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Abstract
We present CLAP, a new technique to reproduce concurrency bugs.
CLAP has two key steps. First, it logs thread local execution paths
at runtime. Second, offline, it computes memory dependencies that
accord with the logged execution and are able to reproduce the
observed bug. The second step works by combining constraints
from the thread paths and constraints based on a memory model,
and computing an execution with a constraint solver.

CLAP has four major advantages. First, logging purely local ex-
ecution of each thread is substantially cheaper than logging mem-
ory interactions, which enables CLAP to be efficient compared to
previous approaches. Second, our logging does not require any syn-
chronization and hence with no added memory barriers or fences;
this minimizes perturbation and missed bugs due to extra synchro-
nizations foreclosing certain racy behaviors. Third, since it uses no
synchronization, we extend CLAP to work on a range of relaxed
memory models, such as TSO and PSO, in addition to sequential
consistency. Fourth, CLAP can compute a much simpler execution
than the original one, that reveals the bug with minimal thread con-
text switches. To mitigate the scalability issues, we also present
an approach to parallelize constraint solving, which theoretically
scales our technique to programs with arbitrary execution length.

Experimental results on a variety of multithreaded benchmarks
and real world concurrent applications validate these advantages by
showing that our technique is effective in reproducing concurrency
bugs even under relaxed memory models; furthermore, it is signif-
icantly more efficient than a state-of-the-art technique that records
shared memory dependencies, reducing execution time overhead
by 45% and log size by 88% on average.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Diagnostics; Tracing; Symbolic ex-
ecution; Debugging aids

General Terms Algorithms, Design, Performance, Theory

Keywords Concurrency, Bug Reproduction, Local Execution,
Constraint Solving
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Figure 1. CLAP technical overview

1. Introduction
When diagnosing the root cause of a concurrency bug, to be able to
reproduce the bug is crucial but notoriously difficult due to the non-
deterministic memory races. Researchers have proposed a wide
spectrum of techniques to address the bug reproduction problem. At
one end, the deterministic record-replay techniques [12, 14, 21, 22,
26, 32] faithfully capture shared memory dependencies online. At
the other end, execution synthesis techniques [36, 40] completely
rely on offline analysis to search for shared memory dependencies
without any runtime monitoring. Standing in between are several
hybrid techniques [1, 23, 24, 29, 41] that explore the right balance
between online recording and offline search.

Considering the production-like environments where we should
minimize the diagnostic perturbation to the program execution,
there are several critical drawbacks of the aforementioned bug re-
production techniques. First, the techniques that introduce locks [14,
21, 22, 41] to track race orders often make the program run much
slower (LEAP[14]>6x and Chimera[21]>2.4x for programs with
heavy shared memory dependencies). What is worse is that they
can also exert the so-called Heisenberg effect by eliminating the
concurrency bugs while trying to capture them. The locks they
insert act as memory barriers and can prevent the instruction re-
ordering common to most modern commodity multiprocessors.
Second, recording values traces [23, 24, 41] to match the shared
loads and stores usually incurs a considerable program slowdown
and a large disk space to store the logs (Lee et al. [23, 24] and Zhou
et al. [41] reported average trace sizes from 2MB/s to 200MB/s).
Third, the complete offline analysis has limited bug reproduction
capabilities due to the explosion of both the number of program
paths and choices of thread schedules.

In this work, we propose a new technique, CLAP, that repro-
duces concurrency bugs without recording any shared memory de-
pendency nor any value or order information, and without intro-
ducing any extra synchronization. Our key insight is to reduce this
problem into two well-known problems: monitoring thread local
execution paths and solving symbolic constraints. Since these two
problems have been studied for decades, many highly optimized
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solutions can be directly leveraged. For example, for path collec-
tion, efficient solutions are widely available on both software and
hardware levels, such as the classical Ball-Larus path profiling al-
gorithm [4, 20] (around 30% overhead) and the hardware monitor-
ing techniques based on branch predictors [17] and path descrip-
tors [31] (as low as 0.6% overhead); for constraint solving, the
SMT solvers such as Yices [8] and Z3 [7] are becoming increas-
ingly powerful with the advances of theorem provers and decision
procedures.

As illustrated in Figure 1, CLAP has two key phases:
1. Monitoring an instrumented execution of the program. Un-

like most dynamic techniques that collect a global trace, this phase
records only the local control-flow choices of each thread. In
threads that exhibit bugs, these local traces lead to the occurrence
of the bug.

2. Assembling a global execution that exhibits the bug. This
phase in turns has several key steps:

• Find all the possible shared data access points (called SAP - a
read, write, or synchronization) on the thread local paths that
may cause non-determinism, via a static escape analysis.

• Compute the path conditions for each thread with symbolic
execution. Given the program input, the path conditions are all
symbolic formulae with the unknown values read by the SAPs.

• Encode all the other necessary execution constraints – i.e., the
bug manifestation, the synchronization order, the memory or-
der, and the read-write constraints – into a set of formulae in
terms of the symbolic value variables and the order variables.

• Use a SMT solver to solve the constraints, which computes a
schedule represented by an ordering of all the SAPs, and this
schedule is then used by an application-level thread scheduler
to deterministically reproduce the bug.

With thread local path monitoring and constraint solving, CLAP
achieves several important advances over previous approaches:

1. CLAP obviates logging of shared memory dependencies and
program states, and completely avoids adding extra synchroniza-
tions. This not only substantially reduces the logging overhead
compared to the shared memory recorders [14, 21, 41], but also
minimizes the perturbation that extra synchronizations foreclose
certain racy behaviors.

2. CLAP not only works for sequential consistent executions,
but also for a range of relaxed memory models such as TSO and
PSO [2]. We show that the memory order constraints between SAPs
can be correctly modeled to respect the memory model relaxation.
This is of tremendous importance, because it makes CLAP applica-
ble for real production setting on commodity multiprocessors that
allows the reordering of instructions.

3. CLAP can produce simpler bug-reproducing schedules than
the original one. We are able to encode preemption-bounding con-
straints over the order of shared data accesses to always produce a
schedule with the minimal number of thread context switches. With
this property, it becomes much easier to understand how the bug oc-
curs due to the prolonged sequential reasoning [15, 16]. Moreover,
through preemption-bounding, the complexity of constraint solv-
ing is dramatically reduced from exponential to polynomial with
respect to the execution length.

4. The constraint solving in CLAP is much easier to scale. The
solver does not need to directly solve the complex path constraints
(such as non-linear arithmetic or string constraints), but only to
find a solution for the order variables that satisfies the path con-
straints. Thus, the solving task can be divided into two parts – gen-
erating candidate schedules (that respect the memory order) and
validating them (using the other constraints). Since the first part
which is searching possible executions does not have complex con-
straints, and the second which does have complex constraints is fo-

cused on a single execution, our approach is easier than traditional
model checking. Moreover, observing that generating and validat-
ing multiple candidate schedules can be done in parallel, we have
also developed a parallel constraint solving algorithm, which theo-
retically scales CLAP to programs with arbitrary execution length
when there are sufficient computation cores.

We have implemented CLAP for C/C++ programs and evalu-
ated it on a range of multithreaded benchmarks as well as several
real world applications with intensive shared memory dependen-
cies. Our experimental results show that CLAP is highly effective
in reproducing concurrency bugs. CLAP was able to compute cor-
rect schedules that deterministically reproduce all of the evaluated
bugs, and incurred only 9.3%-269% runtime overhead based on
an extension of the Ball-Larus algorithm [4, 20] for collecting the
thread paths. The constraint solving took 0.5s to 2280s for the se-
quential solver, while on an eight-core machine with our parallel
solving algorithm, it typically took much less time (0.2s-63s). The
computed schedules by CLAP typically contain less than three pre-
emptive thread context switches, which is much easier to reason
about for diagnosing the bug. Moreover, compared to a state of art
record-replay technique LEAP [14], CLAP achieved significantly
smaller overhead in both runtime (with 10%-93.9% reduction) and
space (with 72%-97.7% reduction).

