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Abstract

Given a set S of n points in IRd, a (t, ǫ)-approximate

Voronoi diagram (AVD) is a partition of space into constant

complexity cells, where each cell c is associated with t

representative points of S, such that for any point in c, one

of the associated representatives approximates the nearest

neighbor to within a factor of (1+ǫ). The goal is to minimize

the number and complexity of the cells in the AVD. We show

that it is possible to construct an AVD consisting of O(n/ǫd)

cells for t = 1, and O(n) cells for t = O(1/ǫ(d−1)/2). In

general, for a real parameter 2 ≤ γ ≤ 1/ǫ, we show that

it is possible to construct a (t, ǫ)-AVD consisting of O(nγd)

cells for t = O(1/(ǫγ)(d−1)/2). The cells in these AVDs are

cubes or differences of two cubes. All these structures can

be used to efficiently answer approximate nearest neighbor

queries. Our algorithms are based on the well-separated pair

decomposition and are very simple.

1 Introduction

Given a set S of n points in IRd, the Voronoi diagram is a
partition of space into cells, such that each cell consists
of all points closer to a particular point of S than to
any other. Voronoi diagrams are fundamental geometric
objects and have a rich literature. They have numerous
applications in areas such as pattern recognition and
classification, machine learning, robotics, and graphics.
Many of these applications are in high dimensions but,
unfortunately, the complexity of Voronoi diagrams can
be as high as n⌈d/2⌉ in d dimensions. This has led
researchers to investigate the problem of constructing
subdivisions that approximate the Voronoi diagram.

Vleugels and Overmars [12] presented an algorithm
for approximating the Voronoi diagram of a disjoint set
of convex sites in IRd, and applied it to retraction motion
planning. Their focus is on practical applicability,
rather than on obtaining good asymptotic bounds. Har-
Peled [7] considered this problem from the perspective
of worst-case size, when the input is a set of points.
Before stating his result, we present some definitions.
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For a real parameter ǫ > 0, we say that a point
p ∈ S is an ǫ-nearest neighbor (ǫ-NN) of a point q ∈ IRd,
if the distance between q and p is at most (1 + ǫ)
times the distance between q and its nearest neighbor
in S. We assume that distances are measured in the
Euclidean metric. An approximate Voronoi diagram
(AVD) of S is defined to be a partition of space into
cells, where each cell c is associated with a representative
rc ∈ S, such that rc is an ǫ-NN for all the points
in c [7]. We generalize this idea in a natural way to
allow for t ≥ 1 representatives to be stored with each
cell, and require that for any point in the cell, one of
these t representatives is an ǫ-NN. We refer to such a
decomposition as a (t, ǫ)-approximate Voronoi diagram.
The goal is to minimize the size (i.e., the number of cells)
of the AVD. Throughout, we will require that the cells
in the AVD have constant combinatorial complexity.

Har-Peled [7] showed that it is possible to construct
a (1, ǫ)-AVD of O( n

ǫd (log n) log n
ǫ ) size. A cell in this

subdivision is the difference of two cubes (the inner cube
is optional). Moreover, after preprocessing, the struc-
ture can be used to answer ǫ-NN queries in O(log(n/ǫ))
time, where the constant factor is only quadratic in di-
mension. This is a significantly better query time than
that achieved by any previous algorithm. Recently, Sab-
harwal et al. [11] have given an alternative construction
that reduces the size by a logarithmic factor.

In this paper we present the following results. First,
we show that it is possible to construct a (1, ǫ)-AVD
of O(n/ǫd) size, which significantly improves upon the
results mentioned above. Our construction is based
on the well-separated pair decomposition [3] and is
much simpler. As in Har-Peled’s construction, a cell
in this subdivision is the difference of two axis-aligned
cubes, and ǫ-NN queries can be answered using this
structure in O(log(n/ǫ)) time. We also present a
lower bound of Ω(n/ǫd−1) on the size of a (1, ǫ)-AVD,
assuming that the cells are differences of two axis-
aligned hyperrectangles. Thus, under this assumption,
the size of our construction is nearly optimal.

Second, we generalize our construction to tackle
the case when more than one representative is allowed.
Given a real parameter 2 ≤ γ ≤ 1/ǫ, we show that it is
possible to construct a (t, ǫ)-AVD of O(nγd) size, where
t = O(1/(ǫγ)(d−1)/2). As a byproduct of our approach,



we obtain a family of data structures that can answer
ǫ-NN queries in O(log(nγ) + 1/(ǫγ)(d−1)/2) time using
space O(n(γ/ǫ)(d−1)/2γ). Chan [4] showed that ǫ-NN
queries could be answered in O((1/ǫ)(d−1)/2 log n) time
using a data structure of space O((1/ǫ)(d−1)/2n logn).
By setting γ to two, we obtain a data structure that
answers queries in O(log n+1/ǫ(d−1)/2) time using space
O((1/ǫ)(d−1)/2n). Thereby, we improve upon Chan’s
result, both in terms of space and query time.

We mention some other tradeoffs between space
and query time that are known for the approximate
nearest neighbor problem. Arya et al. [2] and, later,
Duncan et al. [6] provided data structures that achieve
O((1/ǫ)d log n) query time and use O(n) space (inde-
pendent of ǫ). Recently, Kushilevitz et al. [9] and Indyk
and Motwani [8] have obtained algorithms that elim-
inate exponential dependencies on dimension in both
query time and space. The space required by their al-
gorithms is polynomial in d and n, and the query time
is polynomial in log n, d, and 1/ǫ. However, the space
grows exponentially with 1/ǫ.

2 Preliminaries

Throughout we assume that the dimension d is a fixed
constant, and the constants hidden in the asymptotic
bounds may depend on d (but not on ǫ or γ).

Let x and y denote any two points in IRd. We use
|xy| to denote the Euclidean distance between x and y,
xy to denote the segment joining x and y, and −→xy to
denote the vector from x to y.

