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ABSTRACT
Middleware provides simplicity and uniformity for the de-
velopment of distributed applications. However, the modu-
larity of the architecture of middleware is starting to disin-
tegrate and to become complicated due to the interaction of
too many orthogonal concerns imposed from a wide range
of application requirements. This is not due to bad design
but rather due to the limitations of the conventional ar-
chitectural decomposition methodologies. We introduce the
principles of horizontal decomposition (HD) which addresses
this problem with a mixed-paradigm middleware architec-
ture. HD provides guidance for the use of conventional de-
composition methods to implement the core functionalities
of middleware and the use of aspect orientation to address
its orthogonal properties. Our evaluation of the horizontal
decomposition principles focuses on refactoring major mid-
dleware functionalities into aspects in order to modularize
and isolate them from the core architecture. New versions of
the middleware platform can be created through combining
the core and the flexible selection of middleware aspects such
as IDL data types, the oneway invocation style, the dynamic
messaging style, and additional character encoding schemes.
As a result, the primary functionality of the middleware is
supported with a much simpler architecture and enhanced
performance. Moreover, customization and configuration of
the middleware for a wide-range of requirements becomes
possible.
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1. INTRODUCTION
Middleware platforms, such as CORBA, DCOM, J2EE,

and .NET, offer abstraction and simplicity for the complex
and heterogeneous computing environment. They facili-
tate the development of high quality distributed applications
with a shorter development cycle and a much smaller cod-
ing effort. Middleware systems are being adopted in a very
broad spectrum of application domains, ranging from tra-
ditional enterprise platforms to mobile devices, embedded
systems, real time systems, and safety critical systems.

General middleware design is particularly challenging be-
cause no assumptions can be made about the specific ap-
plication domain of the middleware, neither should its ar-
chitecture be coupled with any particular operating system
or hardware platform. Consequently, generality, the de-
signer’s or vendor’s interest to provide a set of commonly
shared and reusable features, constantly wrestles with spe-
cialty, which represents the user’s desire of having a tai-
lored middleware to fit her specific needs. One solution to
this dilemma is through multiple specifications and large
product families. For example, within the common frame of
CORBA technology, there is a proliferation of specifications
such as CORBA, Realtime CORBA, Minimum CORBA,
Data-parallel CORBA, and Fault-tolerant CORBA1, and a
proliferation of various product lines in which each mem-
ber is engineered for specific domains including realtime en-
vironments, small memory devices, enterprise computing,
and many others.2 Newer middleware technologies, such
as J2SE, J2EE, and J2ME, appear to have taken the same
direction3. A serious limitation of these solutions, in addi-
tion to the increased complexity of development and main-
tenance, is that they only provide a fixed set of options
for users, and, as a result, imperatively partition the ap-
plication domains on behalf of the users. The mainstream
of middleware implementations is “heavyweight, monolithic
and inflexible” [9].

As many researchers have pointed out [9, 24, 25, 1, 21,
20], the effective solution to the problems described above

1These specification are collectively defined in [17] except
for Data-parallel CORBA, which is located at http://www.
omg.org/technology/documents/specialized corba.htm
2The IONA product line includes Orbix Enterprise, Orbix
standard, Orbix mainframe and ORBacus. http://www.
iona.ie/products/orbix.htm. The OpenFusion product
line includes embedded edition, realtime edition, and en-
terprise edition.
3Runtime libraries of Java provide a rich set of middleware
functionality including RMI and CORBA.

http://www.omg.org/technology/documents/specialized_corba.htm
http://www.omg.org/technology/documents/specialized_corba.htm
http://www.iona.ie/products/orbix.htm
http://www.iona.ie/products/orbix.htm


is to achieve a high degree of configurability, adaptability
and customizability in the middleware architecture. The ul-
timate goal is to customize middleware according to a spe-
cific user need, a concrete usage scenario, and a particular
deployment or runtime instance. In many existing middle-
ware implementations, this goal is unattainable because, as
our past analysis shows [41, 43], many middleware features
do not exist in modular forms and crosscut implementa-
tions of other functionalities. A majority of the current re-
search efforts in alleviating the insufficiency of modulariza-
tion aim at leveraging advanced programming models such
as reflection [27] and component frameworks [31]. Compo-
nent frameworks operate within the modularization capabil-
ities of conventional programming languages, therefore, can-
not effectively address concern crosscutting. Reflection, in
addition to costly infrastructures, operates at a level of ab-
straction above programming languages, which often makes
it difficult to write correct, easily readable and maintainable
code. The aspect oriented programming paradigm, on the
other hand, treats crosscutting concerns as first-class en-
tities. Existing middleware applications of AOP [12, 16,
37] primarily focus on modularizing non-functional prop-
erties [13] as aspects and treat the middleware core as a
monolithic building block. Our observations [41, 42, 43]
reveal that the poor modularization of crosscutting con-
cerns is an inherent phenomenon within this monolithic core.
By “inherent” we mean that the failure of modularizing
certain middleware features is not due to unwise design
decisions but unavoidable using conventional programming
paradigms. The implementations of these features do not
have clear modular boundaries and are tangled among one
another. We use the notion “feature convolution” to de-
scribe the deep entanglement of these functionalities in the
middleware architecture.

As a remedy to this implementation convolution problem,
we propose the method of horizontal decomposition (HD)
and advocate the use of mixed-paradigms in middleware
architectures. That is, we use conventional programming
paradigms to provide generality: referring to a hierarchi-
cally decomposed architecture for a minimal, specialized,
and commonly shared core; and we use aspect oriented pro-
gramming to provide specialty: referring to domain-specific
properties, which can be composed as aspects.

HD consists of a set of principles aiming towards the
proper utilization of both paradigms in transforming the
relationships among middleware functionalities from convo-
luted coupling to binary coupling. Our initial assessment of
horizontal decomposition on a commercially deployed mid-
dleware product shows that the primary functionality of
middleware can be supported with a much more coherent
and simpler architecture with over 40% code reduction and
around 8% performance improvement as compared to its
original implementation. In addition, nine major functional-
ities ranging from various type supports to invocation styles
become modular and selectable for customization. We are
able to obtain over sixty 4 possible versions of the middle-
ware; all through post-compilation transformations without
changing a single line of source code.

This paper describes our approach and makes the follow-
ing contributions:

4This rough calculation is based on 6 aspects and 26 possible
combinations.

1. We present the convoluted implementation problem and
describe the loss of modularity when decomposing mul-
tiple orthogonal design concerns using conventional de-
composition methods.

2. We develop the method of horizontal decomposition as
a set of principles for guiding aspect oriented decompo-
sition of large middleware systems in order to address
the convoluted implementation problem. Horizontal
decomposition is a mixed-paradigm method exempli-
fied on the analysis of a specific middleware implemen-
tation.

3. We evaluate the effectiveness of the horizontal decom-
position principles and show that a number of innate
and non-trivial middleware features can actually be
implemented as aspects. This evaluation is performed
through a case study of using aspect oriented refactor-
ing on an industrial-strength CORBA implementation.

4. We provide a comparison of the refactored implemen-
tation to its original non-refactored counterpart th-
rough both structural metrics and runtime evaluation
using a third-party performance benchmarking suite.
This constitutes a quantitative evaluation of the effec-
tiveness and benefits of the horizontal decomposition
principles.

