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Abstract. Planar point location is among the most fundamental search
problems in computational geometry. Although this problem has been
heavily studied from the perspective of worst-case query time, there has
been surprisingly little theoretical work on expected-case query time.
We are given an n-vertex planar polygonal subdivision S satisfying some
weak assumptions (satisfied, for example, by all convex subdivisions).
We are to preprocess this into a data structure so that queries can be
answered efficiently. We assume that the two coordinates of each query
point are generated independently by a probability distribution also sat-
isfying some weak assumptions (satisfied, for example, by the uniform
distribution).
In the decision tree model of computation, it is well-known from informa-
tion theory that a lower bound on the expected number of comparisons
is entropy(S). We provide two data structures, one of size O(n2) that
can answer queries in 2 entropy(S) + O(1) expected number of com-
parisons, and another of size O(n) that can answer queries in (4 +
O(1/

√
log n)) entropy(S)+O(1) expected number of comparisons. These

structures can be built in O(n2) and O(n log n) time respectively. Our
results are based on a recent result due to Arya and Fu, which bounds
the entropy of overlaid subdivisions.

1 Introduction

Planar point location is certainly among the most fundamental search problems
in computational geometry. Given a polygonal subdivision S in the plane, the
problem is to construct a data structure so that given any query point q in the
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plane, it is possible to determine efficiently which polygon of the subdivision con-
tains q. This problem has been heavily studied in computational geometry. (For
example, a search for “point location” found 77 papers in the computational ge-
ometry bibliography.) With only a few exceptions, previous work on this problem
has dealt with the worst-case complexity of this problem. When expected-case
complexity has been considered, it has been done under the assumption that
both the subdivision and the query points are selected subject to various as-
sumptions on distribution. Here, we consider search algorithms that are efficient
in the expected-case for queries, and in the worst-case for subdivisions.

The planar point location problem is a generalization of the well-known one-
dimensional search problem. In the one-dimensional case, we are given a set of
n keys, and told the probabilities of accessing each key and the n + 1 failure
probabilities of falling in the gaps between the keys. If we assume that the
probability of matching a key is zero, then this reduces to the expected-case
complexity of solving a point location problem for n + 1 disjoint subintervals of
the unit interval. Consider any binary search tree whose leaves correspond to
the intervals. It is easy to see that the expected number of comparisons is given
by the weighted external path length [14] of the tree, where the weight of a leaf
is the probability of the query point lying in the associated interval.

Let pi denote the probability of falling in the ith interval. A fundamental
information theoretic result due to Shannon implies that the weighted path
length of any binary tree (and hence the expected number of comparisons) is at
least the entropy of the probability distribution

∑

i

pi log

(

1

pi

)

.

(Unless otherwise stated, all logarithms are base 2.) Knuth [13] shows how to
construct an optimum binary search tree in O(n2) time using dynamic program-
ming. Hu and Tucker [11] presented a bottom-up construction of the tree, which
takes O(n log n) time, but is quite complex. Mehlhorn [17] gives a simple con-
struction of a binary search tree whose weighted path length is within a constant
additive factor of the entropy-based lower bound. It is eminently natural to ask
whether these results can be extended to planar subdivisions. To the best of
our knowledge, this is the first paper to address this obvious and fundamental
problem.

Consider a polygonal subdivision S. Given a region z in S, let pz denote the
probability that the query point lies inside region z. Define the entropy of S to
be

entropy(S) =
∑

z∈S

pz log

(

1

pz

)

.

The coordinates of the query points are assumed to be sampled independently
from probability distributions over bounded intervals of the x-axes and y-axes.
Both S and the probability distributions are assumed to satisfy some additional
weak assumptions (see Section 2 for formal definitions).



Shannon’s lower bound applies to the planar point location problem as well.
We present two algorithms for the planar point location problem. The first uses
quadratic space and can answer point location queries in 2 entropy(S) + O(1)
expected number of point-line comparisons (i.e., given a point and a directed
line, one has to determine whether the point lies to the left of, on, or to the right
of the line). The second uses O(n) space, and can answer point location queries
in nearly 4 entropy(S) + O(1) expected number of point-line comparisons.