We denote by b(x, r) a ball of radius r centered at
x, i.e, b(x, r) = {y : |xy| ≤ r}. For a ball b and any
positive real γ, we use γb to denote the ball with the
same center as b and whose radius is γ times the radius
of b, and b to denote the set of points that are not in b.

Let X and X ′ be two sets of points. We say that
X ′ is δ-dense for X if, for any point x ∈ X , there is a
point x′ ∈ X ′ such that |xx′| ≤ δ.

We briefly review the notions of well-separated pair
decomposition and balanced box-decomposition trees,
as they play an important role in our constructions.

The well-separated pair decomposition. Let
S be a set of n points in IRd. We say that two
sets of points X and Y are well-separated if they can
be enclosed within two disjoint d-dimensional balls of
radius r, such that the distance between the centers
of these balls is at least αr, where α ≥ 2 is a real
parameter called the separation factor. A well-separated
pair decomposition (WSPD) of S is a set PS,α =
{(X1, Y1), · · · , (Xm, Ym)} of pairs of subsets of S such
that (i) for 1 ≤ i ≤ m, Xi and Yi are well-separated
and (ii) for any distinct points x, y ∈ S, there exists
a unique pair (Xi, Yi) such that either x ∈ Xi and

y ∈ Yi or x ∈ Yi and y ∈ Xi. (We say that the pair
(Xi, Yi) separates x and y.) Callahan and Kosaraju [3]
have shown that we can construct a WSPD containing
O(αdn) pairs in O(n log n + αdn) time. For each pair,
their construction also provides the d-balls enclosing
Xi and Yi satisfying the separation criteria mentioned
above.

The BBD tree. Let U = [0, 1]d denote a unit
hypercube in IRd. We define a quadtree box recursively
as follows: (i) U is a quadtree box, and (ii) any
hypercube obtained by splitting a quadtree box into 2d

equal parts is a quadtree box. The size of a quadtree
box is its side length. A nice property of quadtree boxes
is that any two quadtree boxes are either disjoint or one
is contained inside the other.

The balanced box-decomposition (BBD) tree is a bal-
anced 2d-ary tree that compactly represents a hierarchi-
cal decomposition of space [2]. Each node of the tree is
associated with a region of space called a cell, which is
the difference of two quadtree boxes, an outer box and
an (optional) inner box. The root of the tree is asso-
ciated with U . The cell associated with any node is
partitioned into disjoint cells, which are associated with
the children of the node. (For details see [2].) We define
the size of a cell to be same as the size of its outer box.

We will use the following facts in this paper. Given
any collection C of quadtree boxes, we can store them in
a BBD tree having O(|C|) nodes and O(log |C|) depth.
The time to construct this tree is O(|C| log |C|). The
subdivision induced by its leaves is a refinement of the
subdivision induced by the quadtree boxes in C and, for
any point q, we can determine the leaf containing q in
time proportional to the depth of the tree.

3 Approximate Voronoi Diagrams: Single

Representative

Let S be a set of n points, and let 0 < ǫ ≤ 1/2 be a real
parameter. In this section, we show how to construct a
(1, ǫ)-approximate Voronoi diagram for S.

Let U ′ be a hypercube that encloses S, such that
the distance of any point in S from the boundary of U ′

is at least D/ǫ, where D is the diameter of S. Note
that for a query point outside U ′, any point in S works
as an ǫ-NN, so it suffices to show how to construct
the approximate Voronoi diagram inside U ′. It will be
convenient to assume that U ′ = U = [0, 1]d, which
can be easily ensured by scaling and translating the
coordinate system.

We construct a WSPD PS,α for S, using separation
factor α = 8. Note that the number of pairs in PS,8

is O(n). For each pair P ∈ PS,8, we compute a set
of quadtree boxes CP as follows. Let P = (X, Y ) and
let x and y denote the centers of the balls enclosing X



and Y , respectively, that satisfy the separation criteria.
Let ℓ = |xy|, and let BP denote the set of balls of
radius 2iℓ for −2 ≤ i ≤ ⌈log(1/ǫ) + 1⌉, centered at
x and y. For a ball b ∈ BP , let Cb be the set of
quadtree boxes overlapping b that have the largest size
not exceeding rbǫ/(16d), where rb denotes the radius
of b. Note that |Cb| = O(1/ǫd). Let CP = ∪b∈BP

Cb

and C = ∪P∈PS,8
CP . Clearly |CP | = O( 1

ǫd log 1
ǫ ) and

|C| = O( n
ǫd log 1

ǫ ). Finally we store all the quadtree
boxes in C in a BBD tree T . Note that the depth of
T is O(log(n/ǫ)). With each leaf cell of T , we store a
representative which is an (ǫ/4)-NN of any point inside
it.

We claim that the subdivision associated with the
leaves of T along with the stored representatives is a
(1, ǫ)-approximate Voronoi diagram for S. The proof of
this claim employs the following lemma.

Lemma 3.1. Let S be a set of n points in IRd and let
0 < ǫ ≤ 1/2 be a real parameter. Let x1 be a point inside
a d-cube c of size (ǫ/(4d)) · |x1y1|, where y1 denotes the
nearest neighbor of x1. If y2 is an (ǫ/4)-NN of some
point x2 inside c, then y2 is an ǫ-NN of x1.