The rest of the paper is organized as follows. In the next
section, we briefly define middleware, describe the recent
architectural challenges, and introduce the adopted aspect
language: AspectJ5. We then present the problem of feature
convolution in Section 3. In Section 4 we develop the princi-
ples of horizontal decomposition and discuss these principles
in light of middleware architecture design. Section 5 exer-
cises the principles through the refactoring of a production
strength CORBA implementation. A quantitative evalua-
tion of the approach is presented in Section 6. A thorough
discussion of related work is deferred to Section 7 to better
position our work next to related approaches.

2. BACKGROUND

2.1 Middleware and Its Challenges
The term “middleware” has various interpretations. In

this work, we focus on middleware that facilitates the devel-
opment of distributed systems in a heterogeneous networked
environment. Examples of these kinds of middleware imple-
mentations include CORBA, Java RMI, and .NET remot-
ing. All of these are based on transparent remote proce-
dure calls for providing a simplified network programming
model. In recent years, in addition to traditional enterprise
systems, middleware systems are being adopted in many
emerging platforms such as routers6, combat control sys-
tems [11], and wireless devices [6]. The new design require-
ments introduced by these platforms have catalyzed the fast
evolution of middleware functionality and, in the mean time,
created many problems for its architecture. Firstly, the
structural complexity of middleware architecture increases

5AspectJ. URL: http://www.eclipse.org/aspectj
6Cisco ONS 15454 optical transport platform uses CORBA
to deal with hardware customizations and communications
between the management software and hardware drivers.

http://www.eclipse.org/aspectj


Figure 1: The Evolution of JacORB In Both Size
and Modules.

dramatically. For example, as in Figure 1, the numbers of
classes in JacOrb7, an open source CORBA implementa-
tion in Java, increased around 50% in a development time
of approximately four years. Its size has tripled during the
same time. Secondly, in spite of the enriched functionality,
the typical runtime of middleware platforms requires more
and more computing resources, such as CPU, memory and
power. For example, the minimum runtime of ORBacus
Java8, an industrial strength implementation of CORBA,
requires around 10MB of memory. The C based CORBA
implementation ORBit9 requires around 2MB of memory
space. This has become the main concern for using mid-
dleware systems on platforms with stringent resource con-
straints. For example, the typical memory space of newer
wireless mobile devices is on the order of tens of mega-bytes
with battery power of a few days10. In these cases, middle-
ware systems are typically re-designed and separately imple-
mented, and, at the same time, become too resource aware
to satisfy enterprise computing needs.

2.2 Vertical Decomposition
We use the term “vertical decomposition” to denote the

hierarchical decomposition of code modules advocated by
many pioneers of software architecture including Dijkstra [10]
and Parnas [28]. Hierarchical decomposition is based on
levels of abstractions and step-wise refinements to divide-
and-conquer complex problems. Hierarchical decomposition
is mostly suitable for implementing a single independent
function and performing a single logical task [3]. However,
“the drastic differences among aspects of complex systems
are inherent and permanent, not mere artifacts of our cur-
rent ways of doing things.” [39]. The rest of the paper uses
the terms “veridical decomposition” and “hierarchical de-
composition” interchangeably.

2.3 Aspect Oriented Programming
Aspect oriented programming offers a new paradigm for

software development by complementing conventional pro-
gramming paradigms with a higher degree of separation of
concerns. Examples of aspects, often simply referred to as
a system’s “ilities” [13], include security, reliability, man-
ageability, and, further, non-functional requirements. The
existence of aspects is attributed to the use of the vertical

7JacORB http://www.jacorb.org
8ORBacus: http://www.orbacus.com
9ORBit. URL:http://www.gnome.org/projects/ORBit2/

10Motorola A760 supports 32MB of memory http://www.
gsmarena.com/motorola a760-392.php

decomposition paradigm to handle crosscutting concerns in
software architecture. AOP overcomes this limitation by
providing new language level constructs to modularize cross-
cutting concerns. The development of an aspect oriented ap-
plication is commonly supported by a component language,
such as Java or C, to implement the primary decomposition
of a system; by an aspect language, such as AspectJ11 and
Hyper/J12, to modularize crosscutting concerns as aspects;
and also by the aspect weaver (a.k.a., aspect complier) that
instruments the component program with aspect programs
to produce the final system. AspectJ is one of the most ma-
ture aspect languages. In addition to conventional Java lan-
guage features, AspectJ defines a set of new language con-
structs to modularize crosscutting concerns. For instance,
a join point represents a well-defined point in the execution
flow of the component program at which the AspectJ code
can be executed. A pointcut construct denotes a collection
of join points. For example, cflow, a pointcut construct,
taking the definition of another pointcut, Pointcut, as its
argument, “picks out each join point in the control flow of
any join point P picked out by Pointcut, including P it-
self”13. AspectJ code can be executed before, after or in
place of the program execution when a join point is reached.
These actions are defined using AspectJ specific constructs
before, after, and around. These constructs are called ad-
vices. An aspect module in AspectJ contains pointcuts and
the associated advices. It also contains inter-type declara-
tions, which are used to declare new members (fields, meth-
ods, and constructors) in other types or to change Java type
hierarchies.

3. THE IMPLEMENTATION CONVOLUTION
PROBLEM

The implementation convolution problem refers to the
phenomenon that, for a large number of non-trivial mid-
dleware functionalities, although their semantics are dis-
tinctive, their implementations do not have clear modular
boundaries within the middleware code space and, more se-
riously, often tangle with one another. This prohibits these
functionalities from being pluggable. Let us further exem-
plify this problem through CORBA [17] and its two common
features, portable interceptors and the dynamic program-
ming style14. Figure 2 illustrates the convolution among
these two features as well as with the remote invocation
mechanism, exemplified using classes from ORBacus. The
class types are represented as vertical bars, of which the
heights represent implementation sizes of these types. The
figure shows that the implementation of the original client
invocation mechanism (types Downcall and DowncallStub)
becomes more complex with the additive code for address-
ing two other features, depicted as intermingled shades. Two
additional class types are also created to implement the re-
lationships among these three design concerns. Figure 3
shows implementation convolution in an actual ORBacus

11AspectJ http://www.eclipse.org/aspectj
12Hyper/J http://www.alphaworks.ibm.com/tech/hyperj
13The AspectJ Programming Guide. URL:http://www.
eclipse.org/aspectj/.

14Interceptors are standardized callback mechanism in
CORBA to allow the registration of additional CORBA ser-
vices. The dynamic programming style refers to the reflec-
tive invocation mechanism of CORBA.

http://www.jacorb.org
http://www.orbacus.com
http://www.gnome.org/projects/ORBit2/
http://www.gsmarena.com/motorola_a760-392.php
http://www.gsmarena.com/motorola_a760-392.php
http://www.eclipse.org/aspectj
http://www.alphaworks.ibm.com/tech/hyperj
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
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Figure 2: Implementation Convolution in ORBacus.

code snippet. In this short piece of code, three concerns are
present: places 3 and 5 deal with interceptors, 2, 4, 6, and
8 with oneway calls which will be discussed in detail in later
sections, and 1, 7 with support for both interceptors and the
dynamic programming style. This type of problem is not due
to the design limitations of ORBacus. Our examination of
three different CORBA implementations [41, 43] shows that
around 50% of the classes coordinate with a second design
concern. Moreover, 10% of these classes coordinates with
three and more concerns. The phenomenon of crosscutting
arises “whenever two properties being programmed must
compose differently and yet be coordinated” [23]. We ex-
tend this AOP term and use implementation convolution to
describe this large scale N -by-N crosscutting phenomenon.