The paper is organized as follows. In Section 2 we present definitions and
state our results formally. In Section 3 we present background on the planar
point location problem. In Section 4 we present our algorithms for the case of
uniformly distributed query points, and in Section 5 we generalize our results to
a wider class of probability distributions.

2 Definitions and Main Results

Let I and J be two arbitrary intervals of real numbers. In this paper, we only
work with planar subdivisions that partition an underlying rectangle I × J into
disjoint connected regions. We allow the underlying rectangle to be the infinite
plane, in which case I = J = (−∞,∞).

Given a query point q, let xq and yq denote its x and y coordinate. Through-
out this paper, we assume that xq and yq are two independent random variables.
We denote the probability distribution function for xq by P : I → [0, 1] and the
probability distribution function for yq by Q : J → [0, 1]. That is, P (x) is the
probability that the random variable xq is less than or equal to x, and Q(y) is the
probability that the random variable yq is less than or equal to y. We call (P, Q)
a well-behaved distribution if P and Q are continuous and strictly increasing.
For example, if I × J is the unit square, then picking xq and yq uniformly and
independently from [0, 1] yields a well-behaved distribution.

Let U be the unit square [0, 1]2. We define a mapping fPQ from I × J (call
this geometric space) to U (call this probability space) as follows:

fPQ(x, y) = (P (x), Q(y)).

If (P, Q) is well-behaved, then fPQ is a bijection as P and Q are strictly increas-
ing. We can also generalize fPQ in the obvious way for a set of points. Let A be
any set points in I × J . Then

fPQ(A) = {(P (x), Q(y)) : (x, y) ∈ A}.
In this paper, we assume that each evaluation of P , Q, P−1, and Q−1 takes
constant time.

We are now ready to state the main results of this paper.

Theorem 1. Let I and J be two intervals of real numbers. Let S be a planar
subdivision of I×J of n vertices. Suppose that a well-behaved distribution (P, Q)
is given for the coordinates of the query point, and for each region z ∈ S, fPQ(z)
has at most a constant number of holes and the perimeter of fPQ(z) is bounded
by a constant. Then



(i) Using O(n2) space and O(n2) preprocessing time, it is possible to answer
point location queries in 2 entropy(S) + O(1) expected number of point-line
comparisons.

(ii) Using O(n) space and O(n log n) preprocessing time, it is possible to answer
point location queries in (4+O(1/

√
log n)) entropy(S)+O(1) expected number

of point-line comparisons.

Clearly this theorem applies if I × J is the unit square U and xq and yq

are chosen uniformly and independently from [0, 1]. Thus we have the following
theorem, which is an interesting special case of Theorem 1:

Theorem 2. Let S be a planar subdivision of U of n vertices. Suppose that
the coordinates of the query point are chosen uniformly and independently from
[0, 1], and for each region z in S, z has at most a constant number of holes, and
the perimeter of z is bounded by a constant. Then

(i) Using O(n2) space and O(n2) preprocessing time, it is possible to answer
point location queries in 2 entropy(S) + O(1) expected number of point-line
comparisons.

(ii) Using O(n) space and O(n log n) preprocessing time, it is possible to answer
point location queries in (4+O(1/

√
log n)) entropy(S)+O(1) expected number

of point-line comparisons.

Remark: It is worth noting that any convex polygon in the geometric space is
mapped by fPQ to a region in the probability space that has bounded perimeter.
This follows from the fact that any monotonic increasing (resp. decreasing) curve
in the geometric space maps to a monotonic increasing (resp. decreasing) curve
in the probability space. And the length of any monotonic curve in the unit
square is bounded by 2. Thus Theorem 1 applies to any subdivision of the plane
into (bounded and unbounded) convex polygons.