Proof Note that the diameter δ of cube c is no more
that (ǫ/4) · |x1y1|. By the triangle inequality, we get

|x1y2| ≤ |x2y2| + δ.(3.1)

Since y2 is an (ǫ/4)-NN of x2, it follows that

|x2y2| ≤ (1 + ǫ/4) · |x2y1|.(3.2)

Again, by the triangle inequality, we get

|x2y1| ≤ |x1y1| + δ.(3.3)

Using Eqs. (3.1), (3.2), and (3.3), and the bound on
δ, we get |x1y2| ≤ (1 + 3ǫ/4 + ǫ2/16) · |x1y1|. Since
ǫ ≤ 1/2, it follows that |x1y2| ≤ (1 + ǫ) · |x1y1|. ⊓⊔

Lemma 3.2. The subdivision formed by the leaves of T ,
along with the representatives stored with the leaves, is
a (1, ǫ)-approximate Voronoi diagram for S.

Proof In view of the transformation of the coordinate
system mentioned above, all the points of S can be
assumed to lie inside U = [0, 1]d. Let q ∈ U be an
arbitrary point. Let c denote the leaf cell that contains
q and let x denote the representative stored with c. Let
y ∈ S denote the nearest neighbor of q. We will show
that if x 6= y, then x is an ǫ-NN of q.

Let P = (X, Y ) be the pair in the WSPD PS,8 that
separates x and y. Without loss of generality, assume

that x ∈ X and y ∈ Y . Let x′ and y′ denote the centers
of the balls enclosing X and Y , respectively, that satisfy
the separation criteria. Recall that the radius of these
balls is at most ℓ/8, where ℓ = |x′y′|. We distinguish
three cases: (1) |qy′| ≥ 2ℓ/ǫ, (2) ℓ/4 ≤ |qy′| < 2ℓ/ǫ, and
(3) |qy′| < ℓ/4.
Case 1: |qy′| ≥ 2ℓ/ǫ.

By the triangle inequality, we get |qx| ≤ |qy′| +
|y′x′| + |x′x| ≤ |qy′| + 9ℓ/8, and |qy| ≥ |qy′| − |y′y| ≥
|qy′|−ℓ/8. Using the facts that 0 < ǫ ≤ 1/2, and |qy′| ≥
2ℓ/ǫ, we can now easily show that |qx| ≤ (1 + ǫ) · |qy|.
Case 2: ℓ/4 ≤ |qy′| < 2ℓ/ǫ.

Note that there is a ball in BP of radius at most
2|qy′| that overlaps q, which implies that there is a
quadtree box ĉ ∈ CP of size sĉ ≤ (ǫ/(8d)) · |qy′| that
contains q. Since |qy′| ≥ ℓ/4 and |qy′| ≤ |qy| + ℓ/8,
it follows that |qy′| ≤ 2|qy|. Thus sĉ ≤ (ǫ/(4d)) · |qy|.
Further, by construction, x is an (ǫ/4)-NN of some point
z ∈ ĉ. Therefore, by Lemma 3.1, it follows that x is an
ǫ-NN of q.
Case 3: |qy′| < ℓ/4.

Recall that there is a ball in BP centered at y′ hav-
ing radius ℓ/4 that overlaps q. This implies that there
is a quadtree box ĉ ∈ CP of size sĉ ≤ (ǫ/(16d)) · (ℓ/4)
that contains q. Also, by construction, x is an (ǫ/4)-NN
of some point z in ĉ. Applying the triangle inequality,
|yz| ≤ |yy′| + |y′q| + |qz| ≤ ℓ/8 + ℓ/4 + ℓǫ/64, and
|xz| ≥ |y′x′|− |x′x|− |y′q|− |qz| ≥ ℓ− ℓ/8− ℓ/4− ℓǫ/64.
Since ǫ ≤ 1/2, it follows that |yz| ≤ 49ℓ/128 and
|xz| ≥ 79ℓ/128. Thus |xz|/|yz| ≥ 79/49. This contra-
dicts the fact that x is an (ǫ/4)-NN of z, given that
ǫ is at most 1/2. Hence, Case 3 cannot occur. This
completes the proof. ⊓⊔

We summarize the main result of this section.

Theorem 3.1. Let S be a set of n points in IRd, and
let 0 < ǫ ≤ 1/2 be a real parameter. Then we can
construct a (1, ǫ)-approximate Voronoi diagram for S
that consists of O( n

ǫd log 1
ǫ ) regions, where each region

is the difference of two cubes. Moreover, for any query
point, we can return its ǫ-NN in O(log(n/ǫ)) time.

In Section 4.1, we will give a method which can be
used to reduce the size of the (1, ǫ)-AVD in this theorem
by a factor of log(1/ǫ).

4 Approximate Voronoi Diagrams: Multiple

Representatives

Let S be a set of n points in IRd, and let 0 <
ǫ ≤ 1/2 and 2 ≤ γ ≤ 1/ǫ be two real parameters.
In this section we show how to construct a (t, ǫ)-
approximate Voronoi diagram for t = O(1/(ǫγ)(d−1)/2).
We will present two methods. The first method is



easier to analyze and yields an AVD of size O(nγd log γ).
The second method reduces the size to O(nγd) by
exploiting some additional observations. Before giving
the constructions, we present four technical lemmas.

Lemma 4.1. (Chan and Snoeyink [5]) Let △xyz be a
triangle with 6 xzy = θ, 6 yxz = φ, and 6 xyz ≥ π/2.
Then

|xy| + |yz| ≤ (1 + sin θ sin φ)|xz|.

Lemma 4.2. Let △xyz be a triangle with 6 yxz = θ and
max(|xy|, |xz|) ≥ |yz|. Then θ ≤ π/2.

Proof Follows from the fact that x must lie outside
the circle with |yz| as diameter. ⊓⊔

Lemma 4.3. Let △xyz be a triangle with 6 yxz = θ.
Then sinθ ≤ |yz|/ max(|xy|, |xz|).

Proof It follows from the law of sines that
sin θ/|yz| ≤ 1/|xy| and sin θ/|yz| ≤ 1/|xz|. Thus
sin θ ≤ |yz|/ max(|xy|, |xz|). ⊓⊔

Given a set X of points and a point q, let NN q(X)
be the distance to the nearest neighbor of q in X . (If
there are no points in X , then NN q(X) is defined to be
infinity.)

