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ABSTRACT
Recently, Arya, da Fonseca, and Mount [STOC 2011,
SODA 2012] made notable progress in improving the ε-
dependencies in the space/query-time tradeoffs for (1 +
ε)-factor approximate nearest neighbor search in fixed-
dimensional Euclidean spaces. However, ε-dependencies in
the preprocessing time were not considered, and so their
data structures cannot be used to derive faster algorithms
for offline proximity problems. Known algorithms for many
such problems, including approximate bichromatic closest
pair (BCP) and approximate Euclidean minimum spanning

trees (EMST), typically have factors near (1/ε)d/2±O(1) in
the running time when the dimension d is a constant.

We describe a technique that breaks the (1/ε)d/2 barrier
and yields new results for many well-known proximity prob-
lems, including:

• an O((1/ε)d/3+O(1)n)-time randomized algorithm for
approximate BCP,

• an O((1/ε)d/3+O(1)n logn)-time algorithm for approx-
imate EMST, and

• an O(n logn + (1/ε)d/3+O(1)n)-time algorithm to an-
swer n approximate nearest neighbor queries on n
points.

Using additional bit-packing tricks, we can shave off the
logn factor for EMST, and even move most of the ε-factors
to a sublinear term.

The improvement arises from a new time bound for exact
“discrete Voronoi diagrams”, which were previously used in
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the construction of ε-kernels (or extent-based coresets), a
well-known tool for another class of fundamental problems.
This connection leads to more results, including:

• a streaming algorithm to maintain an approximate
diameter in O((1/ε)d/3+O(1)) time per point using

O((1/ε)d/2+O(1)) space, and

• a streaming algorithm to maintain an ε-
kernel in O((1/ε)d/4+O(1)) time per point using

O((1/ε)d/2+O(1)) space.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
ε-dependencies, bichromatic closest pair, minimum spanning
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1. INTRODUCTION

1.1 Proximity Problems
Proximity problems constitute a fundamental class of ge-

ometric problems, involving distances between points. They
have been extensively studied in the literature, both because
of their theoretical importance and because they have nu-
merous applications in areas such as information retrieval,
pattern recognition, and machine learning. Typical proxim-
ity problems include the following:

Bichromatic Closest Pair (BCP): Given a set of n red
and blue points in d-dimensional Euclidean space, find
the closest red-blue pair.

Offline Nearest Neighbor Search: Given a set of n red
and blue points in d-dimensional Euclidean space, find
the closest red point to each blue point.

Euclidean Minimum Spanning Tree (EMST): Given
a set of n points in d-dimensional Euclidean space,
construct the spanning tree that minimizes the sum
of the edge lengths.



Previous studies strongly suggest that many proximity
problems are hard to solve exactly, except in very low di-
mensions. In particular, for all the above problems, the
best algorithms take nearly quadratic time as the dimen-
sion increases and are thus scarcely better than brute-force
search [1]. This has prompted researchers to study approxi-
mation algorithms, specifically, algorithms that can approx-
imate the optimal solution to within a factor 1 + ε for any
given ε > 0.

Throughout this paper, we will focus on the setting when
the dimension d is a constant, as is typical in traditional
computational geometry, but the approximation parameter
ε is nonconstant. (This is orthogonal to another major line
of research [24, 26], which treats d as nonconstant but ε
as constant; interesting recent developments have also been
made along that direction [4].) Many important applications
reside in spaces of relatively low dimensions (for example,
ranging from 3 to 20). Previous work has already established
efficient approximation algorithms that run in time linear or
near-linear in n for constant d, but there are hidden factors
in ε that grow rapidly as we demand greater accuracy. These
factors can dominate the running time in practice. Our goal
is to minimize such ε-dependencies while maintaining linear
or near-linear dependencies on n.

Virtually all previous work has ε-dependencies that are
of the order of O∗((1/ε)d) or O∗((1/ε)d/2).1 For ap-
proximate BCP, Khuller and Matias [27] in 1995 gave an
O∗((1/ε)dn)-time randomized algorithm, while Chan [15]

at SoCG 1997 presented an O∗((1/ε)d/2n logn)-time algo-
rithm. For approximate EMST, Vaidya [31] in 1988 gave
an O∗((1/ε)dn logn)-time algorithm, while Callahan and
Kosaraju [13] at SODA 1993 presented an O∗(n logn +

(1/ε)d/2n)-time algorithm, which has remained unimproved
for two decades. (Czumaj et al. [21, 22] have given algo-
rithms for approximating the EMST weight but not for com-
puting an approximate EMST.)

Data structures for approximate nearest neighbor search
can be used to solve the proximity problems listed above.
Since Arya et al. [8] presented an O(n)-space data structure
with O∗(logn+(1/ε)d) query time, much attention has been
devoted to improving the ε-dependencies. For example, fol-
lowing Clarkson [20], Chan [15] described an O∗((1/ε)d/2n)-

space data structure with O((1/ε)d/2 logn) query time.
Arya, Malamatos, and Mount [7] at STOC 2002 obtained

an O∗(n)-space data structure with O∗(logn + (1/ε)d/2)
query time. A tradeoff between space and time is pos-
sible; for example, to balance the ε-dependencies of the
two bounds, we can get a structure with O∗((1/ε)d/3n)

space and O∗(logn + (1/ε)d/3) query time. Further excit-
ing developments have been reported recently: at STOC
2011 and SODA 2012, Arya, da Fonseca, and Mount [5, 6]
obtained a better space-time tradeoff curve; for example,
we can now get a structure with O∗((1/ε)d/4n) space and

O∗(logn+ (1/ε)d/4) query time.
Unfortunately all these newer data structures for approx-

imate nearest neighbor search have no immediate implica-
tions to offline proximity problems, because their prepro-

1Throughout the paper, we will use the notation O∗ to hide
factors 1/εc (also written as Ec), where c is independent of
the dimension d, typically not more than 1 or 2 (in some
cases it may even be negative). This will help simplify the
bounds and the presentation of the algorithms, and shift
attention away from the less important issue of optimizing c.

cessing time still have ε-dependencies O∗((1/ε)d/2) or worse.

The barrier for the offline problems has remained at (1/ε)d/2.

We reduce the O∗((1/ε)d/2) factors to O∗((1/ε)d/3) for all
three problems:

• We give a randomized algorithm for approximate BCP
that runs in O∗((1/ε)d/3n) time, improving the pre-

vious O∗((1/ε)d/2n logn) algorithm [15]. With more
complicated bit-packing tricks, the time bound can
even be reduced to O∗(n+ (1/ε)d/3n/ log5/3 n).

• We give an algorithm for offline approximate nearest
neighbor search that runs in O∗(n logn + (1/ε)d/3n)
time.

• We give an algorithm for approximate EMST that
runs in O∗((1/ε)d/3n logn) time. With more compli-
cated bit-packing tricks, the time bound can be re-
duced to O∗(n+ (1/ε)d/3n/ log2/3 n), strictly improv-

ing Callahan and Kosaraju’s O∗(n logn + (1/ε)d/2n)
algorithm [13].