We highlight our contributions as follows:

• We present the design and implementation of CLAP, a new
concurrency bug reproduction technique that computes shared
memory dependencies through thread local path collection and
constraint solving.

• We present a sound modeling of the execution constraints with
respect to both the sequential consistent and TSO/PSO mod-
els. Any schedule that satisfies the constraints is guaranteed to
reproduce the bug.

• We formulate the thread context switches into the constraints,
which enables CLAP to produce the bug-reproducing schedule
with minimal thread context switches and also bound the search
space of the solver to be polynomial to the execution length.

• We present a parallel constraint solving algorithm that scales
CLAP to programs with arbitrary execution length in theory.

• We evaluate CLAP on a set of real world concurrent applica-
tions. The result demonstrates the efficiency and the effective-
ness of our technique.

2. Overview
We first provide an example to illustrate the key challenges in
reproducing concurrency bugs. We then show how CLAP works
for the example and outline the core constraint modeling.

2.1 Example
Figure 2 shows an example with two threads accessing two shared
variables (x and y). Consider the two assertions assert¬ and
assert at line 9 and line 18, respectively. On the sequential con-
sistent (SC) model, assert¬ will be violated if the two threads ex-
ecute following the annotated interleaving 1-10-2-11-3-12-13-4
-5-14-9. However, this assertion violation is difficult to reproduce
because the program contains more than 10000 different inter-
leavings [25, 27] and a slightly different one may make the bug
disappear. Worse, assert will never be violated under the SC
model, but can be violated under the PSO model that allows the
reordering of writes to different memory addresses. For example,
suppose line 4 and line 5 are reordered, assert will be violated
following the schedule 1-10-2-11-3-12-5-13-14-4-18.

For the state of the art bug reproduction solutions [14, 21, 32,
41], having a small runtime perturbation is challenging, even for
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1->10->2->11->3->12->13->4->5->14->9 

Initially  x==y==0 Thread T1 Thread T2 

a=x 
x=1 
if(y>0) 
    y=a+1; 
    x=a+1; 
else 
    y=0; 
    x=0; 
①assert(x==y); 

1 
2 
3 
4 
5 
6 
7 
8 
9 

b=y 
y=2 
if(x>0) 
    x=b+2; 
    y=b+2; 
else 
    x=1; 
    y=1; 
②assert(x<=y); 

10 
11 
12 
13 
14 
15 
16 
17 
18 

--> assertion ①  violated!  1->10->2->11->3->12->-5>13->14->4->18 --> assertion ②  violated!  

Thread T1 Thread T2 

a=x 
x=1 
if(y>0) 
    y=a+1; 
    x=a+1; 
else 
    y=0; 
    x=0; 
①assert(x==y); 

1 
2 
3 
4 
5 
6 
7 
8 
9 

b=y 
y=2 
if(x>0) 
    x=b+2; 
    y=b+2; 
else 
    x=1; 
    y=1; 
②assert(x<=y); 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Initially  x==y==0 

Figure 2. Example: concurrency errors on sequential consistent (left) and partial store order (right) memory models.

Thread T1 

a=x 
x=1 
if(y>0) 
    x=a+1; 
    y=a+1; 
① assert(x==y); 

1 
2 
3 
4 
5 
9 

Initially   x==y==0; 

a=R1x 
W2x=1 
R3y>0 
W4x=a+1 
W5y=a+1 
R9x!=R9y 

Thread T2 

b=y 
y=2 
if(x>0) 
    x=b+2; 
    y=b+2; 
②assert(x<=y); 

10 
11 
12 
13 
14 
18 

b=R10y 
W11y=2 
R12x>0 
W13x=b+1 
W14y=b+1 
R18x>R18y 

path constraints path constraints 

(a) 

(R1x=0 & O1x<O13x) | (R1x=W13x & O1x>O13x)  
(R3y=0 & O3y<O11y)|(R3y=W11y&O11y<O3y<O14y) 
  |(R3y=W14y&O3y>O14y) 
(R9x=W4x & (O9x<O13x | O4x>O13x))  
 | (R9x=W13x & O4x<O13x<O9x) 
(R9y=W5y & (O9y<O14y | O5y>O14y))  
 | (R9y=W11y&O5y<O11y<O9y<O14y) 
 |(R9y=W14y&O5y<O14y<O9y) 

… 

 read-write constraints 

(b) 

SC order constraints 

O1x<O2x<O3y<O4x<O5y<O9x<O9y 
O10y<O11y<O12x<O13x<O14y<O18x<O18y 

O1x<O2x<O4x<O9x & O3y<O5y<O9y 
O12x<O13x<O18x & O10y<O11y<O14y<O18y 

PSO order constraints 

SC order constraints 

O1x<O2x<O3y<O4x<O5y<O9x<O9y 
O10y<O11y<O12x<O13x<O14y<O18x<O18y 

O1x<O2x<O4x<O9x & O3y<O5y<O9y 
O12x<O13x<O18x & O10y<O11y<O14y<O18y 

PSO order constraints 

(c) 

(c) 

Figure 3. CLAP constraint modeling of the example program in Figure 2.

this simple example of less than 20 lines. For instance, to replay
either of the assertions, there are at least 12 race pairs that need
to be tracked. A more subtle but critical point is that the PSO bug
might never be captured if one is not careful enough in adding locks
in tracking the race orders. The memory fencing effect of locks can
prevent the reordering in Figure 2 (right) to happen in test runs.
And, if the runtime monitoring is disabled in production runs, the
bug will surface to bite.

Both of these two assertion violations can be reproduced by the
value-based approaches [23, 24, 36, 40], however, at the price of
expensive logging of the value trace. Because both of the two buggy
executions contain 12 reads and writes, there are 12 corresponding
value cells (one per each read/write) needed to be recorded and
stored into the value logs at runtime. Yet, the search space of
the shared memory dependencies based on the value trace is still
enormous, and the search problem has been shown to be still NP-
complete in theory [11].

We next show how CLAP reproduces these two bugs without
recording any race order or program state and without using any
extra synchronization.

2.2 CLAP
In CLAP, we formulate the problem of reproducing concurrency
bugs as a constraint solving problem, the goal of which is to com-
pute a schedule (i.e., an ordering) of the shared data accesses in
the execution such that the bug can be reproduced. For simplicity,
we shall refer to such access to shared data as shared access point
(SAP), the read-SAP as Read, and the write-SAP as Write. At run-
time, CLAP logs only the execution path of each individual thread.
Then, offline, CLAP performs symbolic execution along the thread
paths to collect and encode all the necessary execution constraints
over the order of the SAPs. During the symbolic execution, since
the value returned by each Read is unknown, we first mark it by
a fresh symbolic value and later match it with a Write using the
constraints.

Figure 3 shows our constraint modeling of the example program
for both SC and PSO. There are two type of unknown variables: Ri

v

– the value of read access to v (here v is x or y) at line i, and Oi
v

– the order of the corresponding access to v in the to-be-computed
schedule. For the value of each Write, given the program input,
it could be either a concrete value or a value computed from the
symbolic values of the Reads. To aid the presentation, we also use
a symbolic variable W i

v to denote the value of Write to v at line i
in the example.

