
Hardness of Set Cover with Intersetion 1V.S.Anil Kumar1, Sunil Arya2 and H.Ramesh31 MPI f�ur Informatik, Saarbr�uken. kumar�mpi-sb.mpg.de2 Department of Computer Siene, Hong Kong University of Siene andTehnology. arya�s.ust.hk3 Department of Computer Siene and Automation, Indian Institute of Siene,Bangalore. ramesh�sa.iis.ernet.inAbstrat. We onsider a restrited version of the general Set Coveringproblem in whih eah set in the given set system intersets with anyother set in at most 1 element. We show that the Set Covering problemwith intersetion 1 annot be approximated within a o(log n) fator inrandom polynomial time unless NP � ZTIME(nO(log log n)). We alsoobserve that the main hallenge in derandomizing this redution lies in�nding a hitting set for large volume ombinatorial retangles satisfy-ing ertain intersetion properties. These properties are not satis�ed byurrent methods of hitting set onstrution.An example of a Set Covering problem with the intersetion 1 property isthe problem of overing a given set of points in two or higher dimensionsusing straight lines; any two straight lines interset in at most one point.The best approximation algorithm urrently known for this problem hasan approximation fator of �(log n), and beating this bound seems hard.We observe that this problem is Max-SNP-Hard.1 IntrodutionThe general Set Covering problem requires overing a given base set B of sizen using the fewest number of sets from a given olletion of subsets of B. Thisis a lassial NP-Complete problem and its instanes arise in numerous diversesettings. Thus approximation algorithms whih run in polynomial time are ofinterest.Johnson[12℄ showed that the greedy algorithm for Set Cover gives an O(logn)approximation fator. Muh later, following advanes in Probabilistially Chek-able Proofs [4℄, Lund and Yannakakis [15℄ and Bellare et al. [7℄ showed thatthere exists a positive onstant  suh that the Set Covering problem an-not be approximated in polynomial time within a  logn fator unless NP �DTIME(nO(log log n)). Feige [10℄ improved the approximation threshold to (1�o(1)) logn, under the same assumption. Raz and Safra[19℄ and Arora and Su-dan[5℄ then obtained improved Probabilistially Chekable Proof Systems withsub-onstant error probability; their work implied that the Set Covering problemannot be approximated within a  logn approximation fator (for some onstant) unless NP = P .



Note that all the above hardness results are for general instanes of the SetCovering problem and do not hold for instanes when the intersetion of any pairof sets in the given olletion is guaranteed to be at most 1. Our motivation foronsidering this restrition to intersetion 1 arose from the following geometriinstane of the Set Covering problem.Given a olletion of points and lines in a plane, onsider the problem ofovering the points with as few lines as possible. Megiddo and Tamir[16℄ showedthat this problem is NP-Hard. Hassin and Megiddo[11℄ showed NP-Hardnesseven when the lines are axis-parallel but in 3D. The best approximation fatorknown for this problem is �(logn). Improving this fator seems to be hard, andthis motivated our study of inapproximability for Set Covering with intersetion1. Note that any two lines interset in at most 1 point.The problem of overing points with lines was in turn motivated by the prob-lem of overing a retilinear polygon with holes using retangles [13℄. This prob-lem has appliations in printing integrated iruits and image ompression[9℄.This problem is known to be Max-SNP-Hard even when the retangles are on-strained to be axis-parallel. For this ase, an O(plogn)-fator approximationalgorithm was obtained reently by Anil Kumar and Ramesh[2℄. However, thisalgorithm does not extend to the ase when the retangles need not be axis-parallel. Getting a o(logn)-fator approximation algorithm for this ase seemsto require solving the problem of overing points with arbitrary lines, though weare