3 Background

For the planar point location problem, let n denote the number of vertices in
the subdivision. The early work of Dobkin and Lipton [6] showed that a query
time of O(log n) and space O(n2) could be achieved. Lipton and Tarjan [15]
showed that the space requirement could be reduced to O(n), but their approach
was rather impractical. Since then a number of more practical methods have
been proposed. These include Kirkpatrick’s clever hierarchical method [12], the
separator method by Edelsbrunner et al. [8], the persistent search tree method by
Sarnak and Tarjan [21], and the randomized incremental method by Mulmuley
[20]. All of these are based on worst-case analyses. Recently Adamy and Seidel [1]
presented an O(n) space data structure that achieves a worst-case query time

of log n + 2
√

log n + O(log1/4 n) point-line comparisons, thus approaching the
worst-case information theoretic lower bound.



Existing work on expected case-performance has been based on the assump-
tion that both the subdivision and the queries satisfy certain probabilistic as-
sumptions. Edahiro et al. [7] proposed a practical algorithm for planar point
location based on bucketing techniques. Their method may use Θ(n2) space in
the worst case. Methods using kd-trees, quad-trees, and R-trees are also popular
in practice, but their analyses do not hold in the worst case. Mucke et al. [19] and
Devroye et al. [5] have analyzed methods based on walking through subdivisions.
For Delaunay triangulations of uniformly distributed data sets, these methods
take expected time close to O(n1/3) and O(n1/4) in two and three dimensions,
respectively.

Goodrich et al. [10] presented an interesting point location method, which
adapts to the query distribution. Intuitively, if a cell is accessed more frequently,
then the data structure is modified to ensure that the time for subsequent
accesses to the cell is reduced. They show that the amortized time complex-
ity for accessing cell i in a sequence of m queries is O(min{log n, log(t(i) +
1), log(m/f(i))}), where t(i) is the number of different queries between two ac-
cesses to cell i, and f(i) is the frequency of accesses to cell i. A limitation of their
approach is that the cells are not the regions in the given subdivision; instead
they are the trapezoids in the refined subdivision formed by passing a vertical
line through each segment endpoint. This can adversely affect the query time.

4 The Uniform Distribution Case

We first present our techniques in attacking the case when I × J is U and the
coordinates of the query point are chosen uniformly and independently from
[0, 1]. The techniques are based on certain box decompositions of the planar
subdivision S of U . In the case of general well-behaved distributions (P, Q),
the key insight is that the map fPQ transforms the problem in the geometric
space to a problem in the probability space, where we are to locate query points
in the subdivision fPQ(S) of U , and the coordinates of the query point are
chosen uniformly and independently from [0, 1]. Thus, for general well-behaved
distributions, it suffices to invoke the techniques for uniform distribution in the
probability space to organize a point location data structure. Given a query
point q, we use this data structure to locate the region z′ in fPQ(S) containing
fPQ(q), and the region in S containing z is then given by f−1

PQ(z′). These claims
will be proved formally in Section 5.

In the following, we focus on the uniform distribution case. We first present
an algorithm, which uses 2 entropy(S)+O(1) expected number of point-line com-
parisons. The data structure needs O(n2) space and can be built in O(n2) time.
Later we present another algorithm which reduces the space to O(n) and the pre-
processing time to O(n log n). The expected number of point-line comparisons
goes up to nearly 4 entropy(S) + O(1).

A lemma proved in [2] will be very useful. We state it in a form which is
applicable in two dimensions. The result concerns with overlaying two planar
subdivisions of U . One subdivision is the given planar subdivision S of U . The



other subdivision is a decomposition of U into cells that enjoys the following
properties, for some constants ca and cn:

(A.1) Difference of Two Rectangles: A cell is the set-theoretic difference of two
axis-parallel rectangles, one enclosed within the other. We call these the
outer rectangle and inner rectangle of the cell. Note that the inner rectangle
need not be present. Given a cell u, we let uO and uI denote its outer and
inner rectangle, respectively. Also, we define the size of u, denoted by su, to
be the length of the longest side of uO.

(A.2) Bounded Aspect Ratio: The outer rectangle and inner rectangle (if present)
have aspect ratio (ratio of longest to shortest side) bounded by ca. (In this
case we say that the cell has aspect ratio at most ca.)

(A.3) Stickiness: If the cell has an inner rectangle, then for each dimension, the
separation between the corresponding faces of the inner and outer rectangle
is either 0 or at least the length of the inner rectangle along that dimension.