Our BCP and EMST algorithms (the versions without bit
tricks) are relatively simple and do not require the recent
advances by Arya, da Fonseca, and Mount [5, 6]. Instead it
is based on a new result on the computation of exact discrete
Voronoi diagrams and discrete upper envelopes, studied by
Chan [18] in a different context (see the next subsection).

Our algorithm for offline approximate nearest neigh-
bor search requires techniques from Arya, da Fonseca,
and Mount’s STOC 2011 paper [5], but not their sub-
sequently improved SODA 2012 paper. More generally,
we describe a method for (online) approximate nearest
neighbor search that provides preprocessing-time/query-
time rather than space/query-time tradeoffs, specifically

achieving O∗(n logn + (1/ε)d/3n) preprocessing time and

O∗(logn+ (1/ε)d/3) query time.

1.2 Extent Problems
Discrete Voronoi diagrams and discrete upper envelopes

were actually proposed by Chan [18] to solve a different class
of problems related to extent measures of a point set. Typ-
ical such problems include the following:

Diameter (or Farthest Pair): Given a set of n points in
d-dimensional Euclidean space, determine the maxi-
mum distance between any pair of points.

Width: Given a set of n points in d-dimensional Euclidean
space, find the smallest width of a slab that contains
all the points.

For the diameter problem, there is a straightforward
O∗((1/ε)d/2n)-time approximation algorithm [3] that simply
computes the pair of minimal and maximal points along each
of O((1/ε)(d−1)/2) uniformly spaced directions. Chan [17,
18] obtained alternative algorithms with O∗(n+(1/ε)d) run-
ning time, one of which was based on discrete upper en-
velopes.

For other extent-related problems, Agarwal, Har-Peled,
and Varadarajan [2] have provided a general framework
based on the notion of a kernel (or “coreset”). A subset
Q of a point set P is said to be an ε-kernel of P if, for
any slab that contains Q, a (1 + ε)-expansion of the slab
contains P . It turns out that there exist ε-kernels of size



O((1/ε)(d−1)/2), and this bound is tight in the worst case.
Intuitively, the convex hull of an ε-kernel provides a good
approximation to the convex hull of the entire set of points,
and this fact allows us to approximate many extent mea-
sures efficiently by solving the problems on a much smaller
subset. (This includes certain problems, such as minimum-
width annulus, which at first do not seem directly related to
convex hulls, but can be transformed into one that does in
a higher dimension, by linearization.)

Agarwal, Har-Peled, and Varadarajan’s paper [2] origi-

nally gave an O∗(n+ (1/ε)3d/2)-time algorithm to construct

an ε-kernel of size O((1/ε)(d−1)/2). Chan [18] improved the
running time to O∗(n + (1/ε)d) by using his algorithm for
discrete Voronoi diagrams.

The connection of nearest-neighbor-type problems with
ε-kernels may sound unexpected at first, but the heart of
Arya, da Fonseca, and Mount’s recent result on approximate
nearest neighbors [5, 6] lies in a problem called approximate
polytope membership queries, and similarities between this
and the ε-kernel problem are apparent. Both problems are
about approximating a convex polytope, and algorithms for
both problems exploit a well known construction by Dud-
ley [23] and Bronshteyn and Ivanov [12]. Discrete Voronoi
diagrams are what is required to turn this construction into
efficient algorithms.

With our new result on discrete Voronoi diagrams, we can
obtain an O∗(n+ (1/ε)d/2

√
n)-time algorithm for the diam-

eter problem and the ε-kernel problem. This is a modest
improvement over the previous O∗(n + (1/ε)d) algorithm
in the special case when n is smaller than (1/ε)d. (This
time bound does not apply to the width problem, however,
since computing an approximate width of the ε-kernel still
requires O∗((1/ε)d) time.)

We obtain a more interesting improvement in the context
of streaming algorithms. In the (one-pass) streaming model,
the points arrive one by one, we have limited amount of
space at any time, and we need to maintain an approximate
solution of the points seen so far. For example, consider
the diameter problem. The straightforward algorithm [3]
which maintains the minimal and maximal points along each
of the O((1/ε)(d−1)/2) directions can be implemented as a

streaming algorithm which uses O((1/ε)(d−1)/2) space and

requires O((1/ε)(d−1)/2) time to process a new point. While
the space usage is optimal, the processing time might not
be, but no better results have ever been published.

To get streaming algorithms for other extent-based prob-
lems, the main tool is again ε-kernels. Agarwal, Har-Peled,
and Varadarajan [2] gave a streaming algorithm to maintain

an ε-kernel of size O((1/ε)(d−1)/2) with O∗((1/ε)d/2 logd n)
space and O((1/ε)d) time per point. Chan [18] gave an-
other streaming algorithm to maintain an ε-kernel of size
O∗((1/ε)d) with O∗((1/ε)d) space and O(1) time per point.
Zarrabi-Zadeh [32] gave yet another streaming algorithm to

maintain an ε-kernel of size O∗((1/ε)d/2) with O∗((1/ε)d/2)

space and O∗((1/ε)d/2) time per point. While the space
usage of the last algorithm is near optimal, again the pro-
cessing time might not be.

Our new results are as follows:

• We give a streaming algorithm that uses O∗((1/ε)d/2)
space and maintains an approximate diameter in
O∗((1/ε)d/3) time per point.

• We give a streaming algorithm that uses
O((1/ε)(d−1)/2) space and requires O∗((1/ε)d/4)
time per point, and that maintains an ε-kernel
of size O((1/ε)(d−1)/2). For example, we can re-
port an approximate width whenever requested in
O∗((1/ε)d) additional time, by running an existing
width algorithm on the ε-kernel [17].

The result for diameter requires techniques from Arya, da
Fonseca, and Mount’s STOC 2011 paper [5]. More gener-
ally, we describe how to support approximate farthest neigh-
bor queries in O∗((1/ε)d/3) time and point insertions in

O∗((1/ε)d/3) time. (See [9] for a previous work on approxi-
mate farthest neighbor queries.)

2. DISCRETE VORONOI DIAGRAMS AND
DISCRETE UPPER ENVELOPES

In the d-dimensional discrete Voronoi diagram (DVD)
problem, we are given a set P of n points from an E×· · ·×E
axis-parallel grid in Rd. We are also given an F × · · · × F
axis-parallel grid Ξ with F ≤ E. We want to find the exact
nearest neighbor in P to each grid point in Ξ. The output
thus consists of a matrix of F d elements.

A slight generalization is the (d+ 1)-dimensional discrete
upper envelope (DUE) problem: Here, we are also given a
weight wp ∈ R for each point p ∈ P . We want to find the
point p ∈ P that maximizes p1ξ1 + · · ·+ pdξd + wp for each
ξ ∈ Ξ. (For a point p, its j-th coordinate is denoted by pj .)