not sure of the exat nature of this relationship.Our Result. We show that there exists a onstant  > 0 suh that ap-proximating the Set Covering problem with intersetion 1 to within a fator of logn in random polynomial time is possible only ifNP � ZTIME(nO(log log n))(where ZTIME(t) denotes the lass of languages that have a probabilisti algo-rithm running in expeted time t with zero error). We also give a sub-exponentialderandomization whih shows that approximating the Set Covering problem withintersetion 1 to within a fator of  lognlog log n in deterministi polynomial time ispossible only if NP � DTIME(2n1��), for any onstant � < 1=2.The starting point for our result above is the Lund-Yannakakis hardnessproof[15℄ for the general Set Covering problem. This proof uses an auxiliary setsystem with ertain properties. We show that this auxiliary set system neessarilyleads to large intersetion. We then replae this auxiliary set system by anotherarefully hosen set system with additional properties and modify the redutionappropriately to ensure that intersetion sizes stay small. The key features ofthe new set system are partitions of the base set into several sets of smaller size(instead of just 2 sets as in the ase of the Lund-Yannakakis system or a onstantnumber of sets as in Feige's system; small sets will lead to small intersetion)and several suh partitions (so that sets whih \aess" the same partition inthe Lund-Yannakakis system and therefore have large intersetion now \aess"distint partitions).We then show how the new set system above an be onstruted in random-ized polynomial time and also how this randomized algorithm an be derandom-ized using onditional probabilities and appropriate estimators in O(2n1��) time,



where � is a positive onstant, spei�ed in Setion 5. This leads to the two ondi-tions above, namely, NP � DTIME(2n1��) (but for a hardness of O( lognlog logn ))and NP � ZTIME(nO(log logn)). A deterministi polynomial time onstrutionof our new set system will lead to the quasi-NP-Hardness of approximating theSet Covering problem with intersetion 1 to within a fator of  logn, for someonstant  > 0.While the Lund-Yannakakis set system an be onstruted in deterministipolynomial time using �-biased limited independene sample spaes, this doesnot seem to be true of our set system. One of the main bottleneks in onstrut-ing our set system in deterministi polynomial time is the task of obtaining apolynomial size hitting set for Combinatorial Retangles, with the hitting set sat-isfying additional properties. One of these properties (the most important one)is the following: if a hitting set point has the elements i; j among its oordinates,then no other hitting set point an have both i; j among its oordinates. Theonly known onstrution of a polynomial size hitting set for ombinatorial ret-angles is by Linial, Luby, Saks, and Zukerman [14℄ and is based on enumeratingwalks in a onstant degree expander graph. In the full version of this paper, weshow that the hitting set obtained by [14℄ does not satisfy the above propertyfor reasons that seem intrinsi to the use of onstant degree expander graphs.In the full version, we also note that if the proof systems for NP obtainedby Raz and Safra[19℄ or Arora and Sudan[5℄ have an additional property thenthe ondition NP � ZTIME(nO(log logn)) an be improved to NP = ZPP .Similarly, the statement that approximating the Set Covering problem with in-tersetion 1 to within a fator of  lognlog log n in deterministi polynomial time ispossible only if NP � DTIME(2n1��) an be strengthened to approximationfator  logn instead of  lognlog logn . The property needed of the proof systems isthat the degree, i.e., the total number of random hoies of the veri�er for whiha partiular question is asked of a partiular prover, be O(nÆ), for some smallenough onstant value Æ. The degree inuenes the number of partitions in ourauxiliary proof system and therefore needs to