Figure 3(a) shows the path constraints. For instance, the con-
straints for the violation of assert are written as R3

y > 0 ∧
R12

x > 0 ∧ R18
x > R18

y , meaning that, for this assertion to be vi-
olated, both the value returned by the read of y at line 3, R3

y , and
that by the read of x at line 12, R12

x , should be larger than 0, and, of
course, the value returned by the read of x at line 18, R18

x , should
be larger than that of the read of y at line 18, R18

y .
Figure 3(b) shows the read-write constraints. The idea is to

match each Read with a corresponding Write, following the rule
that a read always returns the value by the most recent write (on
the same data). For example, consider the read of x at line 1 (R1

x),
it may return either the initial value 0, or the value written by the
write access at line 13 (W 13

x ). If R1
x returns 0, it should be executed

before W 13
x , and we shall have the order constraint O1

x < O13
x .

Otherwise, if R1
x returns the value by W 13

x (which is b+1), it should
be executed after W 13

x , and we shall have the order constraint
O1

x > O13
x . Therefore, as shown in the first row, the read-write

constraint for R1
x is written as (R1

x=0 ∧ O1
x < O13

x ) ∨ (R1
x=W 13

x

∧ O1
x > O13

x ).
Figure 3(c) shows the memory order constraints, determined by

the memory model. The memory order constraint for SC is the
same as the program order among all the per-thread SAPs. For
instance, we have O1

x < O2
x < O3

y in the SC order constraints,
meaning that the statement at line 1 should be executed before line
2, and line 2 before line 3. For PSO, the memory order constraint
is more relaxed compared to that of SC. Because reads and writes
on different memory addresses are allowed to be re-ordered, the
strict program order constraint is only applied to the SAPs on the
same shared variable. For instance, we only have O1

x < O2
x, but

not O2
x < O3

y , as line 2 and line 3 are accessing different data.
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R1x=0 
W2x=1 
R3y=2  
W4y=1  
W5x=1 

O1x=3 
O2x=4 
O3y=5 
O4y=10 
O5x=6 

R10y=0 
W11y=2 
R12x=1 
W13x=2 
W14y=2 
 
 
R18x=2 
R18y=1 

O10y=1 
O11y=2 
O12x=7 
O13x=8 
O14y=9 
 
 
O18x=11 
O18y=12 

a=x 
x=1 
if(y>0) 
    y=a+1; 
    x=a+1; 
else 
    y=0; 
    x=0; 
①assert(x==y); 

1 
2 
3 
4 
5 
6 
7 
8 
9 

b=y 
y=2 
if(x>0) 
    x=b+2; 
    y=b+2; 
else 
    x=1; 
    y=1; 
②assert(x<=y); 

10 
11 
12 
13 
14 
15 
16 
17 
18 

R1x=0 
W2x=1 
R3y=2  
W4y=1  
W5x=1 

O1x=1 
O2x=3 
O3y=5 
O4y=10 
O5x=7 

R10y=0 
W11y=2 
R12x=1 
W13x=2 
W14y=2 
 
 
R18x=2 
R18y=1 

O10y=2 
O11y=4 
O12x=6 
O13x=8 
O14y=9 
 
 
O18x=11 
O18y=12 

a=x 
x=1 
if(y>0) 
    y=a+1; 
    x=a+1; 
else 
    y=0; 
    x=0; 
①assert(x==y); 

1 
2 
3 
4 
5 
6 
7 
8 
9 

b=y 
y=2 
if(x>0) 
    x=b+2; 
    y=b+2; 
else 
    x=1; 
    y=1; 
②assert(x<=y); 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Figure 4. Two possible solutions returned by the solver for the
PSO case. The first solution (top) is identical to the original sched-
ule. The second (bottom) has the minimal thread context switches.

Taking all these constraints, CLAP invokes a SMT solver to
solve them. Figure 4 shows two possible solutions returned by the
solver for the PSO case (the result for SC is similar but simpler
so we omit it). In the first solution (top), the computed schedule
is identical to the original one. Following this schedule, at line 18,
the values of x and y are 2 and 1, respectively, and the violation
of assert can be reproduced. Better, in the second solution
(bottom), the computed schedule has only four context switches,
much fewer than that of the original schedule, but is still sufficient
to reproduce the assertion violation. The power of our approach
is that we can easily add additional constraints to always produce
a solution like the second one, which has the minimal number
of thread context switches. We will present more details on this
property in Section 4.2.

The above example illustrates how CLAP works in a nutshell.
We next answer the following two important questions:

• How to correctly model all the execution constraints? For ex-
ample, for presentation easiness, we do not have any synchro-
nization in the example program. How to model them? (§3)

• How difficult it is to solve the constraints? How to scale the
constraint solving task in our approach? (§4)

3. CLAP Execution Constraint Modeling
From a high level view, we encode all the necessary execution con-
straints into a formula Φ containing two type of unknown variables:
V - the symbolic value variables denoting the value returned by
Reads, and O - the order variables denoting the order of SAPs in the
schedule. Φ is constructed by a conjunction of five sub-formulae:

Φ = Φpath ∧ Φbug ∧ Φso ∧ Φrw ∧ Φmo

where Φpath denotes the path constraints, Φbug the bug predicate,
Φso the inter-thread order constraints determined by synchroniza-
tions, Φrw read-write constraints over Reads and Writes, and Φmo

the memory order constraints determined by the memory model.
These constraints are complete because the intra-thread data and
control dependencies are captured by Φpath and Φbug , and the
inter-thread dependencies are captured by Φrw, Φso and Φmo. We
next present each of the constraints in detail.

3.1 Intra-Thread Constraints
The intra-thread constraints serve two purposes: they force every
thread in the computed execution to follow the same control flow as
the corresponding threads in the original execution, and they force

T1 T2 

lock l 
 
read x 
 
unlock l 

lock l 
write x 
… 
write x 
unlock l 

T3 T4 

read x 
fork T4 
… 
join T4 
read x 

write x 
 
write x 

Figure 5. An illustration of the synchronization constraints

the same bug to happen, i.e., the same assertion to fail. Forcing the
same control flow eliminates the search over all possible branches
that common to the static techniques, thus simplifying the problem.

Path Constraints (Φpath) The path constraints consist of the con-
junction of the path conditions for all threads. The thread path con-
ditions are collected by a symbolic execution of the program fol-
lowing the recorded thread path profiles. On each branch instruc-
tion, a new constraint that specifies the condition of the branch
taken by the thread, is generated and added to the path constraint.

Bug Manifestation Constraint (Φbug) In our modeling, the bug
is not limited to a crash or a segfault, but general to all properties
over the program state. Φbug is modeled as a predicate over the
final program state. For example, a null pointer dereference x.f()
can be defined as Vx = NULL, and a buffer overflow error can
be defined as Vlen > Vsize. In practice, the predicate could be
extracted from the core dump when the program crashed, or from
the program assertion when the assertion is violated at runtime, or
from any other properties checked at runtime.

3.2 Inter-Thread Constraints
Inter-thread constraints are of two kinds: the synchronization con-
straints that govern the control flow between multiple threads, and
memory constraints that govern the data flow between threads. We
cover the synchronization constraints and then the memory con-
straints. For the memory order constraints Φmo, we also prove that
our approach is applicable to both SC and a range of relaxed mem-
ory models such as TSO and PSO.

Synchronization Order Constraints (Φso)
We model the synchronization order constraints according to the
locking and the partial order semantics. The locking semantics de-
termines that two sequences of Reads/Writes protected by the same
lock should not be interleaved, while the partial order semantics de-
termines that one SAP should always happen before the other. For
example, consider the program in Figure 5. The read of T1 cannot
be mapped to the first write of T2, because it cannot be executed
between the two writes due to the lock. The first read of T3 cannot
be mapped to any of the two writes of T4, because it must happen
before them due to the fork operation; similarly, the second read
of T3 cannot be mapped to the first write of T4, because the second
write of T4 always executes between them due to the join operation.