DVD is a special case of DUE by a standard lifting map,
i.e., by setting wp = −(p21 + · · ·+ p2d)/2.

The trivial algorithm requires O(F dn) time. Chan [18,
Corollary 2.2] (see also the work by Breu et al. [11]) ob-
tained the following result by a simple algorithm that uses
induction in the dimension.

Theorem 2.1. We can solve the DVD and DUE problem
in O∗(n+ Ed) time.

The running time is thus O∗(n) when n is large enough
to exceed the second term Ed. Unfortunately we do not
know how to reduce the second term (other than by O∗(1)
factors) while keeping the first term close to O(n). The
trivial lower bound is Ω(n + F d), but in our applications,

F � E (specifically F =
√
E), so a large gap remains.

Nevertheless, in the following corollary, we notice that an
improvement to the upper bound is possible when F � E
and n� Ed. The idea is simple almost to the point of being
obvious, but it turns out to be sufficient to give new results
for our applications.

Corollary 2.2. We can solve the DVD and DUE prob-
lem in O∗(F d−k(n+Ek)) time for any given integer k ≤ d.

Proof. We simply decompose the d-dimensional grid Ξ
into F d−k k-dimensional subgrids and apply Theorem 2.1
to each subgrid. Note that when solving the problem for
a k-dimensional subgrid of Ξ, e.g., in which the values of
ξk+1, . . . , ξd are fixed, we can make the point set P k-
dimensional by projecting each point p ∈ P to (p1, . . . , pk)
and setting its new weight to pk+1ξk+1 + · · ·+ pdξd + wp.

(An alternative solution is to directly modify Chan’s DUE
algorithm [18] using a different base case, where we switch
to the trivial algorithm when the dimension is reduced to
d− k.)



Corollary 2.3. For F =
√
E, we can solve the DVD

and DUE problem in O∗(n+ Ed/2
√
n) time.

Proof. If n ≥ Ed, we pick k = d and the time bound
is O∗(n). Otherwise, we pick k so that Ek approximates n,

to within a factor of E; then the bound is O∗(E(d−k)/2(n+

Ek)) = O∗((Ed/2/
√
n)n).

3. BICHROMATIC CLOSEST PAIR
As an illustration of the power of Corollary 2.3, we first

consider the approximate bichromatic closest pair (BCP)
problem.

We begin by solving a special case when the red and the
blue point sets are well-separated. A pair of point sets are σ-
well-separated if they can be enclosed within two hypercubes
of side length r, such that the distance between the two
hypercubes is at least σr. Our solution of this special case
uses DVDs and is inspired by a technique of Dudley [23]
and Bronshteyn and Ivanov [12], originally intended for a
different problem (polytope approximation).

Lemma 3.1. Given a σ-well-separated pair of a red point
set X and a blue point set Y for a sufficiently large con-
stant σ, we can solve the approximate BCP problem in
O∗(min{n+ (1/ε)d/2

√
n, n2}) ≤ O∗((1/ε)d/3n) time.

Proof. First round the points in X and Y to an axis-
parallel uniform grid of side length εr; this incurs an additive
error of O(εr) only, and thus a multiplicative error of 1 +
O(ε).

Find an axis-parallel hyperplane h between the two en-
closing hypercubes that is of distance Ω(r) away from both
balls. Consider the portion of this hyperplane h within the
convex hull of the two hypercubes. Build a uniform grid Ξ
inside this portion with side length

√
εr. For each grid point

ξ ∈ Ξ (which we call a helper), find its nearest neighbor xξ
in X and its nearest neighbor yξ in Y .

We claim that the closest pair (xξ, yξ) over all ξ ∈ Ξ
is a (1 + O(ε))-approximate BCP. To see this, suppose
(x∗, y∗) is the actual closest red-blue pair. There exists
a helper ξ∗ ∈ Ξ that is of distance O(

√
εr) from the in-

tersection of the line x∗y∗ with h. Let z∗ be the closest
point on the line x∗y∗ to ξ∗. Consider the right triangle
x∗z∗ξ∗. Since ‖ξ∗z∗‖ ≤ O(

√
εr) and ‖x∗ξ∗‖ ≥ Ω(r), we

have sin∠x∗ ≤ O(
√
ε) and cos∠x∗ ≥ 1 − O(ε). Thus,

‖x∗ξ∗‖ ≤ ‖x∗z∗‖/(1−O(ε)). By considering the right trian-
gle y∗z∗ξ∗, we similarly have ‖ξ∗y∗‖ ≤ ‖z∗y∗‖/(1 − O(ε)).
It follows that ‖xξ∗yξ∗‖ ≤ ‖xξ∗ξ∗‖ + ‖ξ∗yξ∗‖ ≤ ‖x∗ξ∗‖ +
‖ξ∗y∗‖ ≤ (‖x∗z∗‖+‖z∗y∗‖)/(1−O(ε)) = (1+O(ε))‖x∗y∗‖.

The computation of all the xξ’s and yξ’s reduces precisely
to the DVD problem, with E = O(1/ε) and F = O(1/

√
ε).

The O∗(n + (1/ε)d/2
√
n) time bound then follows immedi-

ately from Corollary 2.3. On the other hand, the O(n2) time
bound follows from the trivial algorithm that checks all pairs
of points.

The first bound is O∗((1/ε)d/3n) when n ≥ (1/ε)d/3; the

second bound is O((1/ε)d/3n) when n ≤ (1/ε)d/3.

We now solve the general BCP problem.

Theorem 3.2. We can solve the approximate BCP prob-
lem in O∗((1/ε)d/3n) expected time.

Proof. Consider the approximate decision problem:
given a value `, confirm that every red-blue pair has dis-
tance greater than `, or report a red-blue pair of distance at

most (1 + ε)`. The original problem can be reduced to the
decision problem by known randomized techniques [16]. (Al-
ternatively, we can run a randomized linear-time algorithm
of Khuller and Matias [27] to compute a constant-factor ap-
proximation, then do binary search with O(log(1/ε)) itera-
tions.)

We solve the approximate decision problem by building a
uniform grid of side length `/σ for a sufficiently large con-
stant σ. First identify all nonempty grid cells by hashing
in linear expected time. Examine each pair of nonempty
grid cells that are of distance at most `. If this pair of
grid cells have distance less than (1− 2

√
d/σ)` and contain

points of both colors, then we have found a pair of points of
distance at most `. Otherwise, the two grid cells are O(σ)-
well-separated, and we can apply Lemma 3.1 to the subsets
Xi and Yi of points inside the two cells (or more precisely,
the red points in Xi and the blue points in Yi, and vice
versa).

Each point participates in a constant number of pairs
(Xi, Yi). Thus,

∑
i(|Xi| + |Yi|) = O(n). The to-

tal cost of applying Lemma 3.1 is therefore bounded by
O∗((1/ε)d/3n).