be small. It is not lear whetherexisting proof systems have this property [20℄.The above proof of hardness for Set Covering with intersetion 1 does notapply to the problem of overing points with lines, the original problem whihmotivated this paper; however, it does indiate that algorithms based on setardinalities and small pairwise intersetion alone are unlikely to give a o(logn)approximation fator for this problem.Further, our result shows that onstant VC-dimension alone does not helpin getting a o(logn) approximation for the Set Covering problem. This is to beontrasted with the result of Br�onnimann and Goodrih[8℄ whih shows thatif the VC-dimension is a onstant and an O( 1� ) sized (weighted) �-net an beonstruted in polynomial time, then a onstant fator approximation an beobtained.The paper is organized as follows. Setion 2 will give an overview of theLund-Yannakakis redution. Setion 3 shows why the Lund-Yannakakis proofdoes not show hardness of Set Covering when the intersetion is onstrained to



be 1. Setion 4 desribes the redution to Set Covering with intersetion 1. Thissetion desribes a new set system we need to obtain in order to perform theredution and shows hardness of approximation of its set over, unless NP �ZTIME(nO(log logn)). Setion 5 will sketh the randomized onstrution of thisset system. Setion 6 skethes the sub-exponential time derandomization, whihleads to a slightly di�erent hardness result, unless NP � DTIME(2n1��), � <1=2. Setion 7 enumerates several interesting open problems whih arise fromthis paper.2 Preliminaries: The Lund-Yannakakis RedutionIn this setion, we sketh the version of the Lund-Yannakakis redution desribedby Arora and Lund [3℄. The redution starts with a 2-Prover 1-Round proofsystem for Max-3SAT(5) whih has inverse polylogarithmi error probability,uses O(logn log logn) randomness, and has O(log logn) answer size. Here n isthe size of the Max-3SAT(5) formula F . Arora and Lund[3℄ abstrat this proofsystem into the following Label Cover problem.The Label Cover Problem. A bipartite graph G having n0 + n0 verties andedge set E is given, where n0 = nO(log log n). All verties have the same degreedeg, whih is polylogarithmi in n. For eah edge e 2 E, a partial funtionfe : [d℄ ! [d0℄ is also given, where d � d0, and d; d0 are polylogarithmi in n.The aim is to assign to eah vertex on the left, a label in the range 1 : : : d, andto eah vertex on the right, a label in the range 1 : : : d0, so as to maximize thenumber of edges e = (u; v) satisfying fe(label(u)) = label(v). Edge e = (u; v) issaid to be satis�ed by a labelling if the labelling satis�es fe(label(u)) = label(v).The 2-Prover 1-Round proof system mentioned above ensures that either allthe edges in G are satis�ed by some labelling or that no labelling satis�es morethan a 1log3 n fration of the edges, depending upon whether or not the Max-3SAT(5) formula F is satis�able. Next, in time polynomial in the size of G,an instane SC of the Set Covering problem is obtained from this Label Coverproblem LC with the following properties: if there exists a labelling satisfyingall edges in G then there is a set over of size 2n0, and if no labelling satis�esmore than a 1log3 n fration of the edges then the smallest set over has size
(2n0 logn0). The base set in SC will have size polynomial in n0. It follows thatthe Set Covering problem annot be approximated to a logarithmi fator of thebase set size unless NP � DTIME(nO(log logn)).Improving this ondition to NP = P requires using a stronger multi-proverproof system [19, 5℄ whih has a onstant number of provers (more than 2),O(logn) randomness,O(log logn) answer sizes, and inverse polylogarithmi errorprobability. The redution from suh a proof system to the Set Covering problemis similar to the redution from the Label Cover to the Set Covering problemmentioned above, with a modi�ation needed to handle more than 2 provers(this modi�ation is desribed in [7℄).