Φso is encoded as the conjunction of the locking constraints
and the partial order constraints. We extract the synchronization
operations for each thread and group them by the lock, signal, or
thread they operate on. We use the memory address in the symbolic
execution to identify locks and signals. For thread objects, because
each thread creates its children threads in a deterministic order (i.e.,
following the program order), we create a consistent identification
for all threads based on the parent-children order relationship. For
example, suppose a thread ti forks its jth child thread, this child
thread is identified as ti:j , and when the thread ti:j forks its kth
child thread, the new thread is then identified as ti:j:k. Readers can
find more details in our previous work [13].
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Locking constraints The locking semantics is concerned with
the lock and unlock operations only. For each lock object, we first
extract the set of lock/unlock pairs that operate on it, following the
program order locking semantics, i.e., an unlock operation is paired
with the most recent lock operation on the same lock by the same
thread. For each lock/unlock pair, we then enumerate all the other
pairs in the set and add their corresponding order constraints with
the chosen pair. Specifically, let S denote the set of lock/unlock
pairs on a certain lock and consider a pair al/au. The constraint is
written as follows:∧

∀a′
l
/a′

u∈S

Oau < Oa′
l
∨

∨
∀a′

l
/a′

u∈S

(Oal > Oa′
u
∧

∧
∀a′′

l
/a′′

u∈S

Oa′′
l
> Oau ∨Oa′′

u
< Oa′

l
)

The constraint above states that the lock operation al acquires either
the initial lock, or the lock released by another unlock operation
a′
u. In the first case, the order of the unlock operation au should be

smaller than that of all the other unlock operations. In the second
case, the order of al should be larger than that of a′

u, and for any
other lock/unlock pair a′′

l /a′′
u, either the order of a′′

l is larger than
that of au, or the order of a′′

u is smaller than that of a′
l. The total

size of the locking constraints for each lock object is 2|S|2 + 2|S|.

Partial order constraints The partial order semantics is related to
the thread fork/join and wait/signal operations. For fork and join,
their order constraint is simple to model, because they can only be
mapped to one unique operation. For fork, it is the corresponding
start operation of the newly forked thread, and for join, it is the
exit operation of the joined thread. Therefore, we can simply add
the constraints that the order of a fork operation is smaller than that
of its corresponding start operation. Similarly, the order of a join
operation is larger than that of its corresponding exit operation. For
wait and signal operations, the constraint is slightly more complex.
Because a wait operation could have multiple candidate signal
operations that it could be mapped to, we have to enumerate all the
candidates. Also, because a signal operation can only signal at most
one wait operation, we need to constrain the number of operations
a signal can be mapped to.

To model this constraint, we introduce a set of binary variables
for each signal operation. Each binary variable denotes whether
the signal operation is mapped to a wait operation or not. We then
constrain the sum of these binary variables to be less than or equal
to one. Consider a wait operation awt, and let SG denote the set
of signal operations that operate on the same signal variable as that
of awt and by a thread different from that of awt. We model the
constraint as follows:

(
∨

∀asg∈SG

Oasg < Oawt ∧ b
asg
awt = 1)

∧ ∑
x∈WT

b
asg
x ≤ 1

In the constraint above, WT denotes the set of wait operations the
signal operation asg can be mapped to, and b

asg
x the binary variable

that indicates whether asg is mapped to a wait operation, x, or not.
The total size of the constraints is 2|SG||WT |+ |SG|.

Memory Model Constraints
A crucial factor of the constraint modeling is the memory model
under which the buggy execution occurred, as it determines what
values each Read could return. The memory model is a parameter
to our system in the sense that we take a declarative specification
of the memory model, and combine it with the concrete program
actions from the trace to produce a set of constraints that determine
which reads can see values from which writes in the program. Con-
ceptually, this approach is taken from previous work like MemSAT
[3]; indeed, we could employ specifications in that style directly,

since our thread path constraints and SAPs correspond to the ele-
ments of that model.

However, in this work, we are focusing on memory models for
bus-based shared memory machines in which there is a global order
among memory operations as they appear to the main memory. This
allows us to simplify and use O as a total order; however, this is
not an inherent limit and we could employ other kinds of models
directly. Specifically, in CLAP, we currently implement Sequential
Consistency (SC), Total Store Order (TSO), and Partial Store Order
(PSO). We next discuss how Reads and Writes are constrained with
respect to the memory order O, and then how O is constrained to
model SC, TSO and PSO.

Read-Write Constraints (Φrw) For a Read, it may be mapped to
a Write by the same or a different thread, depending on the order
relation between the Writes. Consider a Read r on a shared variable
s, and let W denote the set of Writes on s. We use Or to denote
the order of r, Vr the value returned by r, and Owi the order of the
Write wi in W . Φrw is written as:∨
∀wi∈W

(Vr = wi ∧Owi < Or

∧
∀wj 6=wi

Owj < Owi ∨Owj > Or)

The constraint above states that, if a Read is mapped to a Write, for
this Write, its order is smaller than that of the Read, and there is no
other Write that is between them. In our constraint construction, we
first group all the Reads/Writes by the accessed memory address,
and then encode the read-write constraint for each Read. Let Nr

and Nw denote the number of Reads and Writes on a certain shared
address, the size of the read-write constraints is 4NrN

2
w, which is

polynomial to the size of SAPs. Note that this constraint is identical
to the corresponding constraints in [3], with the change of O to be
a single global order.

Memory order constraints (Φmo) For the sequential consistent
memory model, the memory order for SAPs is the same as the
program order. Consider two consecutive SAPs a and b by a thread
t in the program order, their order constraint is written as Oa < Ob.
We encode this constraint for each pair of successive accesses by
each thread, following the recorded path profile. The size of the
constraints is linear to the total number of SAPs in the execution.

For TSO, it does not require the program order and allows re-
ordering Read and Write on different addresses. The hard con-
straint is that the original program order among all the Writes and
among all the Reads is preserved. Hence, for all Writes and for all
Reads by the same thread, we model the same order relation as the
program order. In addition, for Reads, we need to make sure each
Read returns the value written by the most recent Write on the same
data. Therefore, for each Read, we first find the two Writes that 1)
access the same address as that by the Read, and 2) are immediately
before and after the Read, respectively, in the program order. We
then model the order between the Read and the two Writes to be the
same as that in the program order. Compared to TSO, PSO further
relaxes the order relation between Writes and between Reads on
different addresses. Our constraint model for PSO is hence similar
to TSO, except that the order relation between Writes and between
Reads on different addresses are removed.

Soundness With respect to different models, although the execu-
tion order of the SAPs by each thread may or may not be the same
as the program order, we prove that our approach of computing a
schedule among the SAPs is sound to SC/TSO/PSO memory mod-
els. More formally, we have the following theorem:

Theorem 1. For SC/TSO/PSO, there always exists a schedule of
the SAPs in which each load return the value by the most recent
store to the same address, and following which the same program
state can be achieved as that of the original buggy execution.
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Proof For all these models, once a store is visible to a second pro-
cessor, it is instantly visible to all processors. It is impossible for
two processors to observe different orders for any pair of stores.
Hence, there always exists a total ordering of all the stores under
these models. For loads, their order in the schedule can be deter-
mined by placing them after the stores whose value they accessed
in the original execution and before the subsequent store, such that
a load always return the value by the most recent store.

4. Constraint Complexity and Scalable Solving
Our constraint solving task is much easier than conventional ones
involving complex constraints such as strings and non-linear math-
ematics. In CLAP, the solver only needs to compute a solution for
the order variables that essentially maps each Read to a certain
Write in a discrete finite domain (i.e., the set of Writes on the same
data as that of the Read), subject to the order constraints. To fur-
ther scale CLAP, we have also developed two core techniques to
improve the performance of constraint solving: preemption bound-
ing and parallel solving. We next conduct a brief analysis of the
constraint complexity, followed by the detailed discussion of the
two techniques.