Implementation convolution means the loss of modularity
and configurability. It also incurs runtime overhead since,
in a particular middleware deployment or runtime instance,
not all functionalities are required to participate in the main
operational logic of the middleware. However, these func-
tionalities still exist in forms of class variables, method argu-
ments, and branching conditions, which constitute parts of
the overall execution path, the application memory space,
and the program control flow. For example, although the
asynchronous “oneway” invocation semantics is not used in
many CORBA applications, it is not yet possible to flexibly
load or unload this feature in today’s middleware architec-
tures due to, as illustrated above, its non-modular imple-
mentation. To enable customizability of this feature, its
implementation must be separately modularized outside of
the middleware core. But before proceeding to this action,
it is necessary to answer two fundamental questions:

1. Why should a particular functionality, such as oneway,
be treated as an aspect?

2. What steps are required to untangle convoluted fea-
tures?

The next sections are devoted to answers of these ques-
tions.

Figure 3: Convoluted Code: Interceptor, DII and
oneway, all tangled together.

4. HORIZONTAL DECOMPOSITION

4.1 Overview of Horizontal Decomposition
The goal of horizontal decomposition (HD) is to achieve a

mixed-paradigm architecture in which the conventional de-
composition methods and the aspect oriented approaches
are used together, each addressing a different category of
functionalities with its maximum strength. Horizontal de-
composition comprises a set of guidelines to, firstly and most
importantly, distinguish aspect functionalities from non-as-
pect ones in order to lay out clear responsibilities for AOP
and, secondly, to enable super-impositional architectures.
By “super-imposition” we mean that, in the context of hor-
izontal decomposition, implementations of aspects can be
transparently applied onto a generic core through the “weav-
ing” process to achieve the desired customization of middle-
ware functionality. We use the term “horizontal” to empha-
size its complementarity and its synergistic co-existence with
the “vertical” decomposition. In the rest of this section, we
first abstractly present and discuss the HD principles. We
then discuss the principles’ application within the context
of middleware architecture. In Section 5, we implement and
validate the principles through a refactoring based aspect
oriented middleware architecture approach.

4.2 Horizontal Decomposition Principles
The horizontal decomposition method consists of five prin-

ciples synthesized from our past experience [41, 42, 43] and
the ongoing application of AOP to middleware architecture.
These principles are listed following a logical order in which
they can be sequentially applied.

Principle 1: Recognize the relativity of aspects. The
semantics of an aspect is determined by the primary func-
tionality of the application.
From the definition of concern crosscutting, the semantics
of an aspect can only be determined with respect to the
primary function of the application. For example, logging,
a well known crosscutting concern, does not crosscut the
logging facilities itself. A further example draws from mid-



dleware implementations that specializes in making remote
invocations; there, the efficient invocation of local servers
is recognized as a crosscutting concern (cf. Section 4.3).
However, in the context of non-distributed applications, the
remote invocation mechanism can be implemented as an as-
pect [35]. We use these examples to highlight the possible
ambiguity for the semantics of aspects in large and complex
systems. This ambiguity should be clarified as much as pos-
sible because we believe aspects and non-aspects ought to
be handled in different ways. The recognition of the rela-
tivity property is the first step of applying aspect oriented
decomposition.

Principle 2: Establish the coherent core decompo-
sition. The basis of aspect oriented decomposition is the
establishment of a functionally coherent and vertically de-
composed core.
Cohesion, first introduced in [38], expresses the degree of as-
sociation between components in a module. Among the mul-
tiple levels of cohesion, the most desired level is functional
cohesion where “every function within a module contributes
to directly performing a single task” [3]. The semantics of
aspects has to be discussed with respect to an architecture
which, ideally, should be functionally coherent and does not
contain convoluted features. We refer to this referential ar-
chitecture as the core decomposition, or just simply “core”.
In large software systems, such as middleware, the core con-
sists of several conceptual components [36]15. Each of the
components focuses on a single task and they are logically
coherent in supporting the primary system functionality or
its most typical usage. For this reason, it is minimal and
simplistic. For example, since the primary functionality of a
telecommunication system is call processing, its core is the
basic call processing system excluding features such as call
waiting or call forwarding [40]. Our definition of a core has
the following two benefits: 1. It is easier to obtain efficient
hierarchical decompositions if the system only supports a
limited number of functionalities. 2. Since the core cap-
tures the most essential functionality of a software system,
we can use it as the basis for further customization.

Principle 3: Define the semantics of an aspect ac-
cording to the core decomposition. Using the core as a
reference, a functionality is considered orthogonal if both its
semantics and its implementations are not local to a single
component of the core. Only the orthogonal functionality is
treated in the aspect oriented way.
Our definition of aspects is more aggressive and more precise
as compared to ilities [13], quality-of-service (QoS) require-
ments [12], or general distributed computing concerns [4].
For instance, the customization of communication protocols
could be described as both an ility (customizability) and a
distributed concern, and, hence, could be classified as an as-
pect. However, it is not an aspect by our definition because
its semantics are likely local to the communication compo-
nent of the application. In practice, techniques such as com-
ponent frameworks can confine this customization within
the protocol layer of the architecture as in the OCI plug-in
framework used by ORBacus and the ACE framework16. On
the other hand, the asynchronous invocation style of middle-

15In this paper, we use the term “component” in short for
conceptual component. A conceptual component can be
mapped to one or more physical components.

16The Adaptive Communication Framework. URL: http:
//www.cs.wustl.edu/∼schmidt/ACE.html

ware (i.e., oneway semantic), however, is an aspect because
it requires not only the non-blocking support from communi-
cation protocols and additional request processesing routes
but also the corresponding programming model in the ser-
vice description language. Studies on AOP implementation
of design patterns [18] show that certain concerns are better
addressed by conventional techniques than by AOP, and vice
versa. It is then crucial to avoid ambiguity of the seman-
tics of aspects as much as possible in order to maximize the
modularization capabilities of both vertical decomposition
and the AOP paradigm.

Principle 4: Maintain a class-directional architec-
ture. Crosscutting concerns should be implemented class-di-
rectional towards the core.
Class-directional is a category of relationships between base
modules (classes) and aspects in which aspects know about
the class but not vice-versa” [22]. Class-directional in HD
means the system core does not have the knowledge of aspect
implementations. Our previous work shows that middleware
aspects, such as the interception support and the dynamic
invocation semantics, can be completely separated from the
core implementation and transparently super-imposed back [41,
43]. Later in this paper, we show that maintaining class-
directional can even be achieved for crosscutting concerns of
a much larger scale. The property of class-directional does
imply a strong dependency of aspect implementations on a
fairly stable architecture of the core. This is because, if the
model of the core architecture evolves too quickly over time,
the semantics of an aspect has to be modified correspond-
ingly due to the relativity principle. However, we believe
a stable core architecture is a natural outcome of the hori-
zontal decomposition. With a single or a few design goals,
the architecture tends to be focused and stable. Design pat-
terns [15] are excellent examples of stable architectural ideas
being repeated many times for specialized problems.