(A.4) Proximity to S: For each cell u, there is some edge or vertex in S within a
distance of cn · su from any point in uO.

(A.5) Disjointness: Given any two cells, either the outer rectangles of the two cells
are disjoint or the outer rectangle of one cell is contained within the inner
rectangle of the other.

We define a fragment to be a connected component in the intersection be-
tween a cell in the decomposition and a region in S. Let F be the set of all
fragments. Let area(x) denote the area of region x.

Lemma 1. Let S be a planar subdivision of U such that each region has at
most a constant number of holes and the total boundary length of each region is
bounded by a constant cs. Let D be a decomposition of U that satisfies properties
A.1, A.2, A.3, A.4, and A.5. Let F be the set of fragments in the overlay of S
and D. Then

∑

x∈F

area(x) log
1

area(x)
≤ 2

∑

z∈S

area(z) log
1

area(z)
+ O(1),

where the constant in the O-notation depends on ca, cs, and cn.

4.1 Quadratic Space Solution

We prove Theorem 2(i) in this subsection. Let S be the given planar subdivision
of U such that each region has at most a constant number of holes, and the
total boundary length of each region is bounded by a constant. We construct a
hierarchical decomposition of U by building a box-decomposition tree (BD-tree)
on the vertices of S [4, 22]. Initially, the BD-tree contains only one node which
is the root. Each node represents a cell and the root represents U . We keep
expanding the tree until some terminating condition is satisfied. The leaf cells
form the desired decomposition of U . We describe how to construct children for
a node u below. For convenience, we also use u to denote the cell it represents.



If u contains at most one vertex, then u is a leaf cell. Otherwise, it can be
guaranteed inductively that u is a rectangle and we recursively construct two
children of u as follows. Split u orthogonally at the midpoint of its longest side
to obtain two rectangles v and w. If both v and w contain some vertex, then we
make v and w children of u. This operation is called a midpoint split. Otherwise,
if v or w is empty, then we recursively apply the midpoint splitting rule to the
non-empty rectangle, until we obtain a rectangle v′ such that v′ will be split into
two non-empty rectangles. We make v′ and u \ v′ children of u. This operation
is called a shrink. Note that u \ v′ is a leaf cell and it contains no vertex.

To construct the tree efficiently, we use a standard trick due to Vaidya [22]
for partitioning the points. We store the data points contained in a cell in d sep-
arate lists, each sorted by one of the coordinates, that are cross-referenced with
each other. Instead of updating the lists after each split, we update them after a
sequence of splits is performed, until each of the resulting subsets contains fewer
than half the initial number of points. Also, assuming a model of of computation
in which exclusive-or, integer floor, powers of 2, and integer logarithm can be
computed on point coordinates, the shrink operation can be performed in O(d)
time. (For example, see Bern [3]). Straightforward modification of the argument
given by Vaidya leads to a construction time of O(n log n). (We mention that
we can achieve the same construction time without using non-algebraic opera-
tions by building the sliding-midpoint tree [16, 18] instead. It can be shown that
Lemma 1 holds for the fragments induced by the leaves of the sliding-midpoint
tree. The query algorithm and the rest of the analysis given in this section can
also be easily adapted.)

The cells associated with the leaves of the BD-tree satisfy properties A.1, A.2
(ca = 2), A.3, A.4 (cn = 2), and A.5. In addition, the BD-tree has the following
property, which is important for our analysis.

Lemma 2. Let T be a BD-tree constructed on some point set in U . For any
query point q, the number of point-line comparisons needed in traversing T to
locate the leaf cell y containing q is at most log 1

area(y) + O(1).

Proof. Suppose that we arrive at a node representing a cell u in traversing T
and we need to decide which of its child cells should be visited. Let v and w
be its child cells. If v and w are formed by a midpoint split, then one point-
line comparison is needed to determine whether v or w contains q. Note that
the area of v and w are both half the area of u. If v and w are formed by a
shrink, then one is a leaf cell, say v, and it encloses the other child cell, say w.
Let i, 1 ≤ i ≤ 4, denote the number of sides that the inner box of v does not
share with the boundary of u. Thus, it takes i point-line comparisons to decide
whether v or w contains the query point q. Note that the area of w is at most
1/2i times the area of u, for 2 ≤ i ≤ 4. Therefore, in both cases of midpoint
split or shrink, if we spend i point-line comparisons to decide the next child cell
to visit and this child cell is not a leaf cell, then the area of this child cell is
at most 1/2i times the area of its parent. The area of U is 1. Therefore, the
number of point-line comparisons needed to reach the leaf cell y containing q is



at most log(1/area(y)) + O(1), where the O(1) additive term comes from the
last i point-line comparisons, 1 ≤ i ≤ 4, spent at the parent of y.