4.1 Constraint Complexity
Let Nbr denote the number of conditional branching instructions in
the execution. Let Nsync denote the number of synchronizations.
And let Nsap, Nr , and Nw denote the number of SAPs, read-
SAPs, and write-SAPs, respectively. Among the synchronizations,
let Nl the number of lock/unlock pairs, and Nwt/Nsg the number
of wait/signal operations.

Recall Section 3 that our constraint formulae consist of the path
constraints Φpath, the bug manifestation constraint Φbug , the syn-
chronization constraints Φso, the read-write constraints Φrw, and
the memory order constraints Φmo. The size of Φpath is equal to
Nbr because each branching instruction generates a new conjunc-
tion clause over the symbolic value variables. Recall Section 3.2,
the size of Φso is 2N2

l +2Nl+2NsgNwt+Nsg; assuming all SAPs
are accessing a single shared variable, the worst case size of Φrw is
4NrN

2
w, and the worst case size of Φmo is equal to Nsap+Nsync

(for all the three memory models). Because Nsap=Nr+Nw+Nsync

and normally Nsap � Nsync, the size of Φrw is far larger than
Φmo and Φso. Therefore, the total size of the constraints can be
approximated as Nbr+N3

sap.
In sum, the worst case complexity of our constraints is linear

to the number of conditional branches and cubic to the number of
shared data accesses in the execution.

4.2 Thread Context Switch Constraint
Researchers have observed that most real world concurrency bugs
can be manifested by a small number of thread context switches
[28]. In CLAP, this observation can be directly encoded as addi-
tional constraints to bound the search space of the solver.

Recall that each SAP is assigned with an order variable, repre-
senting its position in the computed schedule. Our basic idea is to
use the order difference between consecutive SAPs within the same
thread to determine whether a context switch occurs between them.
If the execution of two consecutive SAPs is not interleaved by other
threads, their order difference will be equal to one; otherwise, the
difference will be larger. To obviate modeling the non-preemptive
context switches (as they always occur) and to create a uniform
constraint for different memory models, we group a sequence of
SAPs into segments, and use the number of interleaved segments
to approximate the size of real context switches. This is a good ap-
proximation in practice because the context switch number is often
small.

We first extract all the synchronization operations that cause
non-preemptive context switches, including wait, join, yield, and
exit. For brevity, we call them must-interleave operations. We use
these operations to divide the SAPs into segments for each thread.
Each segment contains only one must-interleave operation which
leads or ends the segment. Note that the must-interleave opera-
tions are not allowed to be reordered (because they are synchro-
nizations). In the final schedule, the leading (ending) operation in
each segment will always have the smallest (largest) order among
all the SAPs in the same segment. For each segment, we then use
the difference between the orders of the ending and the leading op-
erations to determine whether a context switch occurs or not in the
segment. Let St denote the set of segments by thread t, al and ae

the leading and ending SAP in a segment s, and Ncs the specified
context switch bound. The constraint is written as:

Σt∈T Σs∈St

{
1 if Oae −Oal > |s| − 1
0 otherwise. ≤ Ncs

The above formula states that the total number of interleaved
segments for all threads is bounded by Ncs.

Minimal thread context switches The method above not only
bounds the search space, but can also be used to produce the
schedules with minimal number of context switches. Specifically,
we can start from the constraint with zero thread context switch,
and increment the context switch number when the solver fails to
return a solution. We repeat this process until a solution is found. In
this way, we can always produce a schedule with the fewest thread
context switches among all the bug-reproducing schedules.

4.3 Parallel Constraint Solving Algorithm
Our core idea to parallelize the constraint solving is to treat the
memory order constraints Φmo separately from the other con-
straints. We first generate candidate schedules that satisfy Φmo,
and then employ the solver to validate each candidate schedule,
i.e., checking if it satisfies all the other constraints. This method has
two salient features. First, we can generate different schedules and
validate them in parallel. Each single schedule generation and val-
idation is independent and fast (requiring only a linear scan of the
SAPs and the constraints). The whole constraint solving task can
then be divided into many independent subtasks that each works on
a candidate schedule. Second, we can generate the schedules with
the increasing number of context switches, allowing us to bound
the search space similar to that of the bounded dynamic schedule
exploration approaches [27, 28].

A key challenge in this approach is how to avoid generating
duplicated schedules. To address this problem, we represent the
context switches in a schedule by a set of context switching points
(CSP). A CSP is a location in the schedule where a context switch
occurs. It can be uniquely identified in an ordered way by a triple
(t1,k,t2), denoting that a thread t1 is interleaved by another thread
t2 immediately before the kth SAP of t1. Different CSPs are then
combined together into a CSP set, and the set is used to guide the
schedule generation procedure.

Preemption-bounded schedule generation Given a context switch
number c (= 0,1,2,. . . ), we first generate all the CSP sets of size
c. For each CSP set (including the empty set), we fork a separate
process that generates the corresponding schedules. Each generated
schedule is then validated by the solver to determine its correctness.
Our algorithms for generating schedules for SC and for TSO/PSO
are mostly the same with only slight difference. The complexity of
our algorithm is linear to the total number of SAPs. The size of the
schedules is bounded by

(
c
N

)
(N + c)!, where c is the number of

context switches and N is the total number of SAPs.
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SC We associate each thread with a stack that contains the SAPs
of the thread in the program order. Starting from the main thread,
each schedule-generation process attempts to pop up one SAP from
the thread’s stack, subject to a condition: the input set S contains
no CSP (t1,k,t2) that matches the current thread (t) and the current
SAP (i). If the condition is not met (t = t1 and i = k), it means
that a context switch should happen at this point, so we jump to the
stack of the interleaving thread (t2). This process is repeated until
all SAPs are popped up.

Note that each process usually generates more than one sched-
ule. This is because, when the stack of the current thread becomes
empty, we have multiple remaining threads to jump to and each
choice will generate a different schedule. In that case, we remove
the current thread and fork multiple children processes to continue
the schedule generation. Each child process jumps to the stack of a
different thread in the remaining thread set and repeat the process.

TSO/PSO As Reads/Writes are allowed to be reordered in TSO
and PSO models, we can no longer use a stack to represent the
memory order constraints. Instead, we use a tree structure (called
SAP-tree) to represent the order relation between SAPs for each
thread. Each node in the SAP-tree represents a SAP and the parent-
child relation between nodes represents a store-load data depen-
dence or a memory-model determined order relation. In TSO, the
parent-child relation is applied on all Writes in the program order,
while in PSO it is applied on the Writes for each memory address.

Similar to that of SC, the schedule generation process for
TSO/PSO repeatedly removes an ancestor node (which has no
parent) from a SAP-tree, until the SAP-trees for all threads be-
come empty. Whenever there are multiple ancestor nodes in the
tree (because an ancestor node with multiple children nodes may
be removed in the previous step), we fork the same number of sub-
processes each of which continues the schedule generation starting
with one of the ancestor nodes.

5. Implementation
We have implemented CLAP on top of LLVM and KLEE-2.9 [5]
with the STP solver [10]. To adapt KLEE to CLAP, we made four
key modifications. First, KLEE works only with sequential pro-
grams, thus we extended it to support multiple threads. Specifically,
we modified KLEE to spawn a new instance for each new thread
and added the necessary extension to uniquely identify threads (see
Section 3). Second, we changed KLEE to only follow the recorded
path profile for each thread, and to only collect the path constraints
without solving them. At the end of the run, we unify the con-
straints collected from each thread as the path constraints. Third,
we adapted KLEE to return a new symbolic value for the load in-
structions that access shared memory addresses. Fourth, we modi-
fied the constraint solving utility, Kleaver, to incorporate the path
constraints with the other execution constraints. We wrote our own
constraint generation engine based on the SAPs collected from the
thread local paths during the symbolic analysis phase.