Principle 5: Apply incremental refactoring. Decom-
position in the aspect dimension is assisted by incremental
refactoring.
The establishment of the coherent core often requires a se-
ries of refinements. There are at least two reasons for this
to happen. First, the identification of the core in complex
systems is not always straightforward and could be com-
pleted gradually. Second, the composition of the core can
be viewed at different levels of granularity. In other words,
a functionality well localized within a single component can
become scattered, hence, crosscutting, if this component is
further factored into several parts. The refinements of the
core semantics can result in the discovery of new aspects,
and refactoring must be performed to resolve their convo-
lution with the newly established core as well as with the
code of existing aspects. For example, during our resolu-
tion of the convolution presented previously in Figure 3, it
had not occurred to us that oneway is an aspect until after
DII and PI were already refactored. Two types of refactor-
ing were then performed: 1. Re-factorization of oneway out
of the core; 2. Re-factorization of oneway out of aspect DII
and aspect Interceptor Support. We refer to these two types
as the first and second degree refactoring. The horizontal
decomposition is, hence, conducted in an incremental and
accumulative fashion. We illustrate this process further in
Section 5.3.2.

http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.cs.wustl.edu/~schmidt/ACE.html


4.3 Application to Middleware Architecture
In this section, we further explain the horizontal decom-

position principles through a discussion of their application
to the aspect oriented analysis of the middleware architec-
ture. This analysis is carried out in the following logical
steps:

Middleware aspects are relative to the primary function-
ality of middleware. (Principle 1) The relativity principle
prescribes that the semantics of an aspect must be discussed
within the context of the application, i.e., in our case, the
middleware architecture itself. Therefore, we oriented our-
selves, prior to the detailed analysis, as follows: we first
define the primary functionality of middleware as the sup-
port for transparent remote invocation; we then define a
middleware aspect as a middleware feature that crosscuts
the implementation of this functionality.

The middleware core consists of a set of components that
support transparent remote invocations. (Principle 2) To
establish the basis for the semantics of middleware aspects,
we firstly define the “middleware core” as the mechanism of
composing, transporting, and dispatching invocation requests
in enabling transparent remote invocations. This mech-
anism is supported by service description languages and
the associated stubs/skeletons, service identification mech-
anism, request dispatching mechanisms, and transport pro-
tocols. Table 117 gives concrete examples of these compo-
nents in popular middleware implementations. Since remote
invocations are emulated as normal method calls, the mid-
dleware core also needs to support various data types in
the description languages, synchronous/asynchronous com-
munications, and statically or dynamically typed requests.
We aggressively simplify the middleware core to only sup-
port one primitive type, the synchronous invocation style,
and the statically typed requests. All other functionalities
are treated as customization options.

Middleware aspects are features that cannot be encapsu-
lated within an individual component of the core decompo-
sition (Principle 3). Let us further exemplify this concept
using the CORBA feature of “server collocation” as an ex-
ample. One of the drawbacks of transparent remote invo-
cation is that the location of the remote service is hidden
and could be in the same process as the client. A common
optimization is that middleware transparently detects this
situation and directly dispatches the request without going
through the network layer. In the ORBacus implementa-
tion of CORBA, a normal remote invocation traverses the
middleware stack in the following logical order (Figure 4):
client marshalling of data, the transport of data in the pro-
tocol layer, server dispatch of the request, and server un-
marshalling. Figure 5 illustrates the invocation sequence
when this optimization is added. Not surprisingly, the se-
quence becomes more complex. This optimization creates a
“logic glitch” because the client request traverses into the
“dispatch layer”, a server side component (Figure 4), inside
the “Protocol” layer at the client-side. The hallow arrows
represent program logic corresponding to the optimization,
and the shaded boxes represent the activities spent in per-
forming the optimization. It is not hard to conclude that
the Local Invocation Optimization is an aspect because it

17In this table, ROT refers to Running Object Table.
http://msdn.microsoft.com/library/en-us/dndcom/
html/msdn dcomarch.asp.
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Figure 4: Remote Invocation: ORBacus

requires the collaboration among three components: Mar-
shalling, Protocol, and Dispatch. It is noteworthy that this
optimization only addresses in-process servers. Adding fur-
ther optimizations for in-host servers undoubtedly compli-
cates the picture even further. Two main disadvantages for
this implementation can be completely overcome if modu-
larized in aspects instead: 1. The implementation scatters
around different parts of the core architecture which makes
it hard to understand and change. 2. The inability of plug-
ging out this feature incurs redundancy in the execution of
remote method calls.

The implementation of middleware aspects are class-di-
rectional and super-impositional. (Principle 4) We char-
acterize super-impositional middleware architecture as fol-
lows18:

1. Multiple sets of vertical decompositions: As will be de-
scribed in Section 5.3.1, we distinguish the functional-
ity of an aspect from its crosscutting interaction with
the core. The core of the application and the function-
ality of aspects are separately decomposed into vertical
hierarchies of modules. Each can be compiled indepen-
dently. The core decomposition is fully operational in
supporting the primary functionality of the applica-
tion.

2. Exclusive application of AOP to the crosscutting logic
of an aspect: The crosscutting logic is the interaction
between the functionality of an aspect with both the
core and, if necessary, other aspects. This interac-
tion is the only place where AOP is applied, and we
metaphorically refer to the architecture of the interac-
tion as the “glue” architecture.

3. Flexible combination of architectures: The goal of the
super-impositional architecture is that the combina-
tion of the middleware core and aspect functional-
ity is flexible and conducted at the post compilation
stage, e.g., through source code transformation as in
AspectC++19, or bytecode weaving as in AspectJ, or

18By “super-imposition” we mean that, in the context of
horizontal decomposition, implementations of aspects can
be transparently applied onto a generic core through the
“weaving” process to achieve the desired customization of
middleware functionality.

19AspectC++ http://www.aspectc.org

http://msdn.microsoft.com/library/en-us/dndcom/html/msdn_dcomarch.asp
http://msdn.microsoft.com/library/en-us/dndcom/html/msdn_dcomarch.asp
http://www.aspectc.org


CORBA DCOM .NET Web Services

Description Language IDL MIDL C#,CLR languages
Identity Publication IOR OBJREF WSDL File
Request Dispatching POA ROT ASP.NET process
Protocol IIOP Object RPC SOAP

Table 1: Core Middleware Architecture Elements.
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Figure 5: Addressing Remote and Local Invocations Simultaneously in ORBacus.

even runtime weaving [44]. Therefore, the “glue” ar-
chitecture of an aspect must address its interactions
with the core and other aspects individually. This is a
desired property because it reduces the complexity of
the implementation from a convoluted relationship to
a set of binary relationships.

We show in later sections that this super-impositional ar-
chitecture for middleware can be achieved. We do have
to modify how certain core semantics are expressed in the
code in order to obtain the necessary contexts in AspectJ
pointcuts. However, none of the modifications change our
core decomposition model, and, secondly, this might be a
language-specific phenomenon of AspectJ.