With a more careful analysis, one can verify that the
above time bound isO((1/ε)d/3+cn) for a negative constant c
(specifically, c ≈ −1/2,−7/12,−2/3 for d ≡ 0, 1, 2 (mod 3)
respectively). This improves over the ε-dependencies of pre-
vious algorithms for all constant dimensions d ≥ 4.

4. EUCLIDEAN MINIMUM SPANNING
TREE

In this section, we consider the approximate Euclidean
minimum spanning tree (EMST) problem. Reductions of
EMST to BCP (in both the exact and approximate setting)
have been given before [1, 13, 28]; for example, Callahan and
Kosaraju’s method [13] increases the running time by a log-
arithmic factor, while Krznaric, Levcopoulos, and Nilsson’s
method [28] increases the running time by a constant fac-
tor, assuming that the bound exceeds n logn. We describe a
solution that is simpler than these previous reductions and
works specifically in the approximate setting.

A σ-well-separated pair decomposition (or σ-WSPD)
of a point set P is a set of pairs of subsets of P ,
{(X1, Y1), . . . , (Xm, Ym)}, such that (i) Xi and Yi are σ-
well-separated for each i, and (ii) for any two distinct points
x, y ∈ P , there exists a unique pair (Xi, Yi) with x ∈ Xi and
y ∈ Yi or vice versa.

Callahan and Kosaraju [14] have shown that a σ-WSPD
with m = O(σdn) pairs exists and can be constructed in
O(n logn + σdn) time. One description of the construc-
tion [19, 25] is based on quadtrees—each generated subset
Xi or Yi is the subset of all points of P inside some quadtree
cell.

Theorem 4.1. We can solve the approximate EMST
problem in O∗((1/ε)d/3n logn) expected time.

Proof. Let D be a constant-factor approximation to the
diameter (easily computable in linear time). Initially round
points to a uniform grid with side length εD/n; this incurs
an additive error of O(εD) to the EMST weight, and thus a
multiplicative error of 1 + O(ε), since the EMST weight is
lower-bounded by Ω(D).



Now construct a σ-WSPD {(X1, Y1), . . . , (Xm, Ym)} for a
sufficiently large constant σ, with m = O(n) and O(n logn)
running time. Compute a (1 + ε)-factor approximate BCP
(xi, yi) between Xi and Yi, and form a graph G with these
m pairs (xi, yi) as the edges. Then return an MST T of G,
by any textbook MST algorithm with O(m logn) running
time or better.

Callahan and Kosaraju [13, Lemma 3.2] have already an-
alyzed this approach and showed that the resulting tree T
approximates the EMST by a factor of 1 + O(ε). However,
they eventually abandoned this approach for a different one
(which used a σ-WSPD with a nonconstant σ = Θ(

√
1/ε));

the reason was the lack of an efficient algorithm to solve
these BCP subproblems, when their combined input size∑
i(|Xi| + |Yi|) can be as large as quadratic in the worst

case.
But notice that after the initial rounding step, the height

of the quadtree is O(log(n/ε)) = O(logn) (we may assume
that n ≥ 1/ε, for otherwise we can switch to an O(n2)-
time algorithm). It can then be checked that each point
participates in at most O(logn) pairs (Xi, Yi) in the WSPD
construction. Thus,

∑
i(|Xi| + |Yi|) = O(n logn). We can

solve all the BCP subproblems by Lemma 3.1. The total
cost is therefore bounded by O∗((1/ε)d/3n logn).

In the full version of the paper, we describe how to
improve the running time of our BCP and EMST algo-
rithms slightly to O∗(n + (1/ε)d/3n/ log5/3 n) and O∗(n +

(1/ε)d/3n/ log2/3 n) respectively. The general idea is to use
bit tricks to pack grid point sets and their DVDs into a
smaller number of words, and thereby speed up the algo-
rithm in Corollary 2.2 by polylogn factors.

5. OFFLINE NEAREST NEIGHBOR
SEARCH

In this section, we present an algorithm for answering n
offline approximate nearest neighbor queries on a set S of n
points in O∗(n logn+ (1/ε)d/3n) time. We begin with some
preliminaries. For any positive ε and query point q ∈ Rd, we
say that a point p ∈ S is an ε-nearest neighbor (ε-NN) of q if
the distance from p to q is at most (1+ε) times the distance
from q to its nearest neighbor in S. We assume that the set
S has been scaled to lie within a ball of diameter ε/16 at the
center of the unit hypercube U = [0, 1]d. For queries outside
U, any point of S is an ε-NN, so it suffices to build a data
structure for answering queries within U. We will use the
term box to refer to any axis-parallel hypercube. Define a
quadtree box recursively as U or a box obtained by splitting
any quadtree box into 2d equal parts. For any box b and
positive c, we let cb denote the box obtained by scaling b
about its center by a factor of c.

Our algorithm is based on the approximate Voronoi di-
agram (AVD) construction from [7] and uses ideas similar
to that in [5]. The AVD employs a quadtree-like structure
called a balanced box-decomposition (BBD) tree, in which
each node is associated with a region of space called a cell.
The leaf cells of this tree form a subdivision of U, and each
leaf cell corresponds to the set theoretic difference of two
quadtree boxes, an outer box and an inner box. Given a leaf
cell Q in the tree, let bQ denote its outer box. The following
lemma summarizes the key properties of the AVD construc-
tion that are relevant to us. It follows easily from the proof
of Lemmas 6.1 and 8.1 in [7].

Lemma 5.1. Let S be a set of n points in Rd. It is possible
to construct a BBD tree T with O∗(n) nodes, where each
leaf cell Q stores a representative set RQ ⊂ S satisfying the
following properties:

(i) For any point q ∈ Q, one of the points in RQ is an
ε-NN of q.

(ii) At most one point of RQ is contained in the box 4bQ,
and the remaining points of RQ are contained in cbQ \
4bQ, for some constant c > 4.

(iii) The total size of the representative sets RQ over all the
leaf cells of T is O∗(n).

Moreover, it is possible to compute the tree T and the rep-
resentative sets for all the leaf cells in time O∗(n logn),
and the cell that contains a query point can be located in
O∗(logn) time.

For any query point q, one can first locate the leaf cell
that contains q and then scan the representative set RQ to
find an ε-NN of q. In order to achieve faster query times,
Arya et al. [5] applied the standard lifting map and reduced
the ε-NN problem for the leaf cells to approximate polytope
membership queries [5]. We will use similar ideas, but in
order to get fast preprocessing time, we will present a scheme
that avoids the use of the lifting map. This enables us to take
advantage of our new results on discrete Voronoi diagrams
and enjoy significant efficiency gains.

Our main technical contribution in this section is the fol-
lowing lemma.