Thread Local Path Collection Path monitoring is a pluggable
component in our approach. Ideally, we can use hardware moni-
toring techniques such as the work of Vaswani et al. [31] which
has negligible (around 0.6%) overhead. Our current implementa-
tion is an extension of the classical Ball-Larus algorithm [4, 20]
based on a LLVM function pass. It works for multithreaded C/C++
programs that use PThreads and incurs 9.3%-269% runtime over-
head in our experiment. From a high level view, we break the whole
path into a sequence of segments, each of which is a Ball-Larus
(BL) profile. A new segment starts when a new function is called,
or an intra-procedural path is re-entered. We analyze the control
flow graph of each function and insert instrumentations at the fol-
lowing points: the entrance/exit of each function, the beginning of

basic blocks that have a back edge, and the branching points an-
alyzed by the Ball-Larus algorithm. Each function is uniquely la-
beled (represented by a number), and each BL path inside the same
function is also uniquely labeled (computed as the sum of the en-
coded edge weights at runtime). During the execution, we collect
the whole path profile for each thread by recording the sequence of
the labels for the function calls and for the BL paths. To distinguish
between the BL paths that have the same label but are in differ-
ent functions, we also log the exit of each function to demarcate
the sequence of BL paths. The recorded labels are then decoded to
produce the whole path profile, and to guide our symbolic analysis.

Shared Memory Access Identification Identifying shared data
accesses is orthogonal to our approach but important for reduc-
ing the size of the constraints. Naively, we would mark all loads
and stores as shared data accesses. This would produce a huge
amount of unnecessary constraints, since the constraints with only
the thread local data accesses are essentially redundant. A better
way is to detect shared data accesses at runtime, where the accessed
address is available for every memory operation. To overcome the
virtual address recycling issue, we also need to record malloc/free
operations to identify truly shared memory locations. However, this
method does not fit our design as it inevitably causes additional pro-
gram slowdown. In CLAP, we perform a static thread sharing anal-
ysis based on the Locksmith [30] race detector to identify shared
variable accesses, including also the treatment of shared pointers
and heap locations. Though being conservative, it is very effective
to determine thread-local locations and, more importantly, does not
introduce any runtime cost.

Deterministic Bug Reproduction Our application level thread
scheduler is implemented based on Tinertia [16]. We add in-
strumentations before each SAP in the program and employ the
dynamic thread interpolation to intercept PThread library calls.
Through the inserted instrumentations, we are able to enforce the
thread execution order of the SAPs to strictly follow that of the
computed bug-reproducing schedule. Whenever a thread is going
to execute a SAP, we first check the schedule to decide whether it
is the correct turn for the thread to continue execution. If not, we
put the thread in a postponed thread queue and make it wait until
all the SAPs before it have been executed.

Challenges and Treatments
External Function Calls A known challenge in symbolic execu-
tion is the existence of external function calls that make the path
constraints incomplete. Although KLEE tried its best to simulate
the external environments (i.e., file systems and system libraries),
it still suffers from this problem when facing unresolved external
calls. However, this problem is not fundamental to CLAP because,
for bug reproduction, we can record the runtime input/return values
of all the external calls, and use the value pairs to construct the con-
straints of the external interfaces. A negative side of this method is
that it would over-approximate the behavior of the external func-
tions, which reduces the scheduling space explored by CLAP. In
practice, to avoid limiting the capability of CLAP too much, we
choose to first resolve the external functions as much as possible.
In addition, we try to avoid flagging as symbolic the variables that
have value flows to unresolved external calls. In our experiments,
the external functions are seldom related to symbolic variables, and
we did not face much difficulty in this problem.

Symbolic Address Resolution Another known issue in symbolic
execution is the resolution of symbolic memory addresses. As
KLEE does not perform any pointer tracking, when facing reads
or writes to symbolic addresses, it would exhaustively search all
allocated objects and forks execution for each possible base object.
This usually takes a long time and also produces quite a number
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of unnecessary memory states. In CLAP, since the symbolic analy-
sis phase follows the recorded thread execution path, we only need
to explore one memory state for each thread. To avoid the state
explosion, we choose to delay the object resolution for symbolic
addresses to the constraint solving phase. Specifically, during sym-
bolic execution, we keep track of the base object for each mem-
ory operation. For each base object, we maintain an ordered list
of writes to symbolic addresses performed so far. Each write is re-
membered as a pair consisting of the location that was updated, and
the expression that was written to that location. For any subsequent
read, the loaded value is resolved from the ordered list with a set of
constraints. As an example, suppose the ordered list of writes to an
array is 〈a[0] = 0, a[1] = 0, . . . , a[n] = 0, a[i1] = x, a[i2] = y〉.
For a read b = a[j], we create the constraint (j = i2∧b = y)∨(j 6=
i2 ∧ j = i1 ∧ b = x) ∨ (j 6= i2 ∧ j 6= i1 ∧ b = 0), and add it to
the path constraints.

Input Non-determinism Currently, CLAP assumes that the pro-
gram input is deterministic. CLAP does not record the program in-
put as we mainly address the problem of scheduling non-determinism
in this work (which is more significant and difficult). If the program
input is non-deterministic, CLAP might not be able to reproduce
the bug. Nevertheless, similar to the treatment of external func-
tions, this problem can be addressed by recording and enforcing
the same input value during the bug reproduction execution.

6. Experiments
We have evaluated CLAP on a variety of real world multithreaded
C/C++ applications with known or seeded bugs collected from
[16, 39], including pbzip2-0.9.4, a parallel implementation of bzip;
aget-0.4.1, a parallel FTP/HTTP downloading utility; ctrace, a
multithreaded tracing library; pfscan, a parallel file scanner; swarm,
a parallel sort implementation; bbuf, a shared bounded buffer im-
plementation; and the apache-2.2.9 web server. To assess the limit
of CLAP, we also examined with simp race, a simple racey pro-
gram [16], and racey, a benchmark for deterministic replay systems
[38]. To evaluate CLAP for reproducing bugs on relaxed memory
models, we also examined with the implementations of three clas-
sical mutual exclusion algorithms - dekker, bakery and peterson.

Setup CLAP works in three phases: 1) online path collection;
2) offline constraint generation and solving; 3) bug replay execu-
tion. In phase 1, the thread paths are dumped to disk when the
bug occurs. Due to the rare erroneous thread interleaving, most
concurrency bugs are difficult to manifest. To trigger the bug in
our experiment, we typically inserted timing delays at key places
in the program and ran it many times until the bug occurred, and
we added the corresponding assertion to denote the bug manifes-
tation. In phase 2, the constructed constraints were first saved to a
file which is then provided to the solver to compute a schedule. In
phase 3, CLAP enforced the replay to follow the computed sched-
ule to reproduce the bug. All our experiments were conducted on an
eight-core 3GHz machine with 16GB memory and Linux 2.6.22.