Lemma 4.4. Let S be a set of n points in IRd. Let
0 < ǫ ≤ 1/2 and γ ≥ 2 be two real parameters. Let
b1 and b2 denote two concentric balls of radius r and
γr, respectively. There exists a set R ⊆ S consisting of
(

1 + O
(

1√
ǫγ

))d−1

points such that

(i) for any point q ∈ b1, NN q(R) ≤ (1+ǫ)·NN q(S∩b2),
and

(ii) for any point q ∈ b2, NN q(R) ≤ (1+ǫ)·NN q(S∩b1).

Proof We only prove (i), since the proof of (ii) is
similar. Let b3 be the ball (3/2)b1. First, we consider
the case γ > 16/ǫ. Let x be any point in b1 and let nx

be any point of S that is its (ǫ/2)-NN. Along the lines
of Lemma 3.1, we can easily show that, for any point
q ∈ b1, |qnx| ≤ (1 + ǫ) ·NN q(S ∩ b2). Thus (i) holds for
R = {nx}.

In the remainder we assume that γ ≤ 16/ǫ. Let
R′ be a set of points on the boundary of b3 that is
δ-dense for the boundary, where δ = r

√
ǫγ/16. By

standard results [13], we can find such a set R′ of size
O(1/(ǫγ)(d−1)/2). For each point x ∈ R′, we let nx

denote any point of S that is its (ǫ/2)-NN. We define
R = {nx : x ∈ R′}. We now show that R satisfies the
property given in part (i) of the lemma.

Let q be a point in b1. Let p denote the nearest
neighbor of q among the points of S ∩ b2. Let y denote
the point of intersection of qp with the boundary of b3.
Let x be the point in R′ that is closest to y. We will
show that |qnx| ≤ (1 + ǫ)|qp|, which will imply (i).

By the triangle inequality, we have |qnx| ≤ |qx| +
|xnx|. Since nx is an (ǫ/2)-NN of x, we have |xnx| ≤
(1 + ǫ/2)|px|. Thus

|qnx| ≤ (1 + ǫ/2)(|qx| + |px|).(4.4)

In the triangle △qpx, let θ denote 6 pqx and φ

denote 6 qpx. We claim that 6 qxp ≥ π/2, sin θ ≤
√

ǫγ

8 ,

and sinφ ≤ 1
4

√

ǫ
γ . Assuming this claim for now and

applying Lemma 4.1, we get |qx|+ |px| ≤ (1+ ǫ/32)|qp|.
Substituting this in Eq. (4.4), and noting that ǫ ≤ 1/2,
we get

|qnx| ≤ (1 + ǫ/2)(1 + ǫ/32)|qp| ≤ (1 + ǫ)|qp|,

which is the desired result.
To prove the claim, consider △yqx. Since

R′ is δ–dense for the boundary of b3, we have
|xy| ≤ δ = r

√
ǫγ/16. Also, max(|qx|, |qy|) ≥ r/2.

Thus |xy|/ max(|qx|, |qy|) ≤ √
ǫγ/8. By Lemma 4.3,

it follows that sin θ ≤ √
ǫγ/8. Using Lemma 4.2

and the fact that that γ ≤ 16/ǫ, it is easy to see
that θ ≤ π/6. We next consider △ypx. Note that
max(|px|, |py|) ≥ (γ − 3/2)r ≥ γr/4, since γ ≥ 2.

Thus |xy|/ max(|px|, |py|) ≤ 1
4

√

ǫ
γ . By Lemma 4.3,

sinφ ≤ 1
4

√

ǫ
γ . Applying Lemma 4.2 and noting that

ǫ ≤ 1/2 and γ ≥ 2, it follows that φ ≤ π/6. Since
θ ≤ π/6 and φ ≤ π/6, we have 6 qxp ≥ π/2, which
completes the proof. ⊓⊔

We now describe the first method for constructing
the approximate Voronoi diagram. This can be viewed
as a generalization of the approach given in Section 3.
Indeed, the construction of the subdivision itself is
very similar, but the analysis of its properties, and the
method used to assign representatives, are different.

Let γ ≥ 2 and β ≥ 2 be two real parameters. As
in Section 3, we first transform the coordinate system
to ensure that the points of S lie inside U = [0, 1]d,
and for any query point outside U , any point of S is
an ǫ-NN. We then compute a WSPD PS,α for S using
separation factor α = 4. For each pair P ∈ PS,4,
we compute a set of quadtree boxes as follows. Let
P = (X, Y ), and let x and y denote the centers of the
balls enclosing X and Y , respectively, that satisfy the
separation criteria. Let ℓ = |xy|, and let BP denote
the set of balls of radius 2iℓ for 3 ≤ i ≤ ⌈log β + 2⌉,
centered at x and y. For a ball b ∈ BP , let Cb be the



set of quadtree boxes overlapping b that have the largest
size not exceeding ∆b = rb/(32γd), where rb denotes the
radius of b. Note that Cb = O(γd). Let CP = ∪b∈BP

Cb

and C = ∪P∈PS,4
CP . Clearly |CP | = O(γd log β) and

|C| = O(nγd log β). Finally we store all the boxes in C
in a BBD tree T . We will show that the subdivision
induced by the leaves of T (for β to be specified later),
along with suitably chosen representatives, is the desired
approximate Voronoi diagram. Before describing how
to choose the representatives, we need to identify a key
property that is satisfied by this subdivision.

Lemma 4.5. Let S be a set of n points in IRd, and let
γ ≥ 2, β ≥ 2 be two real parameters. Then it is possible
to construct a subdivision consisting of O(nγd log β)
cells, where each cell c is the difference of two cubes
and satisfies the following property. Let c = cO − cI ,
where cO and cI denote the outer and inner cube of
c, respectively; let s denote the size of c; and let bc be
the ball of radius sd/2 whose center coincides with the
center of cO (note that c ⊆ bc). Then either |S∩γbc| ≤ 1
or there exists a ball b′c such that S ∩ γbc ⊆ b′c and the
ball βb′c does not overlap c.