Let y denote any leaf cell of the BD-tree. Observe that y is either a rectangle
containing at most one vertex of S, or it is the set-theoretic difference of an
outer and inner rectangle, in which case it contains no vertex of S. In each case
we partition y into at most four rectangles whose interior contains no vertex of
S (we call them subcells). If y is a rectangle and contains no vertex of S in its
interior, then the subcell is y itself. Otherwise if it contains a vertex of S in its
interior, then we split it into two subcells by a vertical line passing through this
vertex. Otherwise it must be the set-theoretic difference of an outer and inner
rectangle. In this case we partition it into at most four subcells by passing lines
coinciding with the vertical sides of the inner rectangle.

Define a pseudo-fragment to be a connected component in the intersection of
any subcell with a region in S. Clearly each fragment is partitioned into at most
four pseudo-fragments. Let z be any subcell. Observe that z contains no vertex
of S and intersects O(n) edges of the subdivision S. Thus z is partitioned into
at most O(n) pseudo-fragments. Since the subdivision inside z is so simple, we
can locate the pseudo-fragment in z containing the query point by searching an
auxiliary structure associated with z.

If there is an edge that intersects two opposite sides of z, then let s be one
of the sides intersected. The edges intersecting s divide z into super-fragments
which can be linearly ordered along s. (See Figure 1.) Each super-fragment is
either a pseudo-fragment by itself, or it is further subdivided by other edges
into pseudo-fragments which can be linearly ordered within the super-fragment.
(There are at most two super-fragments which are further subdivided; these are
shown shaded in the figure.) Thus, we first organize a weighted search tree [17]
for the super-fragments with their area as weights. Each super-fragment points
to another weighted search tree storing the linearly ordered pseudo-fragments
within the super-fragment (the area of the pseudo-fragments are the weights in
this second level tree). If there is no edge that intersects two opposite sides of z,
we can do the above using any side s of z.

s

Fig. 1. Super-fragments inside a subcell.

A single query is now answered by first locating the leaf cell in the BD-
tree that contains the query point q. Then we determine which of the at most



four subcells associated with this leaf cell contains q. Then we query the auxil-
iary structure for the subcell to locate the pseudo-fragment containing q. Each
pseudo-fragment lies inside a region in S and hence we have the solution to the
query.

We analyze the time to answer a single query as follows. By Lemma 2, the
number of point-line comparisons needed to reach a leaf cell y of the BD-tree is
log(1/area(y)) + O(1). It takes O(1) point-line comparisons to find the subcell
z containing q. Then we query the auxiliary structure associated with z. It is
known [17] that querying a weighted search tree takes at most log(K/k) + 2
comparisons, where K is the total weight of all the items, and k is the weight
of the item being searched for. Therefore, querying the auxiliary structure takes
log(area(z)/area(z′)) + log(area(z′)/area(x)) + 4 point-line comparisons, where
z′ and x are the super-fragment and pseudo-fragment containing the query
point, respectively. Hence, the total number of point-line comparisons is at
most log(1/area(y)) + log(area(z)/area(z′)) + log(area(z′)/area(x)) + O(1) ≤
log(1/area(x)) + O(1).

The probability of the query point lying in a pseudo-fragment x is clearly
area(x). Thus, the expected number of point-line comparisons to answer a query
is at most

∑

x∈F ′

area(x)

(

log
1

area(x)
+ O(1)

)

= entropy(F ′) + O(1),

where F ′ is the set of pseudo-fragments. Since each fragment is partitioned into
at most four pseudo-fragments, it is easy to see that entropy(F ′) = entropy(F)+
O(1). Therefore, the expected number of point-line comparisons is at most
entropy(F) + O(1), which is at most 2 entropy(S) + O(1) by Lemma 1.