6.1 CLAP Bug Reproduction Effectiveness
Table 1 summarizes our experimental results. Overall, CLAP is
highly effective in reproducing concurrency bugs. For all the
eleven evaluated bugs and injected violations including three re-
laxed memory model related failures, CLAP is able to reproduce
all of them by producing a schedule with a small number of thread
context switches. Most of the computed schedules contain less than
three preemptive context switches, except for the racey benchmark,
in which at least 276 context switches are needed to reproduce the
injected violation. The size of the constraints range from 341 to
more than 400M clauses with 26 to 2M unknown variables, and

the total time for constructing and solving these constraints ranges
from 2s to around 50 mins. We next discuss the results for several
interesting applications in detail.

pbzip2-0.9.4 contains a known order violation bug frequently
studied in concurrency defect analysis techniques [16, 18, 19, 35,
39]. The main thread communicates with a set of consumer threads
through a FIFO queue with a mutex protecting the data accesses.
The bug occurs intermittently when the main thread nullifies the
mutex before some consumer threads are still using it, causing
program crashes. The buggy execution contains four threads com-
pressing a 80K file. There are 18 variables identified as shared
(including all the global variables and the variables associated with
the FIFO queue) by the static escape analysis [30] and are marked
as symbolic. Upon crash, it executed a total number of 4K instruc-
tions with 65 SAPs and 473 conditional branches (excluding calls
to external libraries). It took CLAP 4s to construct the symbolic
constraints, containing 102 unknown variables and 5K clauses. The
STP solver took around 5s to compute a bug-reproducing schedule
with two preemptive thread context switches.

apache-2.2.9 bug #45605 is a multi-variable atomicity violation
between a set of listener threads and worker threads on accessing
a shared queue data structure, causing an assertion violation that
finally crashes the server. We started four clients to simultaneously
send a number of requests until the assertion was violated. The col-
lected path profiles contain 28 threads executing a total number of
6.8M instructions with 962K branches. We identified a total num-
ber of 22 variables as shared symbolic variables in the buggy run.
To bound the search space, we constrained the size of preemptive
thread context switches to be less than three. It took CLAP around
13 minutes to collect and encode the execution constraints, which
contain 81K unknown variables and 10M clauses. CLAP solved the
constraints in 344s and produced a bug-reproducing schedule with
three preemptive thread context switches.

racey is a specially designed benchmark [38] with numerous in-
tentional races that make it very likely to produce a different output
if a different race occurs. We assessed the bug reproduction capa-
bility of CLAP by applying it to reproduce the same output in racey.
There are three shared variables: a 64-union array upon which the
core computation between threads is operated, and two volatile
variables for coordinating the start of the threads. To avoid out of
memory error, we set the loop iterations (MAX LOOP) to 500000.
The test execution contained 3 threads, 7.1M branches, 93M in-
structions, and 1.36M SAPs. It took CLAP around 15 minutes to
collect the constraints containing 513M clauses and 2M unknown
variables. CLAP took 38 minutes to solve the constraints and suc-
cessfully computed a schedule with 276 context switches. Since
racey is a benchmark specifically designed to have many races, it is
an outlier in our data. It does not follow the observation that most
bugs require few thread switches to reproduce, and hence it causes
worst-case behavior in our system. Note that real programs have
much better results.

Relaxed memory model bugs
Dekker’s and Peterson’s algorithms, and Lamport’s Bakery algo-
rithm all work well for the SC model, but not for TSO and PSO
models. We evaluated with them to demonstrate the capability of
CLAP for reproducing concurrency bugs on relaxed memory mod-
els. To trigger the bugs, we simulated the memory model effects
by actively controlling the value returned by shared data loads in
a similar style to [9]. For TSO, we simulated a FIFO store buffer
for each thread, and for PSO, we simulated multiple FIFO store
buffers, with one per shared variable.

Bakery We forked four worker threads, each of which increments
a shared integer variable by one in the critical section. Due to the
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Program LOC #Threads #SV #Inst #Br #SAPs #Constraints #Variables Time (secs) #cs success?symbolic solve
sim race 75 5 2 103 18 23 341 26 0.8 0.5 0 Y
pbzip2 1.8K 4 18 4203 473 65 5324 102 4 5 2 Y
aget 1.2K 4 30 39401 4017 1951 1366923 2485 125 89 1 Y
bbuf 381 5 11 2643 189 64 2784 75 3 5 1 Y
swarm 2.2K 3 13 840193 73728 1265 1226098 1776 27 64 2 Y
pfscan 925 3 13 2261926 287713 2864 7255156 3101 332 160 3 Y
apache 643K 28 22 6806939 961779 81237 10153562 15534 770 344 3 Y
racey 200 3 3 93035842 7133586 1361588 513086300 2010082 857 2280 276 Y
bakery 73 5 3 1181 182 218 16355 331 1 8 1 Y
dekker 48 3 3 223 28 39 699 52 1 2 1 Y
peterson 44 3 3 215 28 35 696 48 1 2 1 Y

Table 1. Overall results - Columns 3-6 report the number of threads (#Threads), the number of shared variables (#SV), the number of executed
instructions (#Inst) and branches (#Br) in the original buggy execution. Columns 7 reports the number of shared data accesses (#SAPs) in
the schedule. Columns 8-9 report the size of the constraints (#Constraints) and the number of unknown variables in it (#Variables). Columns
10-11 report the symbolic analysis time (Time-symbolic) for collecting the constraints, and the constraint solving time (Time-solve) using
the STP solver on a single core. For all the evaluated programs, CLAP was able to compute a bug-reproducing schedule, and most of the
computed schedules contain less than 3 context switches. The total time for collecting and solving the constraints ranges from 2s to 50mins.

bug, the mutual exclusion for executing the critical section does not
hold, and threads accessing the shared variable can race with each
other, which may produce a wrong final result of the shared integer.
The recorded path profiles of the buggy execution contain 5 threads
with a total of 1181 instructions and 182 branches. It took CLAP
less than 1s to collect the constraints that contain 331 unknown
variables and 16K clauses for both TSO and PSO. CLAP solved
the constraints in 8s and produced a bug-reproducing schedule with
one preemptive thread context switch.

Dekker/Perterson We forked two threads each of which loops
twice in the critical section for incrementing a shared integer. Due
to the bug, the final result of the shared integer could be wrong. The
recorded path profiles of dekker contain 3 threads with a total of 223
instructions and 28 branches. It took CLAP less than 1s to collect
the constraints that contain 52 unknown variables and 699 clauses
for both TSO and PSO. CLAP solved the constraints in 2s and
produced a bug-reproducing schedule with one preemptive thread
context switch. The result for peterson is similar, as Peterson’s
algorithm is a slightly simplified version over Dekker’s algorithm.

6.2 CLAP Runtime Performance
We compared the runtime performance of CLAP with an imple-
mentation of LEAP [14], which is one of the state of art record-
replay techniques that track shared memory dependencies. Because
none of the concurrency bug reproduction tools [1, 21, 29, 32, 40,
41] is available, we choose LEAP for the reason that it incurs min-
imum implementation bias and it puts the quantifications of vari-
ous runtime characteristics of CLAP into perspective. We ran each
benchmark under three different settings – natively (without instru-
mentation and logging), with LEAP, and with CLAP, and we mea-
sured the corresponding execution time and log size.

Table 2 reports the results. All data were average over five runs.
As expected, since LEAP requires synchronizations to record the
shared variable access orders, its overhead is large when there are
intensive shared memory dependencies in the execution. Because
most of these benchmarks have frequent shared data accesses (es-
pecially racey, in which the majority of memory operations are on
shared data), both the runtime overhead for recording the shared
data accesses and the space needed for storing the log are signifi-
cant for LEAP. The runtime overhead of LEAP ranges from 21.4%
in pbzip2 to as large as 4289% in racey, and the corresponding
space cost ranges from 19.5K-68.2M. Compared to LEAP, CLAP
incurred much less runtime overhead and space cost, because it
only records the thread local paths and does not use any synchro-

Program Schedules Time
#worst #gen(#cs) #good par seq

sim race > 106 128(0) 3 0.3s 0.5s
pbzip2 > 1015 140(2) 8 0.3s 5s
aget > 1040 13725(1) 16 16s 89s
bbuf > 1020 324(1) 36 0.6s 5s
swarm > 1030 30855(2) 27 19s 64s
pfscan > 1050 118714(3) 12 63s 160s
apache > 10100 5634627(3) 15 195s 344s
racey > 1010000 2528316(2) 0 2h 2280s
bakery > 1025 1071(1) 22 1.5s 8s
dekker > 106 31(1) 12 0.2s 2s
peterson > 106 28(1) 11 0.2s 2s

Table 3. The performance of parallel constraint solving

nization. The runtime overhead of CLAP ranges from 9.3%-269%,
which achieves 10% to 93.9% reduction compared to LEAP. For
the space cost (1.1K-3.81M), the improvement by CLAP is also
significant, with 72% to 97.7% reduction compared to LEAP.