In this abstrat, we will only desribe the redution from Label Cover tothe Set Covering problem and show how we an modify this redution to holdfor the ase of intersetion 1. This will show that Set Covering problem withintersetion 1 annot be approximated to a logarithmi fator unless NP �ZTIME(nO(log logn)). The multi-prover proof system of the previous paragraphwith an additional ondition an strengthen the latter ondition to NP = ZPP ;this is desribed in the full version.We now briey sketh the redution from an instane LC of Label Cover toan instane SC of the Set Covering problem.2.1 Label Cover to Set CoverThe following auxiliary set system given by a base set N = f1 : : : n0g and itspartitions is needed.The Auxiliary System of Partitions. Consider d0 distint partitions of Ninto two sets eah, with the partitions satisfying the following property: if atmost logn02 sets in all are hosen from the various partitions with no two setsoming from the same partition, then the union of these sets does not overN . Partitions with the above properties an be onstruted deterministially inpolynomial time [1, 17℄. Let P 1i ; P 2i respetively denote the �rst and seond setsin the ith partition. We desribe the onstrution of SC next.Using P ji s to onstrut SC. The base set B for SC is de�ned to bef(e; i)je 2 E; 1 � i � n0g. The olletion C of subsets of B ontains a setC(v; a), for eah vertex v and eah possible label a with whih v an be labelled.If v is a vertex on the left, then for eah a, 1 � a � d, C(v; a) is de�ned asf(e; i)je inident on v ^ i 2 P 1fe(a)g. And if v is a vertex on the right, then foreah a, 1 � a � d0, C(v; a) is de�ned as f(e; i)je inident on v ^ i 2 P 2a g.That SC satis�es the required onditions an be seen from the following fats.1. If there exists a vertex labelling whih satis�es all the edges, then B an beovered by just the sets C(v; a) where a is the label given to v. Thus the sizeof the optimum over is 2n0 in this ase.2. If the total number of sets in the optimum set over is at most some suitableonstant times n0 logn0, then at least a onstant fration of the edges e =(u; v) have the property that the number of sets of the form C(u; �) plus thenumber of sets of the form C(v; �) in the optimum set over is at most logn02 .Then, for eah suh edge e, there must exist a label a suh that C(u; a) andC(v; fe(a)) are both in this optimum over. It an be easily seen that hoosinga label uniformly at random from these sets for eah vertex implies that thereexists a labelling of the verties whih satis�es an 
( 1log2 n0 ) � 1log3 n frationof the edges.3 SC has Large IntersetionThere are two reasons why sets in the olletion C in SC have large intersetions.



Parts in the Partitions are Large. The �rst and obvious reason is thatthe sets in eah partition in the auxiliary system of partitions are large andould have size n02 ; therefore, two sets in distint partitions ould have 
(n0)intersetion. This ould lead to sets C(v; a) and C(v; b) having 
(n0) ommonelements of the form (e; i), for some e inident on v.Clearly, the solution to this problem is to work with an auxiliary systemof partitions where eah partition is a partition into not just 2 large sets, butinto several small sets. The problem remains if we form only a onstant numberof parts, as in [10℄. We hoose to partition into (n0)1�� sets, where � is somenon-zero onstant to be �xed later. This ensures that eah set in eah partitionhas size �((n0)� polylog(n)) and that any two suh sets have O(1) intersetion.However, smaller set size leads to other problems whih we shall desribe shortly.Funtions fe() are not 1-1. Suppose we work with smaller set sizes asabove. Then onsider the sets C(v; a) and C(v; b), where v is a vertex on the leftand a; b are labels with the following property: for some edge e inident on v,fe(a) = fe(b). Then eah element (e; �) whih appears in C(v; a) will also appearin C(v; b), leading to an intersetion size of up to 
((n0)� �deg), where deg is thedegree of v in G. This is a more serious problem. Our solution to this problem isto ensure that sets C(v; a) and C(v; b) are onstruted using distint partitionsin the auxiliary system of partitions.Next, we desribe how to modify the auxiliary system of partitions and theonstrution of SC in aordane with the above.4 LC to SC with Intersetion 1Our new auxiliary system of partitions P will have d0 � (deg + 1) � d partitions,where deg is the degree of any vertex in G. Eah partition has m = (n0)1��parts, for some � > 0 to be determined. These partitions are organized into d0groups, eah ontaining (deg+1) � d partitions. Eah group is further organizedinto deg + 1 subgroups, eah ontaining d partitions. The �rst m=2 sets in eahpartition omprise its left half and the last m=2 its right half.Let Pg;s;p denote the pth partition in the sth subgroup of the gth group andlet Pg;s;p;k denote the kth set (i.e., part) in this partition. Let Bk denote the set[g;s;pPg;s;p;k if 1 � k � m=2, and the set [g;sPg;s;1;k , if m=2 < k � m. We alsorefer to Bk as the kth olumn of P .We need the following properties to be satis�ed by the system of partitionsP .1. The right sides of all partitions within a subgroup are idential, i.e., Pg;s;p;k =Pg;s;1;k, for every k > m=2.2. P (g; s; p; k) \ P (g0; s0; p0; k) = � unless either g = g0; s = s0; p = p0, or,k > m=2 and g = g0; s = s0. In other words, no element appears twiewithin a olumn, modulo the fat that the right sides of partitions within asubgroup are idential.3. jBk \Bk0 j � 1 for all k; k0, 1 � k; k0 � m, k 6= k0.