We analyze the space of the entire data structure. The space needed by
the BD-tree is O(n). Since there are O(1) subcells for each leaf cell, and O(n)
pseudo-fragments for each subcell, the auxiliary structure at each leaf cell also
takes O(n) space. Thus, the total space is O(n2). As mentioned earlier the BD-
tree can be contructed in O(n log n) time. A weighted search tree of m sorted
items can be constructed in O(m) time [17]. Thus, the auxiliary structure at each
leaf cell can be constructed in O(n) time which leads to a total preprocessing
time of O(n2). This completes the proof of Theorem 2(i).

4.2 Linear Space Solution

We prove Theorem 2(ii) in this subsection. First, we also build a decomposition
tree on the vertices of S, but it is different from the BD-tree in the quadratic
space solution. The cell at each node of the tree will be rectangles of bounded
aspect ratio. We will classify the leaf cells of the tree into two types, S-type and
L-type. The root of the tree represents the unit square U . Inductively suppose
that we are to construct the children of a cell u.

1. If area(u) < 1/n, we label u an S-type leaf cell.



2. If area(u) ≥ 1/n and u intersects no edge of S, then u must be completely
contained in some region of S; we store the name of this region with u. In
addition, we label u an L-type leaf.

3. If area(u) ≥ 1/n, u intersects some edge of S, and each region in u ∩ S has
area less than 1/n, then we label u an S-type leaf cell

4. Otherwise, area(u) ≥ 1/n, u intersects some edge of S, and some region in
u ∩ S has area at least 1/n. We split u using a midpoint split into two cells
v and w, and make them children of u. Then we recursively construct the
descendants of v and w.

We denote this decomposition tree by T (S). The cells associated with the leaves
of the tree satisfy properties A.1, A.2 (ca = 2), A.3, A.4 (cn = 2), and A.5. We
also have the following result which is analogous to Lemma 2.

Lemma 3. For any query point q, the number of point-line comparisons needed
in traversing T (S) to locate the leaf cell y containing q is at most log 1

area(y) +

O(1).

The final step of preprocessing is to construct the worst-case planar point
location data structure for S invented by Adamy and Seidel [1]. This data struc-
ture uses O(n) space and can be constructed in O(n log n) time. A point location

query can be answered using log n+2
√

log n+O(log1/4 n) point-line comparisons.
Given a query point q, we first descend T (S) to find the leaf cell x containing

q. If x is an L-type leaf cell, then we report the region of S containing x and
terminate. Otherwise, x is an S-type leaf cell, and we simply resort to Adamy
and Seidel’s data structure to answer the point location query.

Space analysis Each leaf cell of T (S) has area at least 1/2n and they partition
the unit square U . This implies that T (S) has O(n) leaves and hence O(n) nodes.
Adamy and Seidel’s data structure use O(n) space. Thus, the total space needed
is O(n).

Query time analysis Recall that a fragment is a connected component of
the intersection of the leaf cells of T (S) and S. Let F denote the set of all
fragments. By Lemma 1, we have entropy(F) ≤ 2 entropy(S) + O(1). In the
following, we show that the expected number of point-line comparisons to an-
swer a query is (2 + O(1/

√
log n)) entropy(F) and so the desired bound of

(4 + O(1/
√

log n)) entropy(S) + O(1) follows.
We call a fragment large if its area is at least 1/n, and small otherwise. Let

F1 and F2 denote the set of large and small fragments, respectively. A large
fragments is exactly an L-type leaf cell and vice versa. Small fragments lie inside
S-type leaves.