Middleware aspects are implemented incrementally. (Prin-
ciple 5) Refinements of the definition for the core decom-
position give rise to the identification of new aspects. To
alleviate this problem, we use both the first and the sec-
ond degree refactoring to separate new aspects from both
the middleware core and previously identified aspects. Our
experience shows that the second degree refactoring, con-
trary to intuition, does not cause major changes to existing
aspect code. This is because many aspects identified and
implemented at early stages mainly crosscut the core within

the body of procedures. We refer to these aspects, such as
logging, tracing, and certain type manipulations, as code-
level aspects in contrast to the architectural aspects, which
crosscut the middleware core at the level of attributes and
methods. The first degree refactoring of these aspects, such
as dynamic programming styles, typically involves pruning
core objects at the method level, while preserving most of
the intra-procedural interactions or pointcuts of the code-
level aspects.

5. RE-FACTORING BASED
IMPLEMENTATION OF HORIZONTAL
DECOMPOSITION

We choose to use the technique of refactoring [14] to eval-
uate the horizontal decomposition principles. We use refac-
toring since it conveniently allows us to focus on modular
compositions through the re-use of design decisions and to
systematically and fairly compare horizontally decomposed
middleware with its conventional counterpart. With no loss
of generality, we use CORBA, one of the most developed
middleware technologies, as a case study, and ORBacus, an
industrial strength Java CORBA implementation, as the



target of our re-implementation. The AOP language we
choose is AspectJ. We have identified and refactored a total
of nine major functionalities as aspects in ORBacus. Most
of them can also be found in other CORBA or even non-
CORBA middleware systems. Our implementation shows
that horizontal decomposition can deliver its promise. We
have obtained a much more concise and efficient middleware
core which, at the time of writing this paper, exhibits around
8% improvement in benchmark performance and over 40%
reduction in code size, with ample room for further improve-
ments. In addition, we have a super-impositional architec-
ture in which combinations of these nine aspects can be
freely selected to form new versions of ORBacus supporting
both the core functionality and the aspectual functionality.
In the following sections, we describe our implementation in
detail and present the evaluation results.

5.1 Defining the Middleware Core
Our reference model of the ORBacus core consists of the

following layers listed top-down. in accordance with Table 1.
Each layer performs one specific task. Identity publication is
a specialized CORBA operation. The corresponding imple-
mentation in ORBacus is compact and coherent and, hence,
omitted from the list.

1. IDL Layer: Stub and Skeleton. The function
of stubs and skeletons, generated from a service descrip-
tion language, is to support the masking of remote invo-
cations as local method calls at the interface level. They
are common middleware elements serving as translators be-
tween application semantics and the middleware substrate.
Our working definition of minimum stubs and skeletons only
supports statically typed invocations, the synchronous invo-
cation style, and the IDL definitions for essential primitive
data types such as integer. In other words, the descrip-
tions of advanced features are not enabled by default. These
features include: advanced data types such as Any, multi-
byte characters, invocations through reflection such as DII
or DSI, the asynchronous invocation style denoted by the
oneway keyword in CORBA’s IDL. These features are “wo-
ven” into the stubs and skeletons by an aspect-aware IDL
compiler [42].

2. Messaging Layer: Client-side and Server-side.
This layer consists of two conceptual components: the client-
side “downcall” mechanism responsible for marshalling the
requests and the server-side “upcall” mechanism responsible
for unmarshalling and request dispatching. Corresponding
to our definition of the minimum skeleton and stub, the
“downcall” and “upcall” mechanisms should only support
primitive data types, synchronous and statically typed in-
vocations.

3. Transport and Protocol Layer. This layer handles
the communication with peer ORBs using IIOP. ORBacus
implements the Open Connector Interface (OCI) (i.e., plug-
gable transports) based on acceptors and connectors [30].
We define this layer to only support the synchronous com-
munication and no interoperability with different code sets
(i.e., character encoding schemes.)

We do not claim that this core model is crosscutting free.
Each component can be further broken down into finer log-

ical constituents. Nevertheless, it is coherent enough for us
to apply AOP to a large number of ORBacus features.

5.2 Defining CORBA Aspects
As previously stated, a middleware functionality can be

classified as an aspect if it interacts with multiple com-
ponents. Below, with omission of the internal details of
CORBA, we summairze the logical independence (orthog-
onality) of five aspects, their functional intend (semantics),
and characterize their original crosscutting implementation.

I Oneway invocation semantic.
Semantics: Supports the best-effort and asynchronous
delivery of client requests. No response is expected.
Orthogonality: The core supports the synchronous
invocation semantic.
Crosscutting: IDL Layer: The support of IDL key-
word “oneway”. Messaging Layer: Additional logic in
the “downcall” process for not expecting a response as
well as in the “upcall” process for no need to issue a
response. Protocol Layer: The support of GIOP en-
coding of the oneway flag as well as the setting of a
timeout value for the socket.

II Dynamic typing.
Semantics: Supports reflective composition of remote
invocations. Any and Dynamic Any (DynAny) are
used to represent arbitrary IDL data types including
primitive types and abstract ones. Typecode is used
to encode the type information
Orthogonality: The core supports statically typed
invocation requests.
Crosscutting: IDL Layer: The support of dynamic
IDL data types such Any, Dynamic Any and the as-
sociated stub/skeleton operations. Messaging Layer:
The marshaling and unmarshalling of these data types.
Protocol Layer: None. Data is treated as byte streams.

III The wchar and wstring support.
Semantics: Supports the expanded character sets such
as Unicode20.
Orthogonality: We view IDL data types as inde-
pendent, hence, orthogonal ways of encapsulating and
interpreting the transported bytes.
Crosscutting: IDL Layer: The support of wchar and
wstring IDL data types and the associated stub/skeleton
operations. Messaging Layer: The marshalling and
unmarshalling of these data types. Protocol Layer:
None. This layer treats all data as byte streams.

IV The encoding conversion.
Semantics: Supports transparent conversions for the
data exchange, as part of the interoperability support
of CORBA, if the communicating ORBs use different
character encoding schemes.
Orthogonality: The functionality of managing dif-
ferent character encoding schemes is clearly logically
independent of the semantic of the CORBA core which
manages transparent remote invocations.

20Unicode. URL: http://www.unicode.org

http://www.unicode.org


Crosscutting: IDL Layer: None. The functional-
ity is transparent to applications. Messaging Layer:
Adding logic to both “downcall” and “upcall” pro-
cesses as to decide if conversion should take place when
reading and writing characters to the data buffer. Pro-
tocol Layer: Adding logic to the server side protocol
layer which builds the conversion schemes for an in-
coming request based on the encoding information in
GIOP, before passing it up to the messaging layer.

V The local invocation support.
Semantics: Supports direct forwarding of requests
if the remote service is located in the same process.
Orthogonality: Local invocation is logically orthog-
onal to remote invocation functionality of the CORBA
core.
Crosscutting: Please refer to Figure 5 for details.

Concluding from the analysis presented above, these cross-
cutting features have both design and runtime implications.
Their implementation is scattered and, thus, “hidden”. It
is hard for programmers to change and to maintain them.
Though often optional in normal operations of CORBA,
these features are always initialized and evaluated during
the execution. This runtime redundancy degrades the per-
formance of the core as confirmed by our evaluation. Re-
cent dynamic compilation techniques can provide solutions
to eliminate runtime redundancy. However, more coherent
application semantics are always more effective in perfor-
mance improvements.