4. Suppose N is overed using at most �m logn0 sets in all, disallowing sets onthe right sides of those partitions whih are not the �rst in their respetivesubgroups. Then there must be a partition in some subgroup s suh that thenumber of sets hosen from the left side of this partition plus the number ofsets hosen from right side of the �rst partition in s together sum to at least34m.� and � are onstants whih will be �xed later. Let Ap;k = [g;sPg;s;p;k,for eah p; k, 1 � p � d; 1 � k � m=2. Let Dg;k = [sPg;s;1;k, for eah g; k,1 � g � d0, m=2 + 1 � k � m. Property 2 above implies that:5. jAp;k \ Ap0;kj = 0 for all p 6= p0, where 1 � p; p0 � d and k � m=2.6. jDg;k \Dg0;kj = 0 for all g 6= g0, where 1 � g; g0 � d0 and k > m=2.We will desribe how to obtain a system of partitions P satisfying theseproperties in Setion 5 and Setion 6. First, we show how a set system SC withintersetion 1 an be onstruted using P .4.1 Using P to onstrut SCThe base set B for SC is de�ned to be f(e; i)je 2 E; 1 � i � n0g as before. Thisset has size (n0)2 � deg = O((n0)2 polylog(n)).The olletion C of subsets of B ontains m=2 sets C1(v; a) : : : Cm=2(v; a),for eah vertex v on the left (in graph G) and eah possible label a with whih van be labelled. In addition, it ontains m=2 sets Cm=2+1(v; a) : : : Cm(v; a), foreah vertex v on the right in G and eah possible label a with whih v an belabelled. These sets are de�ned as follows.Let Ev denote the set of edges inident on v in G. We edge-olour G usingdeg + 1 olours. Let ol(e) be the olour given to edge e in this edge olouring.For a vertex v on the left side, and any number k between 1 and m=2, Ck(v; a) =[e2Evf(e; i)ji 2 Pfe(a);ol(e);a;kg. For a vertex v on the right side, and any numberk between m=2 + 1 and m, Ck(v; a) = [e2Evf(e; i)ji 2 Pa;ol(e);1;kg.We now give the following lemmas whih state that the set system SC hasintersetion 1 and that it has a set over of small size if and only if there existsa way to label the verties of G satisfying several edges simultaneously. Thehardness of approximation of the set over of SC is given in Corollary 1, whoseproof will appear in the full version.Lemma 1. The intersetion of any two distint sets Ck(v; a) and Ck0 (w; b) isat most 1.Proof. Note that for jCk(v; a)\Ck0 (w; b)j to exeed 1, either v; w must be iden-tial or there must be an edge between v and w. The reason for this is that eahelement in Ck(v; a) has the form (e; �) where e is an edge inident at v whileeah element in Ck0 (w; b) has the form (e0; �), where e0 is an edge inident at w.We onsider eah ase in turn.Case 1. Suppose v = w. Then either k 6= k0 or k = k0; a 6= b.