6.3 CLAP Parallel Constraint Solving Performance
We have evaluated the performance of our parallel constraint solv-
ing algorithm on an eight-core machine. We repeated the schedule
generation process with a larger context switch number (recall Sec-
tion 4.3) until we found at least one correct schedule that satisfies
the constraints. Each task of generating and validating one sched-
ule is handled by a separate thread. Because normally there exist
a set of correct schedules and multiple threads may work on them
simultaneously, we typically have found multiple correct schedules
before the whole process is terminated.

Table 3 reports the results. Columns 2-4 report the worst num-
ber of possible schedules (computed according to the theoretical
results in [25, 27]), the number of generated schedules before we
stopped (#cs–the largest number of context switches among these
schedules), and the number of correct schedules among the gen-
erated ones. Column 5 reports the total amount of time it took
for finding these correct schedules. As the table shows, although
the worst number of different schedules is exponential, CLAP suc-
cessfully generated correct schedules for most of the benchmarks
within 200s.

For comparison, Column 6 shows the constraint solving time
of the sequential version (as also reported in Table 1). For most
benchmarks, using our parallel algorithm is much faster than the
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Program Native Time Space
LEAP (Overhead%) CLAP (Overhead%) Reduction% LEAP CLAP Reduction%

sim race 2ms 4ms (-) 4ms (-) - 448B 126B ↓72%
bbuf 2ms 6ms (-) 4ms (-) ↓33% 12.2K 1.1K ↓91%
swarm 68ms 0.770s (1032%) 0.101s (48.5%) ↓87% 9.20M 215.6K ↓97.7%
pbzip2 0.140s 0.170ms (21.4%) 0.153ms (9.3%) ↓10% 19.5K 1.8K ↓91%
aget 0.231s 0.490s (112%) 0.270s (17%) ↓45% 683.8K 24.3K ↓96.4%
pfscan 0.135s 1.537s (1172%) 0.260s (92.6%) ↓83.1% 1.61M 330.5K ↓79.5%
apache 0.185s 0.248s (34%) 0.220 (19%) ↓11.3% 15.4M 2.30M ↓85%
racey 0.262s 11.5s (4289%) 0.705 (269%) ↓93.9% 68.2M 3.81M ↓94.4%

Table 2. Runtime and space overhead comparison between CLAP and LEAP

sequential solution. For example, for the constraint of apache, it
took the sequential solver 344s to return a correct schedule, while
with the parallel algorithm, CLAP generated 27 correct schedules
in 195 seconds. The only exception is racey, which we use as a
stress test for worst case behavior. Using the parallel algorithm, we
did not find a correct schedule within two hours. The reason is that a
correct schedule for racey should contain at least 276 thread context
switches, but in two hours we did not even finish enumerating the
schedules with only two context switches, due to the large number
of shared data accesses in the execution.

6.4 Discussion
Long running traces Our evaluation results demonstrate that
CLAP has good scalability with fairly substantial traces in real-
world executions. For very long runs, reproducing the failure is
more challenging that the solver may not be able to find a solution
within a reasonable time budget. In such cases, we need to break
up the execution so that each execution segment has tractable size
of constraints. Checkpointing is a common technique used in such
contexts. We plan to integrate CLAP with checkpointing in future.

Recording synchronizations Previous work [32, 42, 43] has
shown that recording synchronization operations is lightweight for
many applications. Recording the synchronization order can also
reduce the size of generated constraints, and it is easy for CLAP
to do so. We do not record synchronizations in our current version
of CLAP, because it would need extra synchronization operations,
which could limit our ability to capture non-sequential bugs. Also,
it could still be costly for a certain range of programs containing
intensive high-level races on synchronizations.

7. Related Work
Lee et al. [23, 24] pioneered the use of offline symbolic analysis
for deterministic replay on SC and TSO models at the hardware
level. While being much inspired by their work, their solution does
not meet our goal of designing a lightweight and software-only so-
lution. Without the hardware support, their reliance on collecting
load values for the SMT solvers to search for shared memory de-
pendencies will create a significant space overhead and a consid-
erable program slowdown. In contrast, we do not collect any val-
ues but only the paths taken by the threads, which has much lower
recording overhead. Taking a leap from their symbolic analysis,
we perform symbolic execution along the program paths to replace
“value matching” with “path constraint satisfaction”. This not only
allows us to exploring more and possibly simpler schedules (i.e.,
with minimal number of thread context switches), but more im-
portantly, it enables us to encode the preemption bound into the
constraint model, converting the NP-complete problem [11] to a
polynomial search.

ODR [1] presents a high-level framework that is similar with
CLAP: using constraint solving to figure out a schedule that sat-
isfies the recorded information. However, ODR did not provide a

concrete constraint solving algorithm and implementation that con-
siders real-world memory consistency and synchronization. Its con-
straint solving approximates many issues that CLAP provides con-
crete and accurate solution to.

Wang et al. [33, 34] develop a verification framework for pre-
dictive concurrency trace analysis. Our modeling of the read-write
constraints is similar to their symbolic model, but has several spe-
cializations treatments tailored to bug reproduction. For instance,
we do not use any synchronization nor log any program state on-
line, and we do not require a sequential consistent execution which
is needed in their work to obtain a global trace.

ESD [40] performs symbolic execution to synthesize program
failures without any runtime logging. A key difference between
CLAP and ESD is that we explore only a single path (i.e., the orig-
inal path) that is guaranteed to exhibit the same failure, while ESD
essentially has to search all program paths and thread interleavings
to find the bug, which faces particular challenges in addressing pro-
grams with loops and recursive calls. To improve scalability, ESD
relies on heuristics to synthesize races and deadlocks (which is un-
sound and could miss real bugs), while CLAP is built upon a sound
modeling of the execution constraints.

Weeratunge et al. [36] present a technique that reproduces con-
currency bugs by analyzing the failure core dump. Powered by ex-
ecution indexing [37], their technique actively searches for a fail-
ure inducing schedule by comparing the core dump differences be-
tween the failing run and the passing run. Compared to [36], CLAP
does not require the core dump information and hence is able to
reproduce a wider range of concurrency errors.

CHESS [28] detects and reproduces concurrency bugs through
dynamic exploration of thread interleaving. To mitigate the sched-
ule explosion, CHESS employs a context-bounded algorithm [27]
to explore schedules up to a certain small number of context
switches. Our mechanism for encoding the number of thread in-
terleavings shares the same spirit as CHESS. Differently, our tech-
nique is parallelizable because of the static nature, while CHESS is
difficult to parallelize due to the dynamic exploration strategy.

PRES [29] proposes probabilistic replay that intelligently ex-
plores the thread interleavings through a feedback-based replayer.
By continuously rectifying the schedule in the previous failing re-
play, the technique successfully trades multiple replay attempts for
efficient online recording.

The idea of doing lightweight recording at runtime and mak-
ing up for it with a solver has also been successfully applied by
Cheung et al. [6] for replaying long-running single-threaded pro-
grams. The technique achieves low recording overhead by logging
only the branch choices at runtime and using symbolic analysis to
reconstruct the inputs and memory states.

8. Conclusion
Reproducing concurrency bugs is notoriously challenging due to
non-determinism. We have presented a new technique, CLAP, that
achieves significant advances over previous approaches. CLAP
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does not log any runtime shared memory dependency or program
state, works for sequential consistent as well as a range of relaxed
memory models, and produces the bug-reproducing schedule in
parallel with minimal thread context switches. With all these prop-
erties, we believe CLAP is promising for production settings.
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