5.3 Resolving Implementation Convolution
The goal of our aspect oriented treatment is to eliminate

the convoluted features in the original code base through
modularizing orthogonal functionality as aspects and un-
tangling of the code convolution among aspects themselves.
The next two sections provide detailed descriptions of these
two stages.

5.3.1 Implementing Middleware Aspects
Our implementation of middleware aspects generally con-

sists of two distinct parts: the implementation of the aspect
functionality itself, which is best handled in a hierarchical
decomposition; and the implementation of the interaction
between this aspect and the core, which is decomposed in the
aspect oriented way. For example, the complete implemen-
tation of the support for codeset conversion, as illustrated in
Figure 6, consists of the implementation of its functionality
(left) and of its crosscutting logic with the core (right). Its
functionality is decomposed into a normal Java class hierar-
chy which embodies the basic design rational of composing a
converter from both a “Reader” and a “Writer”. The hierar-
chy of the crosscutting logic consists of three aspects repre-
senting three different parts of the crosscutting logic includ-
ing the conversion of character streams, the setup of conver-
sion utilities, and the error handling regarding conversions.
Figure 7 shows a specific implementation instance in sup-
porting conversion of character streams. The area enclosed
by the dotted box in the original implementation (left) rep-
resents the crosscutting logic and it is re-implemented as
an “around” advice (lower-right). This advice, when “wo-
ven” into the core implementation by the AspectJ compiler,

CodesetReader CodesetWriter

CodesetConverterTo

CodesetConverterBase

CodesetConverterFrom

<<aspect>>

CodesetConversionAspect

<<aspect>>

ConversionSetup

<<aspect>>

StreamConversion

<<aspect>>

ConversionError

Aspect Functionality Crosscutting Logic

Figure 6: Aspect Implementation of Character Con-
version.

replaces calls to the method InputStream.read char as fol-
lows: it proceeds to the normal read char call (upper-right)
if conversion is not necessary; otherwise it creates a con-
verter and performs conversion before returning. With this
we have achieved a dramatic simplification of the original
core implementation, read char, as well as the preservation
of its functionality together with the aspect code.

The separation of functionality and crosscutting logic, com-
bined with refactoring, benefits us in the following ways:

1. The original design choice is fully respected and pre-
served. There is no shifting of programming paradigms
in implementing the functionality of aspects. Hence,
the domain expertise embedded in the design is left
intact. Even for new implementations, our approach
places no restrictions on the use of the vast and rich
repertoire of vertical design techniques such as design
patterns.

2. The crosscutting logic is isolated and, therefore, can be
conveniently analyzed for the discovery of implementa-
tion patterns. By patterns we mean the concerns com-
monly addressed while implementing the crosscutting
logic. We describe some of the patterns we observed
from our initial implementation later in this section.

3. The separation of the aspect functionality and its cross-
cutting logic is explicit and can be completely decou-
pled. Similarly to the advantage of separating an inter-
face and its implementation in the objected oriented
paradigm, we believe this separation is fundamental
in supporting the plug-and-play of new aspects such
as a new invocation style or a new character encod-
ing scheme. However, a thorough exploration of this
property is outside the scope of this paper.

We feel that a good decomposition of the crosscutting logic
is the most challenging task in horizontal decomposition.
Deferring a more serious analysis and formulation to our fu-
ture research, we summarize our experience as observations
of commonly addressed crosscutting logic patterns in our
implementation of aspects:

1. Lifecyle. Lifecyle crosscutting intercepts the set-up
and the tear-down stages of the core and performs the ini-
tialization and the destruction of aspect-specific utilities.
This crosscutting pattern is present in all aspects except
“oneway” which does not have the functionality implemen-
tation. Because of this temporal relationship, this type of
crosscutting logic is commonly implemented in before and
after advices.

2. Data. Data crosscutting enables different views of the
same data stream by adding APIs to different components of



publicchar read_char(){
 //error checking code omitted
if(charReaderOrConversionRequired_){
final ConverterBase converter =

  codeConverters_.inputCharConverter;
  if(charReaderRequired_)
    return
    converter.convert(converter.read_char(this));
  else
    return converter.
    convert((char)(buf_.data_[buf_.pos_++]&0xff));
 }else{

// Note: byte must be masked with 0xff to
    //correct negative values

return (char)(buf_.data_[buf_.pos_++] & 0xff);
 }
}

publicchar read_char(){
// error checking code omitted

   //Note: byte must be masked with 0xff to
   //correct negative values

return (char)(buf_.data_[buf_.pos_++] & 0xff);
}

chararound(InputStream s):
(call(* InputStream.read_char(..)))&&target(s){

if(s.charReaderOrConversionRequired_))
    returnproceed();
  }

final ConverterBase converter =
  codeConverters_.inputCharConverter;
  if(charReaderRequired_)
    return
    converter.convert(converter.read_char(this));
  else
    return converter.
    convert((char)(buf_.data_[buf_.pos_++] &0xff));
 }

Before:  Original Iimplementation: InputStream.java

Shaded area represents the aspect logic

Refactored core: InputStream.java

Interaction: AspectConvertStream.aj

After: Separation of crosscutting logic:

InputStream.java and AspectConvertStream.aj

aspect logic

Figure 7: Implementation of Crosscutting Logic: Code Example.

the core. These APIs support the instantiation of new data
types, conversions between streams and data types, and con-
versions between different data types. Aspects that heavily
exhibit this type of logic crosscutting include dynamic types,
the wide character support, and codeset conversion support.
Data crosscutting is mostly implemented as methods which
are “woven” into the class definition of the core classes via
the inter-type declaration mechanism of AspectJ.

3. Error. Error crosscutting augments the error han-
dling mechanism of the core with that of the aspect. It
primarily involves adding aspect-specific error codes and de-
scriptions using inter-type declarations. It also involves the
validation of the states of aspects prior or posterior to core
method calls. These checks are naturally captured in before

and after advices of AspectJ. This crosscutting logic can be
found in all the aspects.

4. Messaging. Messaging crosscutting alters the normal
invocation sequence of the core to support different invoca-
tion styles. This type of crosscutting logic is usually found
in aspects that add alternative invocation paths to the core
components, and, hence, does not have any aspect-specific
functionality implementation. The implementation of as-
pects, such as “oneway”, extensively uses the control-flow
join points of AspectJ, such as cflow and cflowbelow.

5.3.2 Untangling Convoluted Aspects
As previously described, aspects can also crosscut each

other in supporting a complex functionality in middleware
implementations. We have depicted such a scenario in Fig-
ure 3 in which three aspects, interceptor support, the dy-
namic requesting style, and oneway, are convoluted in pro-
viding interceptable-dynamic-oneway requests. Let us use
this same example to illustrate how convoluted implemen-
tations can be resolved. Figure 8 shows simplified code
snippets of our resolution. The aspect code snippet 1 only
deals with DII by adding a method createDIIDowncall to
the core class DowncallStub (line 2) for the creation of a
DII downcall using an inter-type declaration. Code snip-
pet 2 uses AspectJ’s capability of return-value modification,
after returning (line 1), and changes the return value of
createDIIDowncall to its subtype PIDIIDowncall (line 7)

if interception is enabled (line 3). Code snippet 3 uses the
same return-value modification feature to set the response-
Expected flag of the Downcall to either true or false de-
pending on whether the request is marked “oneway” or not
in the global hashtable (line 8). We have improved over
the original implementation with better cohesion as each
code snippet in Figure 8 is specialized in providing one par-
ticular functionality. We have also untangled a convoluted
relationship into a set of simpler binary relationships: DII-
core, PI-DII, and Oneway-DII. Through the use of the byte-
code weaver, we can configure the following seven versions of
ORBacus without touching the source code: Plain ORBa-
cus (CORE), CORE+PI (Portable interceptor), CORE+-
DII, CORE+Oneway, CORE+PI+DII, CORE+PI+Oneway,
CORE+DII+Oneway.