We analyze the time to locate a query point q. Suppose that q lies in-
side a fragment x ∈ F . If x is large, then x is an L-type leaf, and the num-
ber of comparisons needed to reach x is log(1/area(x)) by Lemma 3. If x is
small, then the query procedure will first locate the leaf cell y containing x and



then query the worst-case data structure. By Lemma 3, the number of point-
line comparisons needed to reach y is log(1/area(y)). Since area(y) ≥ area(x),
log(1/area(y)) ≤ log(1/area(x)). Adding the number of point-line comparisons
needed for querying the worst-case data structure, the total number of compar-
isons is at most log(1/area(x)) + log n + 2

√
log n + O(log1/4 n). Since x is small,

area(x) < 1/n which implies that log(1/area(x)) > log n. So the total number
of comparisons is at most (2 + O(1/

√
log n)) log(1/area(x)).

The probability that q lies in a fragment x is clearly area(x). Thus, the
expected number of point-line comparisons to answer a query is bounded by

∑

x∈F1

area(x) log
1

area(x)
+

∑

x∈F2

(

2 + O

(

1√
log n

))

area(x) log
1

area(x)

≤
(

2 + O

(

1√
log n

))

entropy(F).

Preprocessing time When we construct the child cells of a cell u during
preprocessing, the most time consuming part of the construction is to determine
whether each region in u ∩ S has area less than 1/n. We describe a method to
carry out this computation efficiently.

Define Lu to be the set of regions of area at least 1/n in u∩S. The observation
is that any region in Lv at a child v of u must be contained in some region in
Lu. Therefore, our strategy is to compute Lu for each node u inductively.

Let r be the root of T (S) and so r ∩ S = S. We simply traverse S in O(n)
time to collect all regions of area at least 1/n in Lr. Inductively, let v be the
child of u and we are to compute Lv. For each region z in Lu, we claim that we
can compute the intersection z ∩ v in time proportional to the size of z. (Note
that z ∩ v may consist of several connected components.)

This can be done by clipping z with four halfplanes successively. We de-
scribe the first clipping as follows. Let ℓ be the bounding line of a halfplane. For
convenience, denote the size of z by |z|. First, compute the O(|z|) intersections
between ℓ and the boundary of z in O(|z|) time by brute-force. Second, apply
Jordan sorting to sort these intersections in order of their appearance on ℓ. This
can also be done in O(|z|) time [9]. Third, start a clockwise traversal from some
vertex of z within the halfplane. If we come to an intersection on ℓ, then we
use the sorted list of intersections to jump to the next intersection along ℓ. The
traversal stops when we come back to a visited vertex, and we have traversed
the boundary of one connected component of the clipped z. Then we repeat
the traversal from an unvisited vertex of z within the halfplane and so on until
no such vertex is left. This traverses all connected components in the clipped z.
Since each vertex of z and each intersection on ℓ is visited at most once, this also
takes O(|z|) time. This completes the first clipping. Each subsequent clipping
is done the same way. Since we have added at most O(|z|) new vertices after a
clipping and there are four clippings, we conclude that each clipping takes O(|z|)
time.



After obtaining z ∩ v, we can then retain only the components in z ∩ v that
has area at least 1/n and include them in Lv. Repeating this for each region in
Lu yields Lv. The total time needed is then proportional to the sum of sizes of
regions in Lu. Let Ei denote the set of edges on the boundaries of regions in
Lu for all nodes u at level i of T (S). We claim that for any level i, the number
of edges in Ei is O(n). Since T (S) is constructed using midpoint split and each
leaf cell has area at least 1/2n, the number of levels in the tree is O(log n), and
it follows that the preprocessing time is O(n log n).

To see that there are O(n) edges in Ei, note that there are two categories of
edges in Ei. The first category consists of edges that lie on the sides of a cell,
and the second category consists of edges that lie on edges of S. Observe that
edges in the first category can be charged against edges in the second category,
so we only need to show that the number of edges in the second category is O(n).
The second category can be divided into two groups. The first group consists of
edges that are incident to a vertex of S inside a cell at level i, and the second
group consists of the remaining edges. It is clear that the number of edges of the
first group can be no more than the total degree of the vertices of S, which is
O(n). To count the number of edges of the second group, first observe that the
number of regions with area at least 1/n in cells at level i is at most n. Second,
each such region can have at most four boundary edges that are not incident to
a vertex of S inside a cell at level i. Thus the number of edges of the second
group is at most 4n. Hence the total number of edges in Ei is O(n), which is the
desired claim.

