rep(Bi)), and the reversal of πb.

Recall that the weight of a path is the sum of the Eu-
clidean lengths of its edges. It is an easy induction proof,
that the resulting path is of weight at most t|ab|. (See,
for example, Lemma 4.1 in [3] with ǫ = 4/s. Any point
in Ai (and Bi) may be used as a representative).

As it stands, this construction does not provide up-
per bounds on the number of edges in each path, but
we can establish such bounds by a careful choice of the
representative points. Before presenting details of the
construction of the low diameter spanner, we need to
consider the structure of the well-separated pair decom-
position in greater detail.

The well-separated pair decomposition for the point
set S is derived from a binary tree T , called the fair-split
tree. The tree T is of size O(n), but it need not be bal-
anced, and may have depth as large as Ω(n). The leaves
of the fair split tree correspond 1–1 with the points of

S, and each internal node of the tree is associated with
d-dimensional rectangle that contains all the points con-
tained within the leaves of the subtree rooted at this
node. We refer to nodes by the associated subset of
points of S. Each pair {Ai, Bi} in the well-separated
pair decomposition is represented as an unordered pair
of nodes in T . Since each node of T is associated with
a subset of S, this node can also be associated with the
representative point for this subset.

The structure of T will determine the choice of repre-
sentative points. For each internal node u in T , consider
the two subtrees rooted at the children of u. The edge
going to the subtree having the larger number of leaves
is labeled as heavy and the other is labeled as light (ties
may be broken either way). Since every internal node
has exactly one heavy edge from one of its children,
there is a unique maximal chain of heavy edges leading
up from each leaf in T . These chains partition the nodes
of T into n subsets, one associated with each leaf. For
each node u in T , let l(u) denote the leaf whose chain
contains u. The representative point associated with u
is the point associated with l(u). The resulting assign-
ment of representative points is called the heavy-subtree
assignment. Observe that this provides a valid assign-
ment of representative points, because each node is as-
sociated with a leaf contained within its subtree, and
hence each subset is associated with a member point.
We can now present the main result of this choice of
representatives.

Lemma 6 If we apply the above path finding algorithm
to the t-spanner that results from the heavy-subtree as-
signment of representative points, then the path gener-
ated has at most 2 log n edges.

Proof: Define the length of a path to be the number
of edges in the path. Consider any two points a, b ∈ S,
and let {A1, B1} denote the pair in the well-separated
pair decomposition containing this pair. Since these sets
are disjoint, |A1| + |B1| ≤ n. It suffices to show that
the path from a to the representative of its ancestor,
rep(A1), has length at most log |A1| (and a similar result
will follow for b).

Let a1 = rep(A1). If a = a1, then the length of the
path is zero, and the conclusion follows trivially. Oth-
erwise, consider the pair {A2, B2} in the decomposition
such that a ∈ A2 and a1 ∈ B2. By the structure of the
well-separated pair decomposition, A2 and B2 are both
disjoint subsets of A1, and hence both of the correspond-
ing nodes in T are descendents of A1, and neither is a
descendent of the other. We claim that a1 = rep(B2).
This is because a1 is a descendent of B2, and hence the
maximal chain leading from the leaf a1 to B2’s ances-
tor, A1, must pass through B2. Thus, the path from



rep(A1) to rep(B2) has length zero.

Next, we claim that |A2| ≤ |A1|/2. The reason is
that otherwise, all the edges between A2 and A1 in the
fair split tree would have to be heavy edges, implying
that the representative point for A1 would be a mem-
ber of A2, contradicting the disjointness of A2 and B2.
By induction, the length of the path from a to the rep-
resentative of A2 is at most log |A2|, which is at most
log |A1| − 1. Adding to this the single edge from A2’s
representative to a1 (B2’s representative) gives a total
path length of at most log |A1|, as desired.

We claim that we can implement the path finding al-
gorithm in O(log2 n) time. We have argued that the al-
gorithm outputs O(log n) edges, and hence it suffices to
show that each recursive invocation can be implemented
in O(log n) time. The only nontrivial step is that of de-
termining for a pair of distinct points, {a, b} ∈ S, the
pair {A, B} in the well-separated pair decomposition
containing this pair. Call this a pair query. To see how
to answer these queries, we need to take a closer look
at the construction of the well-separated pair decompo-
sition first.