We use the matrix in Table 2 to summarize the convoluted
relationships among the aspects that we have identified so
far. Each “x” in the table means the row aspect crosscuts
the column aspect. We also include three aspects identified
in our previous work [41, 43], including portable interceptor
support (PI), local invocation (LI), and the dynamic pro-
gramming interface (DPI), as these relationships were not
explored previously. We purposely leave out the core archi-
tecture since every aspect crosscuts the core by default.

LI Conv Dyn DPI PI OW Wchar

Conv. x N/A x x x x
Dyn x N/A x x x
PI x N/A
OW x x N/A
Wchar x x x N/A

Table 2: Convolution Matrix. (Conv: Conversion.
Dyn: Dynamic Typing. OW: Oneway. CO: Collo-
cated Server. DPI: Dynamic Programming Inter-
face. PI: Portable Interceptor. Wchar: Wide char-
acter and wide string).



1 public Downcall
2 DowncallStub.createDIIDowncall(String op,//arguments 
3 omitted)
4 throws FailureException {
5 ProfileInfoHolder profile =new ProfileInfoHolder();
6    Client client =           
7    getClientProfilePair(profile);
8    Assert._OB_assert(client != null);
9    return new Downcall(orbInstance_, client,
10    profile.value, policies_, op);
}

1 after(DowncallStub s): returning (Downcall downcall) 
2 && target(s)&&call(createDIIDowncall(..)){
3 if(!s.policies_.interceptor)
4    return downcall;

5  PIManager piManager=orbInstance_.getPIManager();
6  if(piManager.haveClientInterceptors()){
7    return new PIDIIDowncall(//arguments omitted);
8  }
9  else{
10   return downcall;

}
}

1 aspect oneway {
2 Hashtable responseflgs = new Hashtable();
3 //response table is initialized as an earlier stage
4 after(DowncallStub s) returning (Downcall downcall) 
5 &&target(s)
6 &&call(* DowncallStub.createDIIDowncall(..){
7  Object flag = responseflgs.get(s);
8  downcall.responseExpected_= (flag==null); 
}

(1) Adding DII to core

(2) Adding PI to DII

(3) Adding oneway to DII

Figure 8: Resolving convolution of aspects: Code
Example.

5.4 Incremental Decomposition:
A Retrospective

It is hard to identify all aspects due to the difficulty of
defining the convolution-free core of the system. This is
partly because of the limitations of existing aspect discov-
ery techniques and tools. It is also because the definition
of the core architecture is not likely to be very precise at
the beginning of the decomposition process. Our experience
shows that the definition of the minimal core is adjusted
and refined gradually over time. Consequently, we contin-
uously discover new aspects as our definition of the core
architecture evolves. The complete untangling of new as-
pects involves both their separation from the core and pre-
viously identified aspects. Therefore, the complete aspect
decomposition model is obtained in an incremental fash-
ion since each identification of new aspects possibly trig-
gers both first and second degree refactoring. Table 3 sum-
marizes our decomposition process of the aforementioned
aspects retrospectively, where we list our implementation
stages of aspects in a chronological order. For instance, our
initial refactoring (Stage 1) starts with aspects Portable In-
terceptors (PI), Dynamic Programming Interface (DPI), and
Collocated Server (CO) listed in Column A while the other
aspects (Column B) are yet to be identified. The subsequent
refactoring (Stage 2) of the oneway (OW) aspect involves

Stage A B C
1 PI, CO Dyn, Wchar,

DPI Conv, OW
2 OW Dyn, Wchar, DPI, PI

Conv CO
3 Dyn Conv,Wchar CO, DPI, PI
4 Wch Conv Dyn, PI
5 Conv CO, OW, PI,

Dyn, Wchar

Table 3: Incremental Decomposition of Aspects (A:
Aspects being refactored. B: Aspects contained in
core. C: Aspects being refactored in 2nd phase. Ab-
breviations are the same as in Table 2.

modifying not only the core but also the three aspects in
Column C (Row 2). This table shows that both the first
and the second-degree refactoring play important roles in
resolving the convolution.

As the result of keeping no knowledge of aspects in the
core, the architecture of the refactored ORBacus is self-
contained. The basic functionality of CORBA is preserved.
In fact, our CORBA core coincidently fully supports all op-
erations of a third-party benchmarking tool. Meanwhile,
combinations of the horizontal features can be selected and
transparently configured into the core architecture through
different build files and the AspectJ compiler 21. There is
no restrictions to the combinations except portable inter-
ceptors, which requires the support of type Any.

6. IMPLEMENTATION EVALUATION
The emphasis of our evaluation is to measure how well

the principles of horizontal decomposition deliver their most
important promise — supporting the core functionality of
middleware more efficiently in a much less convoluted archi-
tecture. We divide the evaluation for our refactoring-based
implementation into two parts. We first measure, using
standard metrics, the architectural changes over the orig-
inal implementation as the result of decomposing a number
of major middleware features in aspect modules. We are
interested in, while supporting the same core functionality,
how much more concise middleware architecture has become
with implementation convolution resolved. We then perform
the performance evaluation by comparing the horizontally
decomposed ORBacus core with the original implementa-
tion in supporting a set of standard CORBA functionality
provided using a third-party benchmarking suite.

6.1 Structural Comparison
To measure the structural differences, we employ a set of

standard software engineering metrics which we refer to as
structural metrics. They are explained in great detail in [41].
These metrics include the following: size of the executable
source code, cyclomatic complexity, weight of the class and
efferent coupling. We first measure the direct impact of
horizontal decomposition on the entire ORBacus implemen-
tation, i.e., all classes in the com package hierarchy. This in-
cludes both the functionality of aspects and their interaction
logic with the core. Table 4 shows that, by applying hor-
izontal decomposition and stripping out crosscutting func-
tionalities, we have reduced the size of the ORBacus core by

21The AspectJ compiler simply issues a warning for applying
aspects to un-found classes.



around 10K lines or 42% of code, 855 or 35.6% fewer meth-
ods, around 17% simplification in terms of the control flow,
and 22% reduction of coupling. This shows that, in spite
of its rich set of functionality, the original implementation
is monolithic and “oversized” for common CORBA opera-
tions. Our refactored version is much lighter and much more
flexible for configuration and customization.

Table 5 presents a different perspective for the resolution
of the crosscutting logic in the ORBacus core classes. We
count the reduction of three types of language elements that
have further runtime implications. The reduction of argu-
ments for methods and constructors not only allow the se-
mantics of classes to be expressed more concisely but also
enables more energy-efficient execution in power-stringent
platforms [2]22 The reduction of conditional statements im-
proves branch predictions and achieves better cache perfor-
mance. The reduction of attributes of classes simplifies the
runtime stack of programs and decreases the memory foot-
print of objects.