5 General Well-behaved Distributions

Given a planar subdivision S and a well-behaved distribution (P, Q), our main
idea is that we can organize our point location data structure (the quadratic
space version or linear space version) in Theorem 2 in the probability space.
Then given a query point q, we locate the region z′ in fPQ(S) containing fPQ(q)
and then return f−1

PQ(z′).

For the above strategy to work, there are several requirements. First, the
x and y coordinates of fPQ(q) should be uniformly and independently chosen
from [0, 1]. Second, fPQ(S) is a planar subdivision, and each region has at most
a constant of holes and the perimeter of each region is bounded by a constant.
Third, if we were to apply Theorem 2 directly, we would require that fPQ(S) be
a polygonal planar subdivision, but this is usually untrue. Instead, we will map
back and forth between the geometric and probability spaces using fPQ and f−1

PQ

to construct and query our data structure in the probability space. We describe
below how these requirements are satisfied.

Let x′
q be the x-coordinate of fPQ(q). The probability prob(x′

q ≤ x′) that x′
q

is less than or equal to x′ for some 0 ≤ x′ ≤ 1 is equal to prob(P (xq) ≤ x′),
where xq is the x-coordinate of q. But prob(P (xq) ≤ x′) = prob(xq ≤ P−1(x′))
which is equal to P (P−1(x′)) = x′ by definition of P . So prob(x′

q ≤ x′) = x′ and



x′
q is uniformly picked from [0, 1]. Similarly, we can show that the y-coordinate

of fPQ(q) is uniformly picked in [0, 1].
Given two real numbers α, β ∈ I, since P is strictly increasing, α ≤ β iff

P (α) ≤ P (β) and equality holds exactly when α = β. Therefore, the left-right
ordering of points by x-coordinate in I × J is preserved in U after the mapping.
A similar reasoning about Q shows that the above-below ordering of points by
y-coordinate is also preserved. Also, a point p is on a line segment ξ in I × J
iff fPQ(p) is on fPQ(ξ) in U . Thus, incidence relations in S are preserved in
fPQ(S) and hence fPQ(S) is a planar subdivision of U . In Theorem 1, it is
already assumed that each region in fPQ(S) has at most a constant number of
holes, and the perimeter of each region is bounded by a constant.

We now deal with issue that fPQ(S) may not be a polygonal planar subdivi-
sion. In constructing our data structure in U , we need to perform two primitives.
The first primitive is to determine whether a vertex lies above, below, to the left,
or to the right of an orthogonal line. (This is needed in shrinking.) The second
primitive is to compute the intersection between an (possibly curvy) edge ξ′ and
an orthogonal line segment. (This is needed in midpoint split and shrinking.)
Since ordering and incidence relations are preserved, these two primitives can be
provided by first going back to the geometric space, perform the computation,
and map the result back to the probability space. Note that a vertical/horizontal
line segment is always mapped to a vertical/horizontal line segment and vice
versa. Also, for the second primitive, we would be intersecting f−1

PQ(ξ′), which
must be a line segment, with an orthogonal line segment in the geometric space.
This can be done in constant time in the geometric space, and then we map the
result using fPQ to the intersection desired in the probability space.

To see the correctness of our approach to answer a query, first observe that,
by continuity of P and Q, a closed curve in I × J is mapped by fPQ to a closed
curve in U . Since ordering and incidence relations are preserved, a point p lies
inside/on/outside a closed curve ξ in I × J iff fPQ(p) lies inside/on/outside
fPQ(ξ). Thus, given a query point q in the geometric space and a region z′ in
fPQ(S) containing fPQ(q), f−1

PQ(z′) is the region in S containing q. In searching
our data structure, we need to tell whether the query point fPQ(q) in U lies
above, below, to the left, or to the right of an orthogonal line or a curvy edge
ξ′. We have seen that this can be done for an orthogonal line. For a curvy edge
ξ′, we simply return the relation between q and f−1

PQ(ξ′), which must be a line
segment, in the geometric space. This establishes the correctness of our approach
to answer a query.

In all, Theorem 1 holds assuming that each evaluation of the functions P , Q,
P−1, and Q−1 takes constant time.
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