Following Callahan and Kosaraju’s development in
[2], each internal node u of the fair-split tree T , has
exactly two children, called A and B. The recursive
procedure for constructing a well-separated pair decom-
position of the set of pairs in the cross-product A × B,
can be viewed as a binary computation tree, C(A, B),
associated with u. Each node of this computation tree
is associated with a pair {A′, B′}, where A′ ⊆ A and
B′ ⊆ B. If this pair is well-separated, then this is a leaf
in the computation tree, and otherwise it is an internal
node (see [2] for details). The size of all the computa-
tion trees is asymptotically equal to the size of the final
well-separated pair decomposition.

Although computation trees are not necessarily bal-
anced, each computation tree can be represented in bal-
anced form by computing a centroid decomposition of
this tree. The centroid decomposition tree comes about
by recursively finding a centroid edge, that is, an edge
whose removal splits the tree into two connected sub-
trees of size at most a factor of roughly 2/3 the size of
the original tree. Then each of these subtrees is recur-
sively decomposed. This results in a binary decomposi-
tion of depth O(log m), where m is the size of the com-
putation tree. Each internal node of the resulting binary
tree is associated with an edge of the computation tree.
We assume that each subset in the computation tree is
associated with its enclosing rectangle. The tree will
be searched in the usual top-down manner. From the
disjointness of these rectangles (see [2]), it follows that
for a given pair, {A, B}, we can determine in O(d) time
whether a ∈ A and b ∈ B (or vice versa). This is done

by testing membership in the corresponding rectangles.
As a consequence, given any edge of the centroid de-
composition, in O(d) time we can determine in which
subtree of the computation tree to continue the search
for the pair (a, b). Details will be given in the full paper.

We also augment the fair-split tree with any data
structure for answering lowest common ancestor queries
in O(log n) time (e.g. [14] is more than sufficient).
These augmentations can all be computed within the
same asymptotic time bound as the construction of the
well-separated pair decomposition.

To answer a pair query {a, b} in O(log n) time, we
begin by finding the lowest common ancestor of a and
b in the fair-split tree. We know that the desired pair
will lie within the computation tree for this node. Next
we search the computation tree (using its centroid de-
composition) for the desired pair. Since each such
query to the centroid decomposition tree can be an-
swered in O(d) time, and the size of the computation
tree is at most (c/(t − 1))dn, the time for this search
is O(d log n + d2 log(c/(t − 1))) = O(log n). Repeating
this for each of the O(log n) edges of the path, yields
the desired complexity.

In the current spanner, it takes O(log2 n) time to an-
swer a path query. We can reduce this to O(log n), by
using an associated data structure of size O(n log n).

We know that there are at most O(log n) distinct rep-
resentative points on the path from a leaf to the root of
the box decomposition tree. For each point x, we main-
tain the list of these O(log n) representative points, say
x1, x2, . . . , xr . Here, x1 equals the representative point
of the root of the tree and xr equals the representative
point of the leaf, namely x. Each point xi in this list
keeps one pointer to another point xj . The point xj

is selected according to the following rule. Let {X, Y }
denote the well-separated pair for the pair of points x
and xi, such that x belongs to X and xi belongs to Y .
Then point xj is the representative point of X . (Since
node X must be an ancestor of leaf x, the representative
point of X is in the above list.)

To compute the t-spanner path between a and b, we
proceed as follows. First we find the well separated
pair {A1, B1} separating a and b. This can be done
in O(log n) time using the previous method. Let a1

(resp. b1) be the representative point of A1 (resp. B1).
Then we have to construct paths between a and a1, and
between b and b1. To construct the path between a
and a1, we look at the list stored with a. We can find
a1 in this list in O(log n) time. To compute the path
between a and a1, we simply follow the pointers in this
list, starting from a1 and ending when he have reached
a. This computes the same path as above.



6 Conclusion

We have presented randomized and deterministic algo-
rithms for constructing t-spanners of O(n) edges and
O(log n) diameter. The randomized spanner takes
O(n logd−1 n) time to construct while the deterministic
spanner can be constructed faster in O(n log n) time.
After augmenting these spanners with an additional
O(n) size data structure we can efficiently determine
the spanner path between any two given points. These
path queries can be answered in O(log n) time for the
randomized spanner and O(log2 n) time for the deter-
ministic spanner. We have also shown how to main-
tain the randomized spanner in expected polylogarith-
mic time per random update.

Our work suggests many interesting open problems.
Perhaps the most important question is whether there
exist t-spanners of O(n) edges having o(log n) diameter
in high dimensions (in one dimension, there do) and how
efficiently these can be constructed. Finally, it would
be interesting to provide dynamic spanners that can be
efficiently updated for arbitrary updates.
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