First, onsider Ck(v; a) and Ck0 (v; b) where k 6= k0 and v is a vertex in the leftside. If a = b, observe that Ck(v; a) \ Ck0 (v; a) = �. So assume that a 6= b. Theelements in the former set are of the form (e; i) where i 2 Pfe(a);ol(e);a;k and theelements of the latter set are of the form (e; j) where j 2 Pfe(b);ol(e);b;k0 . Notethat [e2EvPfe(a);ol(e);a;k � Bk and [e2EvPfe(b);ol(e);b;k0 � Bk0 . By Property 3of P , the intersetion Bk; Bk0 is at most 1. However, this alone does not implythat Ck(v; a) and Ck0(v; b) have intersetion at most 1, beause there ouldbe several tuples in both sets, all having idential seond entries. This ouldhappen if there are edges e1; e2 inident on v suh that fe1(a) = fe2(a); fe1(b) =fe2(b) and there had been no olouring on edges. Property 2 and the fat thatol(e1) 6= ol(e2) for any two edges e1; e2 inident on v rule out this possibility,thus implying that jCk(v; a)\Ck0(v; b)j � 1. The proof for the ase where v is avertex on the right is idential.Seond, onsider Ck(v; a) and Ck(v; b), where v is a vertex on the left anda 6= b. Elements in the former set are of the form (e; i) where e is an edgeinident on v and i 2 Pfe(a);ol(e);a;k. Similarly, elements in the latter set are ofthe form (e; j) where j 2 Pfe(b);ol(e);b;k. Note that [e2EvPfe(a);ol(e);a;k � Aa;kand [e2EvPfe(b);ol(e);b;k � Ab;k. The laim follows from Property 5 in this ase.Third, onsider Ck(v; a) and Ck(v; b), where v is a vertex on the right, a 6= b,and k > m=2. Elements in the former set are of the form (e; i) where e is anedge inident on v and i 2 Pa;ol(e);1;k. Similarly, elements in the latter set areof the form (e; j) where j 2 Pb;ol(e);1;k. Note that [e2EvPa;ol(e);1;k � Da;k and[e2EvPb;ol(e);1;k � Db;k. The laim follows from Property 6 in this ase.Case 2. Finally onsider sets Ck(v; a) and Ck0(w; b) where e = (v; w) is anedge, v is on the left side, and w on the right. Then Ck(v; a) ontains elementsof the form (e0; i) where i 2 Pfe0 (a);ol(e0);a;k. Ck0 (w; b) ontains elements of theform (e0; j) where j 2 Pb;ol(e0);1;k0 . The only possible elements in Ck(v; a) \Ck0 (w; b) are tuples with the �rst entry equal to e. Sine Pfe(a);ol(e);a;k � Bkand Pb;ol(e);1;k0 � Bk0 and k � m=2; k0 > m=2, the laim follows from Properties2 and 3 in this ase.Lemma 2. If there exists a way of labelling verties of G satisfying all its edgesthen there exists a olletion of n0m sets in C whih overs B.Proof. Let label(v) denote the label given to vertex v by the above labelling. Con-sider the olletion C 0 � C omprising sets C1(v; label(v)) : : : ; Cm2 (v; label(v))for eah vertex v on the left and sets Cm2 +1(w; label(w)) : : : ; Cm(w; label(w)) foreah vertex w on the right. We show that these sets over B. Sine there arem=2 sets in C 0 per vertex, jC 0j = 2n0 � m2 = n0m.Consider any edge e = (v; w). It suÆes to show that for every i, 1 � i � n0,the tuple (e; i) in B is ontained in either one of C1(v; label(v)) : : : ; Cm2 (v; label(v))or in one of Cm2 +1(w; label(w)) : : : ; Cm(w; label(w)). The key property we use isthat fe(label(v)) = label(w).Consider the partitions Pfe(label(v));ol(e);label(v) and Plabel(w));ol(e);1. Sinefe(label(v)) = label(w), the two partitions belong to the same group and sub-group. Sine all partitions in a subgroup have the same right hand side, the



element i must be present either in one of the sets Plabel(w);ol(e);label(v);k , wherek � m=2, or in one of the sets Plabel(w);ol(e);1;k , where k > m=2. We onsidereah ase in turn.First, suppose i 2 Plabel(w);ol(e);label(v);k , for some k � m=2. Then, fromthe de�nition of Ck(v; label(v)), (e; i) 2 Ck(v; label(v)). Seond, suppose i 2Plabel(w);ol(e);1;k, for some k > m=2. Then, from the de�nition of Ck(w; label(w)),(e; i) 2 Ck(w; label(w)). The lemma follows.Lemma 3. If the smallest olletion C 0 of sets in C overing the base set B hassize at most �2n0m logn0 then there exists a labelling of G whih satis�es at leasta 132�2 log2 n0 fration of the edges. Reall that � was de�ned in Property 4 