Proof We claim that the subdivision induced by the
leaves of the BBD tree T satisfies the desired condition.
The O(nγd log β) bound on the number of cells in the
subdivision follows from the above discussion.

Let c = cO − cI be any leaf cell. If |S ∩ γbc| ≤ 1,
there is nothing to prove. So suppose that |S∩γbc| > 1.
Let x and y denote the farthest pair of points in S∩γbc.
Let b′c be the ball of radius |xy| centered at x. Clearly,
all the points in S ∩ γbc are contained within b′c.

It remains to show that the ball βb′c does not overlap
c. To this end, consider the pair P = (X, Y ) in the
WSPD PS,4 that separates x and y. Without loss of
generality assume that x ∈ X and y ∈ Y . Let x′ and
y′ denote the centers of the balls enclosing X and Y ,
respectively, that satisfy the separation criteria. Let
ℓ = |x′y′|. Using the definition of well-separatedness
and the triangle inequality, we have |xx′| ≤ ℓ/4, |yy′| ≤
ℓ/4, and ℓ/2 ≤ |xy| ≤ 3ℓ/2.

We distinguish three cases based on the closest
distance L between cell c and x′: (1) L > 4βℓ, (2)
L < 8ℓ, and (3) 8ℓ ≤ L ≤ 4βℓ.
Case 1: L > 4βℓ.

For any point z ∈ c, we have |zx′| > 4βℓ. By
the triangle inequality, we get |zx| ≥ |zx′| − |xx′| >
4βℓ − ℓ/4 > 31βℓ/8, since β ≥ 2. Since |xy| ≤ 3ℓ/2, we
get |zx| > 31β|xy|/12. Thus, in this case, ball βb′c does
not overlap c.
Case 2: L < 8ℓ.

Let z be any point in c ∩ b(x′, 8ℓ). Recall that
b(x′, 8ℓ) ∈ BP , and so there must be a quadtree box

ĉ ∈ Cb(x′,8ℓ) of size sĉ ≤ 8ℓ/(32γd) that contains z. Since
ℓ ≤ 2|xy| and |xy| is at most sdγ (because both x and y
are contained in the ball γbc), we get sĉ ≤ s/2. This is
a contradiction since, by construction of the BBD tree
T , c ⊆ ĉ and c has size s. Thus this case cannot occur.
Case 3: 8ℓ ≤ L ≤ 4βℓ.

Clearly c must overlap a ball b ∈ BP of radius rb

satisfying rb ≤ 2L. Let z be any point in c ∩ b. By
construction z must be contained in a quadtree box
ĉ ∈ Cb of size sĉ ≤ rb/(32γd) ≤ 2|zx′|/(32γd). By the
triangle inequality, we have |zx′| ≤ |zx|+ |xx′|. Further
|xx′| ≤ ℓ/4 ≤ |zx′|/32. Thus |zx′| ≤ 32|zx|/31. Since
z and x are both contained in γbc, we have |zx| ≤ sdγ.
Thus sĉ ≤ 2s/31, which is a contradiction for the same
reason as in Case 2. Thus this case too cannot occur.
This completes the proof. ⊓⊔

Given a real number 2 ≤ γ ≤ 1/ǫ, we construct
the subdivision described in Lemma 4.5, for β =
γ. Lemma 4.4 suggests the following approach for
assigning representatives to the leaf cells. Let q be a
point inside a leaf cell c. Let bc and b′c be the balls
defined in Lemma 4.5. Since c is contained within
the ball bc, applying Lemma 4.4(i), it follows that
we can find a set R′

c consisting of O(1/(ǫγ)(d−1)/2)
points such that NN q(R

′
c) ≤ (1 + ǫ) · NN q(S ∩ γbc).

For the points inside γbc we proceed as follows. If
|S ∩ γbc| ≤ 1, we define R′′

c = S ∩ γbc. Otherwise,
by Lemma 4.5, S ∩ γbc ⊆ b′c and γb′c does not overlap
c. Thus, applying Lemma 4.4(ii), it follows that
we can find a set R′′

c consisting of O(1/(ǫγ)(d−1)/2)
points such that NN q(R

′′
c ) ≤ (1 + ǫ) · NN q(S ∩ b′c) ≤

(1 + ǫ) · NN q(S ∩ γbc). Finally we assign Rc =
R′

c ∪ R′′
c to be set of representatives for c. Clearly,

Rc has size O(1/(ǫγ)(d−1)/2) and satisfies the desired
property, namely, NN q(Rc) ≤ (1 + ǫ) · NN q(S). In
summary, we have shown that we can construct an
(O(1/(ǫγ)(d−1)/2), ǫ)-approximate Voronoi diagram for
S that consists of O(nγd log γ) cells. In the following
subsection, we will show how to improve the bound on
the size by a factor of log γ.

4.1 Size Reduction

Our improved construction is exactly the same as
the first one, except that the sizes of the quadtree boxes
generated by each pair in the WSPD grow quadratically
instead of linearly with distance from the pair. To
be precise, we modify the value of the parameter ∆b

from rb/(32γd) to r2
b/(256ℓγd). With this change, for

a ball b ∈ BP , we have |Cb| = O((ℓγ/rb + 1))d. We set
β = γ, as in the first construction. It is easy to see
that |CP | =

∑

b∈BP
|Cb| = O(γd). Thus |C| = O(nγd),

and so the number of leaves in the resulting BBD tree



T is less than that obtained from the first method by
a factor of log γ. We will show that the leaves of T ,
along with suitable representatives, form a (t, ǫ)-AVD
for t = O(1/(ǫγ)(d−1)/2).