Lemma 5.2. Let b be a box. Let S be a set of n data
points in cb \ 4b, where c is a constant. We can construct a

data structure in O∗(n+ (1/ε)d/2
√
n+ (1/ε)5d/8) time that

allows us to answer ε-nearest neighbor queries for points in
b in O∗((1/ε)d/4) time. The space used by the data structure

is O∗((1/ε)d/2).

Proof. Let r denote the side length of box b. First, we
round the points of S to an axis-parallel uniform grid of side
length εr; this incurs an additive error of O(εr), and hence
a multiplicative error of 1 + O(ε). In the remainder of the
proof, we will use S to refer to this rounded point set.

We build a uniform grid Ξ with side length
√
εr on the

boundary of the hypercube 2b. For each grid point ξ ∈ Ξ
(which we call a helper), we find its nearest neighbor (de-
noted pξ) in S. This computation reduces to a DVD problem
for E = O(1/ε) and F = O(1/

√
ε) and, by Corollary 2.3,

can be solved in O∗(n+ (1/ε)d/2
√
n) time.

For each helper ξ ∈ Ξ, let Cξ be the cone with apex at
ξ, axis along vector pξξ, and angular radius c′

√
ε, where c′

is a suitable constant. Consider any point q ∈ b. Let p
be a nearest neighbor of q in S. We claim that there is a
helper ξ∗ which satisfies the following properties: (i) pξ∗ is
an O(ε)-NN of q, (ii) ‖qξ∗‖+‖ξ∗pξ∗‖ ≤ (1+O(ε))‖qp‖, and
(iii) q ∈ Cξ∗ .

To prove (i), observe there exists a helper ξ∗ ∈ Ξ at dis-
tance O(

√
εr) from the intersection of the line segment qp

with the boundary of the box 2b. Let y∗ be the closest
point on the line segment qp to ξ∗. Consider the right tri-
angle qy∗ξ∗. Since ‖ξ∗y∗‖ ≤ O(

√
εr) and ‖qξ∗‖ ≥ Ω(r),

we have sin∠q ≤ O(
√
ε) and cos∠q ≥ 1 − O(ε). Thus

‖qξ∗‖ ≤ ‖qy∗‖/(1 − O(ε)). Similarly, by considering the



right triangle py∗ξ∗, we have ‖ξ∗p‖ ≤ ‖y∗p‖/(1 − O(ε)). It
follows that ‖qξ∗‖+ ‖ξ∗p‖ ≤ (‖qy∗‖+ ‖y∗p‖)/(1−O(ε)) =
(1 +O(ε))‖qp‖. Thus, ‖qpξ∗‖ ≤ ‖qξ∗‖+ ‖ξ∗pξ∗‖ ≤ ‖qξ∗‖+
‖ξ∗p‖ ≤ (1 +O(ε))‖qp‖, which proves (i) and (ii).

To prove (iii), note that since p is a nearest neighbor of q,
the ball Bq centered at q and having radius ‖qp‖ contains no
point of S in its interior. Let t denote the point where the
ray emanating from q and passing through ξ∗ intersects ∂Bq.
Consider the cone with apex at ξ∗, axis along vector ξ∗t,
and angular radius equal to ∠pξ∗t. It follows from elemen-
tary geometry that pξ∗ must lie within this cone (otherwise
‖ξ∗pξ∗‖ would exceed ‖ξ∗p‖). Since ∠pξ∗t is the exterior
angle of triangle qξ∗p, we have ∠pξ∗t = θ + φ = O(

√
ε).

It follows that the angle between vectors pξ∗ξ
∗ and ξ∗q is

O(
√
ε), from which property (iii) is immediate (for suitable

constant c′).

Let R = {pξ : ξ ∈ Ξ}. We have |R| ≤ |Ξ| = O(1/ε(d−1)/2).
In light of (i), we can find the O(ε)-NN of any point q ∈ b by
scanning R and returning the closest point to q. However,
this approach takes O∗(1/εd/2) time. In order to speed it
up, we build a uniform grid Π of side length

√
εr inside b.

Our strategy is to store a set of representatives Rπ ⊆ R
with each box π ∈ Π such that |Rπ| = O∗((1/ε)d/4) and,
for any point q in π, one of the points of Rπ is an O(ε)-NN.

Furthermore, we will show that
∑
π |Rπ| = O∗((1/ε)d/2).

This will enable us to reduce the query time to O∗(1/εd/4),
without asymptotically increasing the space needed.

For each box π ∈ Π, we compute a helper set H ′π = {ξ :
Cξ ∩ π 6= ∅} and a representative set R′π = {pξ : ξ ∈ H ′π}.
Observe that for each helper ξ, the number of boxes π that
intersect cone Cξ is O(1/

√
ε) (since the angular radius of

the cone is O(
√
ε) and the side length of the boxes is

√
εr).

Since the number of helpers is O(1/ε(d−1)/2), it follows that∑
π |R

′
π| ≤

∑
π |H

′
π| = O((1/ε)d/2). We can also identify

the boxes that intersect Cξ in time proportional to their
number. Thus, we can compute H ′π and R′π for all π in
O∗((1/ε)d/2) time.

Let π be any box of Π and q be any point in π. Recall the
helper ξ∗ corresponding to point q described in properties
(i)-iii). It follows from property (iii) that ξ∗ ∈ H ′π. Note
that R′π includes pξ∗ which, by property (i), is an O(ε)-NN

of q. We say that a box π ∈ Π is good if |R′π| ≤ (1/ε)d/4,
otherwise we say that it is bad. If a query point lies in a good
box, then we can find its approximate nearest neighbor in
O∗((1/ε)d/4) time by examining the points of R′π one by one
and picking the closest among them. Thus, for each good
box π, we let Rπ = R′π be the final set of representatives.
For the bad boxes, the size of the representative set R′π is
too large, but we will show that it is possible to prune its
size to O∗((1/ε)d/4).

Define the weight wξ of any helper ξ to be ‖ξpξ‖, that
is, the distance between ξ and its nearest neighbor in S.
For any point q ∈ Rd and any helper ξ, define the weighted
distance from q to ξ to be ‖qξ‖ + wξ. Consider any bad
box π. We build an axis-parallel uniform grid Λ of side
length ε3/4r on the boundary of the hypercube 2π. For each
grid point λ ∈ Λ, we find its nearest neighbor (denoted hλ)
in H ′π, under the weighted distance measure. Let Hπ =
{hλ : λ ∈ Λ}, and let Rπ = {pξ : ξ ∈ Hπ}. We have

|Rπ| ≤ |Hπ| ≤ |Λ| = O∗((1/ε)d/4). We claim that the time
to compute Hπ (and hence Rπ) for all bad boxes π ∈ Π

is O∗((1/ε)5d/8). Furthermore, for any point q ∈ π, there

exists a point in Rπ that is an O(ε)-NN of q.
To establish the bound on computation time, observe that

the query points are the grid points of Λ and the data points
(i.e., points of H ′π), lie on the grid Ξ. Therefore, the com-
putation of Hπ reduces to a DVD problem with additive
weights, for E = O(1/