of P.Proof. Given C 0, we need to demonstrate a labelling of G with the above prop-erty. For eah vertex v, de�ne L(v) to be the olletion of labels a suh thatCk(v; a) 2 C 0 for some k. We think of L(v) as the set of \suggested labels" for vgiven by C 0 and this will be a multiset in general. The labelling we obtain willultimately hoose a label for v from this set. It remains to show that there isa way of assigning eah vertex v a label from L(v) so as to satisfy suÆientlymany edges.We need some de�nitions. For an edge e = (v; w), de�ne #(e) = jL(v)j +jL(w)j. Sine the sum of the sizes of all L(v)s put together is at most �2n0m logn0and sine all verties in G have idential degrees, the average value of #(e) isat most �2m logn0. Thus half the edges e have #(e) � �m logn0. We all theseedges good.We show how to determine a subset L0(v) of L(v) for eah vertex v so thatthe following properties are satis�ed. If v has a good edge inident on it thenL0(v) has size at most 4� logn0. Further, for eah good edge e = (v; w), thereexists a label in L0(v) and one in L0(w) whih together satisfy e. Clearly, randomindependent hoies of labels from L0(v) will satisfy a good edge with probability116�2 log2 n0 , implying a labelling whih will satis�es at least a 132�2 log2 n0 frationof the edges (sine the total number of edges is at most twie the number ofgood edges), as required.For eah label a 2 L(v), inlude it in L0(v) if and only if the number of setsof the form C�(v; a) in C 0 is at least m=4. Clearly, jL0(v)j � �m logn0m=4 = 4� logn0,for verties v on whih good edges are inident. It remains to show that foreah good edge e = (v; w), there exists a label in L0(v) and one in L0(w) whihtogether satisfy e.Consider a good edge e = (v; w). Using Property 4 of P , it follows that thereexists a label a 2 L(v) and a label b 2 L(w) suh that the fe(a) = b and thenumber of sets of the form C�(v; a) or C�(w; b) in C 0 is at least 3m=4. The latterimplies that the number of sets of the form C�(v; a) in C 0 must be at least m=4,and likewise for C�(w; b). Thus a 2 L0(v) and b 2 L0(w). Sine fe(a) = b, thelaim follows.Corollary 1. Set Cover with intersetion 1 annot be approximated within afator of � logn02 in random polynomial time, for some onstant �, 0 < � � 16 ,unless NP � ZTIME(nO(log log n)). Further, if the auxiliary system of partitions



P an be onstruted in deterministi polynomial (in n0) time, then approximat-ing to within a � log n02 fator is possible only if NP = DTIME(nO(log log n)).5 Randomized Constrution of the Auxiliary System PThe obvious randomized onstrution is the following. Ignore the division intogroups and just view P as a olletion of subgroups. For eah partition whih isthe �rst in its subgroup, throw eah element i independently and uniformly atrandom into one of the m sets in that partition. For eah partition P whih isnot the �rst in its subgroup, throw eah element i whih is not present in anyof the sets on the right side of the �rst partition Q in this subgroup, into oneof the �rst m=2 sets in P . Property 1 is thus satis�ed diretly. We need to showthat Properties 2,3,4 are together satis�ed with non-zero probability.It an be shown quite easily that Property 4 holds with probability at least1 � ( 1e )n01�23� , provided � > 22�. Slightly weak versions of Properties 2 and 3(intersetion bounds of 2 instead of 1) also follow immediately. This an be im-proved in the ase of intersetion 1 using the Lovasz Loal Lemma, but this doesnot give a onstant suess probability and also leads to problems in derandom-ization. The details of these alulations appear in the full version.To obtain a high probability of suess, we need to hange the randomizedonstrution above to respet the following additional restrition (we all thisProperty 7): eah set Pg;s;p;k has size at most d0�(deg+1)�dn0m , for all g; s; p; k,1 � g � d0; 1 � s � deg + 1; 1 � p � d; 1 � k � m.The new randomized onstrution proeeds as in the previous random ex-periment, �xing partitions in the same