The next two lemmas use ideas similar to Lem-
mas 4.4 and 4.5, respectively.

Lemma 4.6. Let S be a set of n points in IRd. Let
0 ≤ ǫ ≤ 1/2 be a real parameter. Let b1 and b2 be two
disjoint balls of radius r1 and r2, respectively, whose
minimum distance of separation is at least ℓ′. Further,
suppose that ℓ′ ≥ max(r1, r2). Then there exists a set

R ⊆ S consisting of
(

1 + O
(√

r1r2

ℓ′
√

ǫ

))d−1

points such

that for any point q ∈ b1, NN q(R) ≤ (1+ǫ)·NN q(S∩b2).

Proof We will assume that r1 ≤ r2 ≤ ℓ′. The proof for
the case r2 ≤ r1 ≤ ℓ′ is similar and is omitted.

First, we consider the case r1 < r2ǫ/16. Let x
be any point in b1 and let nx be any point of S that
is its (ǫ/2)-NN. Along the lines of Lemma 3.1, we
can easily show that, for any point q ∈ b1, |qnx| ≤
(1+ǫ)·NN q(S∩b2). Thus the lemma holds for R = {nx}.

In the remainder we assume that r2ǫ/16 ≤ r1 ≤ r2.
In order to describe the set R, we need some definitions.
Let o1 and o2 denote the centers of the balls b1 and b2,
respectively. The line o1o2 intersects the boundary of
b1 at two points; let z1 denote that point of intersection
that is farther from o2. Similarly line o1o2 intersects the
boundary of b2 at two points; let z2 denote that point
of intersection that is closer to o1. (See Fig. 1.) Let Λ1

and Λ2 denote the (d− 1)-disks orthogonal to line o1o2,
centered at z1 with radius r1, and centered at z2 with
radius r2, respectively. We define Π to be the truncated
cone with bases Λ1 and Λ2 (that is, Π contains points
that lie on any line segment joining a point in Λ1 with
a point in Λ2). Let h be the hyperplane orthogonal to
o1o2, and at distance r1 + ℓ′r1/(2r2) from o1 (towards
o2), and let Λ denote the (d−1)-disk Π∩h. We choose R′

to be any set of points on h that is δ-dense for Λ, where

δ = ℓ′

16

√

ǫr1

r2

. Note that we can easily compute a set R′

satisfying this property and having size (1+O(r/δ))d−1,
where r denotes the radius of disk Λ. Finally, we put
R = {nx : x ∈ R′}, where nx denotes any (ǫ/2)-NN of
x.

To bound the size of R, observe that the intersection
of a hyperplane orthogonal to line o1o2 (that is, the axis
of the truncated cone Π) with Π is a (d− 1)-disk whose
radius increases linearly as we traverse from z1 to z2.
Thus

r = r1 +
2r1 + ℓ′r1/(2r2)

2r1 + ℓ′
(r2 − r1)

≤ r1 +
2r1 + ℓ′r1/(2r2)

ℓ′
r2 ≤ 7

2
r1,

since r2 ≤ ℓ′. Recalling that |R| ≤ |R′| = (1 +
O(r/δ))d−1, and using this bound on r, we easily obtain
the bound on |R| given in the statement of the lemma.

We next show that R satisfies the property given in
the statement of the lemma. Let q be any point in b1

and let p be its nearest neighbor among the points of
S ∩ b2. It is easy to see that segment qp must intersect
disk Λ. Let y denote this point of intersection. Since R′

is δ-dense for Λ, there must be a point x ∈ R′ such that
|xy| ≤ δ. We will show that |qnx| ≤ (1 + ǫ)|qp|.

By the triangle inequality, we have |qnx| ≤ |qx| +
|xnx|. Since nx is an (ǫ/2)-NN of x, we have |xnx| ≤
(1 + ǫ/2)|px|. Thus |qnx| ≤ (1 + ǫ/2)(|qx| + |px|). In
△qpx, let θ denote 6 pqx and φ denote 6 qpx. We claim

that 6 qxp ≥ π/2, sin θ ≤ 1
8

√

ǫr2

r1

, and sinφ ≤ 1
8

√

ǫr1

r2

.

Assuming this for now and applying Lemma 4.1, we get
|qx|+ |px| ≤ (1 + ǫ/64)|qp|. Thus |qnx| ≤ (1 + ǫ/2)(1 +
ǫ/64)|qp| ≤ (1 + ǫ)|qp|, as desired.

It remains only to prove the above claim. To

this end, note that |xy| ≤ δ = ℓ′

16

√

ǫr1

r2

. Also,

max(|qx|, |qy|) ≥ ℓ′r1/(2r2) and max(|px|, |py|) ≥
ℓ′ − ℓ′r1/(2r2) ≥ ℓ′/2. Applying Lemma 4.3 to
△yqx and △ypx, respectively, the desired bounds
on sin θ and sinφ easily follow. Finally, noting that
r2ǫ/16 ≤ r1 ≤ r2, ǫ ≤ 1/2, and using Lemma 4.2 on
△yqx and △ypx, we can easily show that θ ≤ π/6
and φ ≤ π/6. Thus 6 qxp ≥ π/2, which completes the
proof. ⊓⊔

Lemma 4.7. Let S be a set of n points in IRd, and
let γ ≥ 2 be a real parameter. Then it is possible to
construct a subdivision consisting of O(nγd) cells, where
each cell c is the difference of two cubes and satisfies the
following property. Let c = cO − cI , where cO and cI

denote the outer and inner cube of c, respectively; let
s denote the size of c; and let bc be the ball of radius
r1 = sd/2 whose center coincides with the center of cO

(note that c ⊆ bc) . Then one of the following three
possibilities must hold:

(i) |S ∩ γbc| ≤ 1.