√
ε) and F = O((1/ε)1/4) (it is not

hard to show that all the coordinates and the weights can
be rounded to be positive integers smaller than O∗(1)). By
applying a generalization of Corollary 2.2 (see the full pa-
per for details), this problem can be solved in O∗(|H ′π| +
(1/ε)d/4

√
|H ′π|) = O∗(|H ′π| + (1/ε)d/4|H ′π|/

√
(1/ε)d/4) =

O∗((1/ε)d/8|H ′π|), where we have used the fact that |H ′π| >
(1/ε)d/4, since π is a bad box. Recalling that

∑
π |H

′
π| =

O((1/ε)d/2), it follows that the time to compute Hπ for all

bad boxes π is O∗((1/ε)5d/8), as desired.
It remains to show that for any point q ∈ π, there exists a

point in Rπ that is an O(ε)-NN of q. By our earlier remarks,
there is a point ξ∗ ∈ H ′π that satisfies properties (i)-(iii).
In particular, by property (ii), we have ‖qξ∗‖ + ‖ξ∗pξ∗‖ ≤
(1 +O(ε))‖qp‖, where p is a nearest neighbor of q in S. We
claim that there exists a point ξ ∈ Hπ that is an O(ε)-NN
of q in H ′π, under the weighted distance measure. Assuming
this claim, we can easily show that pξ ∈ Rπ would then be
an O(ε)-NN of q in S. We have ‖qpξ‖ ≤ ‖qξ‖ + ‖ξpξ‖ =
‖qξ‖+ wξ ≤ (1 +O(ε))(‖qξ∗‖+ wξ∗) = (1 +O(ε))(‖qξ∗‖+
‖ξ∗pξ∗‖) ≤ (1 + O(ε))(1 + O(ε))‖qp‖ ≤ (1 + O(ε))‖qp‖, as
desired.

It remains only to establish the above claim. Let h be
a nearest neighbor of q in H ′π, under the weighted distance
measure. By our construction, there exists a helper λ∗ ∈ Λ
at distanceO(ε3/4r) from the intersection of the line segment
qh with the boundary of the box 2π. Let z∗ be the closest
point on the line segment qh to λ∗. Consider the right tri-
angle qz∗λ∗. Since ‖λ∗z∗| ≤ O(ε3/4r) and ‖qλ∗‖ ≥ Ω(

√
εr),

we have sin∠q ≤ O(ε1/4) and cos∠q ≥ 1 − O(
√
ε). Thus

‖qλ∗‖ ≤ ‖qz∗‖/(1 − O(
√
ε)) = (1 + O(

√
ε))‖qz∗‖. Sim-

ilarly, by considering the right triangle hz∗λ∗ and noting
that ‖hλ∗‖ ≥ Ω(r), we obtain ‖λ∗h‖ ≤ (1 +O(ε3/2))‖z∗h‖.
It follows that ‖qλ∗‖ + ‖λ∗h‖ ≤ (1 + O(

√
ε))‖qz∗‖ +

(1 + O(ε3/2))‖z∗h‖ = ‖qh‖ + O(
√
ε)‖qz∗‖ + O(ε3/2)‖z∗h‖.

Since ‖qλ∗‖ ≤ O(
√
εr) and ‖λ∗z∗‖ ≤ O(ε3/4r), we have

‖qz∗‖ ≤ ‖qλ∗‖ + ‖λ∗z∗‖ ≤ O(
√
εr) = O(

√
ε)‖qh‖. Thus

‖qλ∗‖+‖λ∗h‖ ≤ ‖qh‖+O(
√
ε)·O(

√
ε)‖qh‖+O(ε3/2)‖qh‖ =

(1 + O(ε))‖qh‖. Letting ξ = hλ∗ , we have ‖qξ‖ + wξ ≤
‖qλ∗‖+‖λ∗ξ‖+wξ ≤ ‖qλ∗‖+‖λ∗h‖+wh ≤ (1+O(ε))‖qh‖+
wh ≤ (1 +O(ε))(‖qh‖+wh). Thus ξ ∈ Hπ is an O(ε)-NN of
q in H ′π, under the weighted distance measure, as desired.

Note that the preprocessing time is dominated by the
O∗(n+(1/ε)d/2

√
n) time it takes to solve the DVD problem

associated with box b, and the O∗((1/ε)5d/8) time it takes
to solve the DVD problems for all the bad boxes within b.
The bound on the preprocessing time given in the statement
of the lemma follows.

We are now ready to apply the above lemma to obtain our
main result on offline approximate nearest neighbor search-
ing.

Theorem 5.3. Given n points in Rd, we can build a data
structure in O∗(n logn + (1/ε)d/3n) time so that approxi-
mate nearest neighbor queries can be answered in O∗(logn+

(1/ε)d/3) time.



Proof. First, we construct the BBD tree described in
Lemma 5.1. For each leaf cell Q such that |RQ| > (1/ε)d/3,
we build the data structure of Lemma 5.2 to answer ε-NN
queries for query points in bQ with respect to the points of
RQ (excluding the point of RQ contained in 4bQ, if any).
To answer queries, we first locate the leaf cell Q that con-
tains the query point q. If |RQ| ≤ (1/ε)d/3, we scan the
set RQ and return the closest point to q. Otherwise, we use
the data structure of Lemma 5.2 to find the ε-NN of q in
O∗(1/ε)d/4) time. In either case, we can answer queries in

at most O∗(logn+ (1/ε)d/3) time.
The preprocessing time is dominated by the time it takes

to construct the data structures of Lemma 5.2. For a given
cell Q, the time taken is given by O∗(|RQ|+(1/ε)d/2

√
|RQ|+

(1/ε)5d/8) = O∗(|RQ|+(1/ε)d/2|RQ|/
√

(1/ε)d/3+(1/ε)5d/8)

= O∗((1/ε)d/3|RQ|), since we only build this data structure

if |RQ| > (1/ε)d/3. Recalling that the total size of the rep-
resentative sets RQ over all cells Q is O∗(n) and the time
to construct the BBD tree is O∗(n logn), the desired bound
on preprocessing time follows.

Corollary 5.4. We can answer n offline approximate
nearest neighbor queries on a set of n points in Rd in
O∗(n logn+ (1/ε)d/3n) time.

6. STREAMING DIAMETER
Our streaming algorithm for diameter is based on a static

data structure for answering approximate farthest neighbor
queries. We present this data structure in Lemma 6.2. When
we apply this in the streaming context, we will use the stan-
dard logarithmic method of Bentley and Saxe [10] to turn
it into a semi-dynamic data structure (i.e., insertions are
supported but not deletions).

Our data structure employs the following farthest-point
analogue of Lemma 5.2. The proof of Lemma 6.1 is similar
to the proof of Lemma 5.2 and has been omitted due to space
limitations. For any positive ε and query point q ∈ Rd, we
say that a point p ∈ S is an ε-farthest neighbor (ε-FN) of
q if the distance from p to q is at least (1 − ε) times the
distance from q to its farthest neighbor in S.