order as before, exept that any hoie ofthrowing an element i 2 N whih violates Properties 2,3,7 is preluded. Prop-erty 7 enables us to show that not too many hoies are preluded for eahelement, and therefore, this experiment stays lose in behaviour to the previousone (provided 22� < � < 1=2), exept that Properties 2,3,7 are all automatiallysatis�ed. The details appear in the full version.6 Derandomization in O(2n1��) TimeThe main hurdle in derandomizing the above randomized onstrution in poly-nomial time is Property 4. There ould be up to O(2m�polylog(n)) = O(2(n0)1��0 )ways of hoosing �m logn0 sets from the various partitions in P for a onstant�0 slightly smaller than �, and we need that eah of these hoies fails to overN for Property 4 to be satis�ed.For the Lund-Yannakakis system of partitions desribed in Setion 2.1, eahpartition was into 2 sets and the orresponding property ould be obtained deter-ministially using small-bias logn-wise independent sample spae onstrutions.This is no longer true in our ase. Feige's [10℄ system of partitions, where eahpartition is into several but still a onstant number of parts, an be obtaineddeterministially using anti-universal sets [17℄. However, it is not lear how to



apply either Feige's modi�ed proof system or his system of partitions to getintersetion 1.We show in the full version that enforing Property 4 in polynomial time or-responds to onstruting hitting ombinatorial retangles with ertain restritedkinds of sets, though we do not know any eÆient onstrutions for them. Inthis paper, we take the slower approah of using Conditional Probabilities andenforing Property 4 by heking eah of the above hoies expliitly. However,note that the number of hoies is superexponential in n (even though it is sub-exponential in n0). To obtain a derandomization whih is sub-exponential in n,we make the following hange in P : the base set is taken to be of size n insteadof n0. We use an appropriate pessimisti estimator and onditional probabilitiesto onstrut P with parameter n instead of n0 (details will be given in the fullversion). This will give a gap of �(logn) (instead of �(logn0)) in the set overinstane SC). But sine the base set size in SC is now O((n0 � n) polylog(n)),we get a hardness of only �(logn) = �( logn0log logn0 ) (note that the approximationfator must be with respet to the base set size) unless NP � DTIME(2n1��),for any onstant � suh that 22� < � < 1=2.7 Open ProblemsA signi�ant ontribution of this paper is that it leads to several open problems.1. Is there a polynomial time algorithm for onstruting the partition systemin Setion 4? In the full version, we show its relation to the question of onstru-tion of hitting sets for ombinatorial retangles with ertain onstraints. Cana hitting set for large volume ombinatorial retangles, with the property thatany two hitting set points agree in at most one oordinate, be onstruted inpolynomial time? Alternatively, an a di�erent proof system be obtained, as in[10℄, whih will require a set system with weaker hitting properties?2. Are there instanes of the problem of overing points by lines, with anintegrality gap of �(logn)? In the full version, we show that the an integralitygap of 2 and we desribe a promising onstrution, whih might have a largergap.3. Are there suh expliit onstrutions for the the Set Covering problemwith intersetion 1? Randomized onstrutions are easy for this but we do notknow how to do an expliit onstrution.4. Is there a polynomial time algorithm for the problem of overing pointswith lines whih has an o(logn) approximation fator, or an super-onstanthardness (or even a hardness of fator 2) be proved? In the �nal version, weobserve that the NP-Hardness proof of Megiddo and Tamir[16℄ an be easilyextended to a Max-SNP-Hardness proof.Referenes1. N. Alon, O. Goldreih, J. Hastad, R. Perralta. Simple Construtions of Al-most k-Wise Independent Random Variables. Random Strutures and Algo-
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