(ii) There exists a ball b′c such that S ∩ γbc ⊆ b′c and
the ball γb′c does not overlap c.

(iii) There exists a ball b′c such that S∩γbc ⊆ b′c and ℓ′ ≥
max(r1, r2) and ℓ′/

√
r1r2 ≥ 5

√
γ. Here ℓ′ denotes

the minimum distance of separation between bc and
b′c, and r2 denotes the radius of ball b′c.

Proof We claim that the subdivision induced by the
leaves of the BBD tree T satisfies the desired condition.
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Fig. 1: Proof of Lemma 4.6.

The bound on the number of cells follows from the
remarks given in the first paragraph of this subsection.

We borrow all the notation from the proof of
Lemma 4.5, and set β = γ. The reader can easily check
that the arguments given in the proof of Lemma 4.5
apply, except for a crucial difference in the argument
for Case 3, which is the only case we will consider here.
Case 3: 8ℓ ≤ L ≤ 4γℓ.

We will show that possibility (iii) holds in this case.
To this end, we estimate r1, r2, and ℓ′.

Clearly c must overlap a ball b ∈ BP of radius rb

satisfying rb ≤ 2L. Let z be any point in c ∩ b. By
construction z must be contained in a quadtree box
ĉ ∈ Cb of size sĉ ≤ r2

b/(kℓγd) ≤ 4L2/(kℓγd), where
k = 256. Since c ⊆ ĉ, this bound on sĉ also applies to s.
Thus r1 = sd/2 ≤ 2L2/(kℓγ). Since L ≤ 4γℓ, we obtain
r1 ≤ 8L/k.

Further, r2 = |xy| ≤ 3ℓ/2. Since L ≥ 8ℓ, we obtain
r2 ≤ 3L/16.

Since z ∈ bc and x′ ∈ b′c, by the triangle inequality,
ℓ′, the minimum distance of separation between bc and
b′c is at least L − 2r1 − 2r2 ≥ L − 16L/k − 3L/8.
Substituting k = 256 in the above, we get r1 ≤
L/32, r2 ≤ 3L/16, and ℓ′ ≥ 9L/16. Thus ℓ′ ≥
max(r1, r2). Further,

ℓ′√
r1r2

≥ 9L/16
√

2L2

256ℓγ · 3ℓ
2

≥ 5
√

γ,

as desired. ⊓⊔

We assign representatives to the leaves of T as
follows. Let q be a point inside a leaf cell c. Let bc and b′c
be the balls defined in Lemma 4.7. Since c is contained
within the ball bc, applying Lemma 4.4(i), it follows
that we can find a set R′

c consisting of O(1/(ǫγ)(d−1)/2)

points such that NN q(R
′
c) ≤ (1 + ǫ) · NN q(S ∩ γbc).

For the points inside γbc we proceed as follows. Note
that one of the three cases given in the statement of
Lemma 4.7 must hold. If Case (i) holds (that is, |S ∩
γbc| ≤ 1), then we define R′′

c = S ∩ γbc. If the Case (ii)
(Case (iii)) holds then, by Lemma 4.4(ii) (Lemma 4.6),
it follows that we can find a set R′′

c consisting of
O(1/(ǫγ)(d−1)/2) points such that NN q(R

′′
c ) ≤ (1 + ǫ) ·

NN q(S ∩ b′c) ≤ (1+ ǫ) ·NN q(S ∩γbc). Finally we assign
Rc = R′

c ∪R′′
c to be set of representatives for c. Clearly,

Rc has size O(1/(ǫγ)(d−1)/2) and satisfies the desired
property, namely, NN q(Rc) ≤ (1 + ǫ) · NN q(S).

Given a query point q, we can determine the leaf
containing q in O(log(nγ)) time. By computing the
distance from q for each of the stored representatives, we
can answer queries in O(log(nγ) + 1/(ǫγ)(d−1)/2) time.
We summarize the main result of this section.

Theorem 4.1. Let S be a set of n points in IRd, and
let 0 < ǫ ≤ 1/2 and 2 ≤ γ ≤ 1/ǫ be two real parame-
ters. Then we can construct an (O(1/(ǫγ)(d−1)/2), ǫ)-
approximate Voronoi diagram for S that consists of
O(nγd) regions, where each region is the difference of
two cubes. Moreover, for any query point, we can re-
turn its ǫ-NN in O(log(nγ) + 1/(ǫγ)(d−1)/2) time. Here
the constants in the O-notation are independent of ǫ and
γ.

Based on this theorem we obtain a family of data
structures that can answer ǫ-NN queries in O(log(nγ)+
1/(ǫγ)(d−1)/2) time using space O(n(γ/ǫ)(d−1)/2γ). Set-
ting γ to two we obtain the most space-efficient solution
in this family, which we present in the following corol-
lary.

Corollary 4.1. Given a set S of n points in IRd, we
can answer ǫ-NN queries in O(log n + 1/ǫ(d−1)/2) time



using a data structure of size O((1/ǫ)(d−1)/2n).

Remark: Using ideas similar to those given in this
subsection, we can reduce the size of the (1, ǫ)-AVD in
Theorem 3.1 to O(n/ǫd). We leave the details to the
interested reader.
Remark: Instead of building the AVD by using
the well-separated pair decomposition, an alternative
method is to first build a smoothed box decomposition
(BD) tree [10] and then suitably refine it. But this so-
lution appears to be more complicated than the one we
have presented here.

5 Lower Bound on Size of (1, ǫ)-Approximate

Voronoi Diagram

Throughout this section we will assume that ǫ is a
sufficiently small constant (depending on dimension d).
The following lemma is needed for the lower bound
argument.

Lemma 5.1. Let ǫ ≤ 1 and let p, q be any two points
in IRd such that |pq| = 1. Let h be the hyperplane
orthogonal to pq and passing through its midpoint. Let
x be a point at distance at most one from pq, at distance
2ǫ from h, and on the same side of h as p. Then
|xq| > (1 + ǫ)|xp|.