Lemma 6.1. Let b be a box. Let S be a set of n data
points in cb \ 4b, where c is a constant. We can construct a

data structure in O∗(n+ (1/ε)d/2
√
n+ (1/ε)5d/8) time that

allows us to answer ε-farthest neighbor queries for points in
b in O∗((1/ε)d/4) time. The space used by the data structure

is O∗((1/ε)d/2).

Lemma 6.2. Given n points in Rd, we can build a data
structure in O∗(n + (1/ε)d/2

√
n + (1/ε)5d/8) time so that

approximate farthest neighbor queries can be answered in
O∗((1/ε)d/4) time. The space used by the data structure

is O∗((1/ε)d/2).

Proof. Let ∆ be the diameter of the given set S of
points. Let p be any point of S. In linear time, we can
compute the distance ∆′ of p from its farthest neighbor. It
is easy to see that ∆′ ≥ ∆/2. Let c and c′ be two sufficiently
large constants. For 0 ≤ i ≤ dlog(c/ε)e, let bi be a ball of
radius ri = 2i∆′ centered at p. We choose c sufficiently large
such that for any query point outside the largest ball, any
point of S is an ε-FN. Thus, it suffices to construct a data
structure to handle the case when the query point lies inside
the largest ball.

For 1 ≤ i ≤ dlog(c/ε)e, generate all the boxes in a uniform
grid of side length ri/c

′, that intersect the annulus bi \ bi−1.
Additionally, generate all boxes in a uniform grid of side
length r0/c

′ that intersect the ball b0. The number of boxes
generated for ball b0 and for each annulus is O(1) and so
the total number of boxes is O(log(1/ε)) = O∗(1). It is easy
to see that for sufficiently large constant c′, each grid box b
satisfies the property that its farthest neighbor is contained
in the region c′′b\4b, for a suitable constant c′′. (We omit the
straightforward details.) It follows that by building the data
structure of Lemma 6.1 for each grid box, we can answer ε-
FN queries. Given a query point q, we first identify a grid
box that contains it and then use the corresponding data
structure to find its ε-FN. The bound on query time, space,
and preprocessing time follow from Lemma 6.1.

Chan [17] presented an algorithm for approximating the
diameter ∆ of a static point set S that will be useful to
us. The algorithm is based on constructing a set V of
O((1/ε)(d−1)/2) unit vectors in Rd such that the angle be-
tween any vector in Rd and one of these vectors is O(

√
ε).

We say that a pair of points pv, p
′
v ∈ S is ε-extreme for v if

pv ·v ≥ maxp∈S p·v−ε∆ and p′v ·v ≤ minp∈S p·v+ε∆. Chan
showed that the problem of computing ε-extreme pairs for
all vectors v ∈ V can be reduced to a constant number of
DUE problems for E = O(1/ε) and F = O(1/

√
ε). Apply-

ing Corollary 2.3 implies part (a) of the following lemma.
Part (b) is proved in [17] and the proof of part (c) is similar.

Lemma 6.3. Let S be a set of n points and ∆ be the di-
ameter of S. Let V be as described above.

(a) We can find an ε-extreme pair of points for each vector

in V in total time O∗(n+ (1/ε)d/2
√
n).

(b) Let px, p
′
x be a farthest pair of ε-extreme points, that

is, ‖px − p′x‖ = maxv∈V ‖pv − p′v‖. Then ‖px − p′x‖
approximates the diameter ∆ to within a factor of 1 +
O(ε).

(c) Let S′ ⊆ S denote the set of all the ε-extreme points
found in part (a). For any point q ∈ Rd, the farthest
neighbor of q in S′ is an O(ε)-farthest neighbor of q
in S.

We are now ready to present our main result on streaming
diameter.

Theorem 6.4. There is a streaming algorithm that can
maintain an approximate diameter in O∗((1/ε)d/3) time per

point using O∗((1/ε)d/2) space.

Proof. (Sketch) The algorithm runs in phases, where

each phase processes (1/ε)d/2 points. Without loss of gen-

erality, we assume that N = (1/ε)d/2 is a power of two. At
the beginning of each phase, we ensure that the algorithm
has the following information. Let Sc be the set of points
seen until now (i.e., cumulatively, in all previous phases).
For each vector in V , the algorithm maintains an ε-extreme
pair of points with respect to Sc. Let S′c ⊆ Sc denote the
set of all these ε-extreme points. Let q be any point in Rd.
By Lemma 6.3(c), there exists a point of S′c that is an O(ε)-
FN of q with respect to Sc. The algorithm also constructs
the data structure of Lemma 6.2 to answer O(ε)-FN queries

with respect to S′c in O∗((1/ε)d/4) time. Putting together



the two sources of error, it follows that the point returned is
an O(ε)-FN of q with respect to Sc. By adjusting the con-
stants, we can ensure that the point returned is an ε-FN of
q. Since |S′c| = O((1/ε)(d−1)/2), the time to construct this

data structure is O∗((1/ε)3d/4).

Recall that we process a total of N = (1/ε)d/2 points
during a phase. We handle these points using the loga-
rithmic rebuilding method of Bentley and Saxe [10]. Let
h = logN = O∗(1). Let S be the set of points seen so far by
the algorithm in the current phase. Let the binary represen-
tation of |S| be bhbh−1 . . . b0, where each bi ∈ {0, 1}. We say
that a level i is active if bi = 1, otherwise it is said to be in-
active. We maintain a partition of S into a collection of sets
Si corresponding to the active levels i, where |Si| = 2i. We
maintain a data structure for each of the sets Si as follows.
We say that a level i is high if 2i > (1/ε)d/3, otherwise we
say that it is low. For the high active levels, we construct the
data structure of Lemma 6.2 for Si and, for the low active
levels, we simply store Si as a list of points. (Alternatively,
we can compress all the low levels into one, but for the sake
of convenience we present this scheme which parallels the
standard use of the logarithmic method.)

We now describe the processing of a point p. Let S denote
the set of points seen in the current phase, before p. Suppose
that the approximate diameter being maintained becomes
invalid on inserting p. It is clear then that the diameter of
Sc∪S∪{p} is realized by p and its farthest neighbor in Sc∪
S. Thus, to maintain the approximate diameter, it suffices
to compute the distance of p from its ε-farthest neighbor
in Sc ∪ S, and then update the approximate diameter if
necessary. We can find the ε-FN of p in Sc by searching the
data structure for S′c as described above. To find the ε-FN of
p in S, we search the O∗(1) data structures which together
hold all these points. For data structures corresponding to
high active levels, the time for finding the ε-FN in each such
structure is O∗((1/ε)d/4). Recall that the data structures at
the low active levels simply store the points in lists. We can
examine the points on all these lists in time O∗((1/ε)d/3).
Note that the time for finding the ε-FN is dominated by the
time to search the lists at the low active levels and is given
by O∗((1/ε)d/3).

Next, we need to update the active levels and the associ-
ated data structures. We handle this in the standard way.
We find the lowest level i that is inactive. We merge p and
the points in the sets Sj , 0 ≤ j ≤ i − 1, to obtain a set Si
of size 2i. The level i now becomes active, while all levels
0 ≤ j ≤ i − 1 become inactive. We build a data structure
for the set Si at level i as follows. If level i is low, then the
data structure for Si is obtained by merging the i lists at
the lower levels. The time for this operation is proportional
to the number of lists merged. Otherwise, if level i is high,
then we build the data structure of Lemma 6.2 for Si and
destroy the data structures at the lower levels which have
now become inactive.

The total processing time for a phase (not including the
time for the tasks done at the end of a phase) can be com-
puted by summing the time for building the data struc-
tures at each level. First, we consider the time for all the
low levels together. Since the data structures at the low
levels are obtained by merging lists, and merging any two
lists takes constant time, the total time is proportional to
the number of points processed, namely, O((1/ε)d/2). Next
we bound the time for the high levels. For a given level

i, note that over the course of a phase we build at most
N/2i = (1/ε)d/2/2i data structures for sets of size 2i. By
Lemma 6.2, the time to construct one such data structure
is O∗(2i + (1/ε)d/22i/2 + (1/ε)5d/8). Since (1/ε)d/3 ≤ 2i ≤
(1/ε)d/2, the second term dominates the first and the third
terms. Thus, the total time for constructing all the data
structures at level i is O∗(((1/ε)d/2/2i) · ((1/ε)d/22i/2)) =

O∗((1/ε)d/2i/2). Note that the construction times for the
high levels form a geometric series dominated by the low-
est level i such that 2i > (1/ε)d/3. Thus the total time
for constructing all the data structures at the high levels is
O∗((1/ε)d/(1/ε)d/6) = O∗((1/ε)5d/6).

It remains to consider the time for the tasks that need to
be performed at the end of a phase. Recall that at the end
of a phase, for all v ∈ V , we need to update the ε-extreme
pairs of points so they are valid with respect to Sc ∪ S. We
already know the ε-extreme pairs with respect to Sc. At the
end of a phase, we compute the ε-extreme pairs with respect
to S. By Lemma 6.3(a), this can be done in O∗((1/ε)3d/4)
time. Note that the additive projection error involved in
choosing ε-extreme points is at most ε times the diameter of
the point set. Also, the diameter of a point set is obviously
greater than or equal to the diameter of any subset. Using
these facts, it is easy to see that for any vector v ∈ V , in
O(1) time, we can combine the ε-extreme pairs with respect
to Sc and S to obtain the ε-extreme pair with respect to
Sc ∪ S.

Putting it all together, the processing time for a phase
is dominated by the time to construct the data structures
associated with the high levels and the time to find the
ε-FN for each inserted point. Recall that the total time
to construct the data structures associated with the high
levels is O∗((1/ε)5d/6). This yields an amortized time of

O∗((1/ε)d/3) per point. Recall also that the worst-case time

to find the ε-FN for each inserted point is O∗((1/ε)d/3).
Using standard techniques, we can modify the logarithmic
rebuilding method to achieve a worst-case time bound that
matches the amortized time bound [29, 30].

Finally, to bound the space, note that there is one data
structure at each active level i. For the low levels, the total
space is proportional to the sum of the sizes of the lists,
which is O∗((1/ε)d/3). For each of the O∗(1) high levels,

by Lemma 6.2, the data structure needs O∗((1/ε)d/2) space.
The data structure for S′c also uses the same space. Thus,
the total space used is O∗((1/ε)d/2).

We remark that our streaming algorithm for diameter can
be trivially adapted to yield a data structure that supports
ε-farthest neighbor queries and point insertions, both in time
O∗((1/ε)d/3).

7. STREAMING ε-KERNELS
Theorem 7.1. There is a streaming algorithm that

uses O((1/ε)(d−1)/2) space and requires O∗((1/ε)d/4) time
per point, and that maintains an ε-kernel of size
O((1/ε)(d−1)/2).

Proof. (Sketch) Zarrabi-Zadeh [32] has given a stream-
ing algorithm for ε-kernels that has all the above properties,
except the update time per point is O∗((1/ε)d/2). We will
show how we can use our techniques to reduce the update
time to roughly a square root of this quantity. We essen-
tially borrow the ideas of [32] and combine them with our



stronger results on discrete Voronoi diagrams. For the sake
of completeness, we briefly describe the approach.

Zarrabi-Zadeh’s streaming algorithm for an arbitrary
stream uses a subroutine for handling fat streams of points.
A set of points P is said to be fat if it is contained inside the
hypercubeB = [−1, 1]d and if its convex hull contains cB+v,
for some positive constant c ≤ 1 and some point v ∈ Rd. As-
sume that an initial stream P is fat. Suppose that we insert
more points into this stream while maintaining its fatness.
Zarrabi-Zadeh’s analysis shows that the update time for in-
serting points that can be achieved in this special situation
would then carry over to an arbitrary stream.

The standard approach for computing the ε-kernel of a
fat stream S is based on Dudley’s method for approximat-
ing convex polytopes [23]. First, we round the points of S
to an axis-parallel grid of side length c1ε. Then we build a
uniform grid Ξ with side length c2

√
ε on the boundary of

the box [−2, 2]d. For each grid point ξ ∈ Ξ, we find its near-
est neighbor in the set obtained by rounding S. Chan [18]
has shown that the result is an ε-kernel of S (for suitable
constants c1 and c2).

Our algorithm for a fat stream works in phases and is
similar to that in [32]. At the beginning of a phase, the al-
gorithm knows the nearest neighbor of each point in Ξ with
respect to the set of all the rounded points in the stream
seen until then. Let Sc denote the set of stream points seen
cumulatively in all previous phases, and let S′c denote the
set of nearest neighbors identified. By a simple packing ar-
gument, |S′c| = O((1/ε)(d−1)/2). In each phase, we process

(1/ε)(d−1)/2 points. These points are maintained in a sim-
ple list until the end of the phase. Clearly, this list of points
together with S′c yields an ε-kernel at any time. Let S de-
note the set of points seen during the current phase. At
the end of a phase, we round the points of S to the nearest
grid point (we use the same grid for all the phases), and
find the nearest neighbors of each grid point ξ ∈ Ξ among
the rounded points of S′c ∪ S. This reduces to a DVD prob-
lem for E = O(1/ε) and F = O(1/

√
ε). By Corollary 2.3,

the time to solve this DVD problem is O∗((1/ε)3d/4). Thus,

the amortized time for inserting each point is O∗((1/ε)d/4),
which can be converted to a worst-case time bound by stan-
dard techniques [29, 30].
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