Proof Let m be the midpoint of pq and x′ be the
orthogonal projection of x onto pq. We have

|xq|2 − |xp|2
|xp|2 =

(−→xq + −→xp) · (−→xq −−→xp)

|xx′|2 + |x′p|2 ≥ 2−→xm · −→pq

|xx′|2 + |mp|2

≥ 2 |x′m|
1 + 1

4

> 3ǫ.

Adding one to both sides, we get |xq|2/|xp|2 > 1 + 3ǫ.
Since ǫ ≤ 1, it follows that |xq| > (1 + ǫ)|xp|. ⊓⊔

For the lower bound, let S consist of n points in
the form of pairs (pi, qi), 1 ≤ i ≤ n/2, such that for
each pair, the vector −−→piqi has all coordinates equal to
1/

√
d. Further, for any two points in different pairs, the

distance between them is at least 8. These conditions
are obviously easy to ensure. Let C be the set of cells
in a (1, ǫ)-AVD for S. We assume that each cell of
C is an axis-aligned hyperrectangle or the difference
of two axis-aligned hyperrectangles. Our goal is to
show that |C| = Ω(n/ǫd−1). Observe that if a cell is
the difference of two axis-aligned hyperrectangles, then
we can partition it into a constant number of axis-
aligned hyperrectangles. Thus, it suffices to prove that
|C| = Ω(n/ǫd−1), when the cells of C are axis-aligned
hyperrectangles.

For a pair of points (pi, qi), let hi be the hyperplane
orthogonal to piqi and passing through its midpoint,
and let Γi be the cylinder consisting of points at distance
at most one from piqi and at distance at most 2ǫ from hi.
(See Fig. 2.) Since the distance between any two points
belonging to different pairs is at least 8, it is easy to
verify that only pi or qi can be the representative for a
cell that intersects Γi (assuming ǫ < 1). It follows that
no cell can intersect both Γi and Γj , for i 6= j. Thus,
it suffices to show that the number of cells of C that
intersect Γi is Ω(1/ǫd−1).

To this end, define a cylinder Γ′
i to be the set of

points at distance at most (1 − 5ǫ
√

d) from piqi and at
distance at most 2ǫ from hi. (Note that Γ′

i ⊆ Γi.) For
sufficiently small ǫ, the volume of Γ′

i is clearly Ω(ǫ). Let
c ∈ C be any cell that intersects Γ′

i. We will show that
the volume of the region c ∩ Γ′

i is at most O(ǫd), which
will imply that the number of cells of C that intersect
Γ′

i, and hence Γi, is Ω(1/ǫd−1).
Let h1

i and h2
i denote the hyperplanes obtained

by translating hi by distance 2ǫ towards pi and qi,
respectively. Let f1

i and f2
i denote the faces of cylinder

Γi contained in h1
i and h2

i , respectively. By Lemma 5.1,
it follows that for any point x on f1

i , we have |xqi| >
(1 + ǫ)|xpi|. By symmetry, any point y on f2

i satisfies
|ypi| > (1 + ǫ)|yqi|. Thus, c cannot intersect both f1

i

and f2
i . We will need this fact later in the proof.

Let v+ and v− denote the vertices of c that have,
among the vertices of c, the highest coordinate along
all dimensions, and the lowest coordinate along all
dimensions, respectively. Clearly v+ lies on the same
side of h1

i as qi and v− lies on the same side of h2
i as pi.

We claim that either v+ or v− must lie inside Γi. For
the sake of contradiction, suppose that both v+ and
v− lie outside Γi. Let y be any point in c ∩ Γ′

i and
let z denote the point of intersection of yv+ with the
boundary of Γi. Clearly z must lie either on f2

i or on

the cylinderical face of Γi. Let θ be the angle that
−−→
yv+

makes with the axis −−→piqi of cylinder Γi. Then it is easy
to see that |yz| is at most 4ǫ/ cos θ (recall that the height
of cylinder Γi is 4ǫ). Further, by convexity of c, z lies
inside c, and so cos θ ≥ 1/

√
d. Thus |yz| ≤ 4ǫ

√
d. Since

the minimum distance between the cylinderical faces of
Γ′

i and Γi is 5ǫ
√

d, it follows that z must lie on f2
i . Thus

c intersects f2
i . By a symmetric argument, we can show

that c intersects f1
i as well. But this contradicts the

fact shown earlier that c cannot intersect both f1
i and

f2
i .

We have thus proved that either v+ ∈ Γi or v− ∈ Γi.
Without loss of generality, suppose that v− ∈ Γi.
Clearly the volume of c∩Γ′

i is no more than the volume
of c ∩ R, where R denotes the infinite region contained
between the hyperplanes h1

i and h2
i . This volume is
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Fig. 2: Lower bound construction.

maximized in the limit as v− touches h1
i and each edge

of c incident to v− extends upto h2
i . This quantity is

easily seen to be at most (4ǫ
√

d)d/2 = O(ǫd), which
completes the proof. We have established the following
lower bound.

Theorem 5.1. Assuming that the cells of a (1, ǫ)-
approximate Voronoi diagram are axis-aligned hyper-
rectangles or differences of two axis-aligned hyperrect-
angles, its size in the worst case is Ω(n/ǫd−1).

6 Conclusions

Along with David Mount, we have recently improved
several of the results given in this paper [1]. In
particular, we show that we can construct a (t, ǫ)-
AVD consisting of O(nǫ(d−1)/2γ(3d−1)/2) cells for t =
O(1/(ǫγ)(d−1)/2). This yields a data structure of
O(nγd) space (including the space for representatives)
that can answer ǫ-NN queries in time O(log(nγ) +
1/(ǫγ)(d−1)/2).
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