Implementation Size CC WC EC

Original 23277 3.69 2404 2423
Re-factored 13524 3.05 1549 1899
Reduction 9753 0.64 855 525

Table 4: Reduction of Overall Structure. (CC: Cy-
clomatic complexity. WC: Weight of Class. EC:
Efferent coupling).

6.2 Performance Evaluation
This section presents the benchmarking results collected

on three versions of the OBRacus implementation: the refac-
tored ORBacus core with aspects taken out (None), the
original implementation (Original), and the combined imple-
mentation with all aspects “woven” back in via the AspectJ
compiler (All). We use the Open CORBA Benchmarking
Suite (OCBS) [33] to provide a thorough comparison of the
runtime performance of these three versions. OCBS mea-
sures the performance of the following CORBA functional
areas: invocation, marshalling, dispatching, parallelism, as
well as combinations of these areas. All of the benchmark-
ing operations are supported without modification by both
the original ORBacus implementation and our refactored
version at almost half of the original size. The tests are per-
formed on Pentium 4 2GHZ running Redhat 8.0 with 1G of
memory.

22Although the paper’s analysis is based on Java systems, we
believe, that our discussion is not limited to Java systems
either.

Aspect Arguments Condi- Attri-
tional butes

Any & TypeCode 0 8 2
Encoding Conversion 6 9 9
Oneway Call 8 7 1
Wchar & Wstring 4 44 8
Total 18 68 20

Table 5: Reduction of Code Elements Caused by
Crosscutting.

Implementation Median Average

None 157 203
Original 167 221
All 180 238

Table 6: Invocation Cost in microseconds.
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Figure 9: Invocation Time Distribution in microsec-
onds.

6.2.1 Invocation Roundtrip
The invocation round-trip is to measure how fast can mes-

sage traverse the middleware stack excluding the network
delay. Table 6 presents the median and average invocation
time (microsecond) observed by OCBS with a client invoking
a “do-nothing” service on the server. The numbers are com-
puted as averages of over 4,500 sample invocations. It shows
that the refactored core achieves approximately 8% perfor-
mance gain on average. The combined implementation (All)
incurs 7.6% invocation overhead. Figure 9 compares the his-
tograms of the round trip delays for all three versions. It can
be observed that a large majority of the round-trips made
over the refactored version densely concentrate within the
150-175 microsecond interval. Distributions for the original
version and the “woven” version (All) are primarily beyond
the 160 mark and largely the same. This shows the invo-
cation time of the refactored core is also statistically better
than the original.

6.2.2 Data Transport
In this category, OCBS measures the time taken by CORBA

to transport a certain amount of data between the client and
the server. The weighting core functionality in this test is
the efficiency of marshalling and unmarshalling. Figure 10
shows the performance measurement of a client sending a
stream of octets to the server. Figure 11 shows the reverse
communication with the same input parameters. The X-
axis denotes the number of octets and the Y-axis the aver-
age invocation time. The samples for these graphs, as well
as for all graphs hereafter, are the round-trip times for all
invocations made in a period of 10 seconds. Our observa-
tion is that, for the best possible performance Figure 10(1),
the refactored core is equivalent to the original core. On



average, the refactored core performs slightly better than
the original. In the minimum and the average case, all
three versions are largely equivalent. The refactored core
performs the best and the combined performs the worst in
the majority of cases. This improvement is a combined ef-
fect of: 1. a lighter-weight marshalling/unmarshalling layer
supporting a fewer number of CORBA data types; 2. a sim-
pler marshalling/unmarshalling logic with no need to decide
on character encoding schemes and to setup a proper con-
version mechanism. The performance of the “All” version
shows that configuring these functionalities back into the
marshalling/unmarshalling mechanisms does not incur sig-
nificant overhead.

6.2.3 Request Dispatch
Figure 12 present the evaluation for the invocation cost

in the presence of multiple server objects. This reflects the
effect of server side call dispatching mechanisms. The X-
axis is labeled by the number of instantiated objects. The
Y-axis represents the invocation time. As the number of
server objects increases, the average invocation time also
increases in all versions. We observe a similar pattern, as
the refactored core (None) is most efficient in request dis-
patching, as compared to the original implementation. This
is not surprising since the dispatching logic is simplified by
taking out decisions on dispatching both dynamic requests
and local invocations. The combined version, in the best
(Min) and average scenarios, exhibits a penalty between 5%
to 13% as a result of AspectJ’s bytecode “weaving”. In the
worse-case scenario (Max), the dispatching performance of
all three versions are equivalent.

6.2.4 Parallel Execution
Figure 13 measures the performance of remote invocations

in the multi-threaded scenario. The X-axis is the number of
threads created on the client side and the Y-axis the invoca-
tion time in microseconds. The multi-threaded performance
agrees with the single threaded invocation performance with
the refactored core performs the best, the original in the
medium range, and the combined the worst. The overall
mechanism of downcall in the refactored core is much sim-
pler and lighter compared to the original implementation,
which contributes to its improved performance. Moreover,
refactoring orthogonal functionalities away from the core re-
duces the shared data among threads. This shared data orig-
inally exists in process-wide singletons and includes codeset
factories, conversion utilities, default dynamic servers, just
to name a few. Therefore, the overhead for inter-thread
communication is reduced.

6.2.5 Combined Execution
In Table 7, we show the performance evaluated by com-

bining multiple servers and multiple threads and exchang-
ing messages of size 50K octets between the client and the
server. The benchmarking tool measures the following sce-
narios: A. Message sending using 100 client threads; B. Mes-
sage receiving using 100 client threads; C. Remote invoca-
tions (Ping) by 100 client threads to 50,000 servers; D. Mes-
sage sending to 50,000 servers; E. Message receiving from
50,000 servers; F. Message sending by 100 client threads to
50,000 servers; G. Message receiving of 100 client threads
from 50,000 servers.

Except for scenarios A and F, the refactored ORB gen-

A B C D E F G

Re-factored 7036 2161 193 954 1061 6020 2689
Original 2332 2395 199 976 1055 1686 3130
Combined 6142 2366 238 1003 1103 5396 3111

Table 7: Combined Benchmarking Results in mi-
croseconds.

Figure 13: Cost of Using Multiple Threads in mi-
croseconds.

erally performs the best although the differences among all
three versions are typically within 5%. Scenarios A and F
are anomalies possibly caused by the OS scheduler. Simi-
lar anomalies are also noted by the original authors of the
benchmark [33].

6.2.6 Cache Performance
Another important metric for evaluating the runtime ef-

fect of the horizontal decomposition method is the cache
behavior of the system. We use the performance counter li-
brary23 to count various microprocessor events. These mea-
surements are conducted by using a simple loop to send
a long integer to a remote server. The entire data collec-
tion period consists of 100 epochs, where each epoch equals
1500 remote method calls conducted with ORBacus. Ta-
ble 8 depicts the cache-miss rates computed as the average
over 100 epochs. A decrease of the instruction-cache miss
rate is an indicator of a simpler control flow. Better L224

cache performance represents better locality and a higher
degree of cohesion in the program. The data shows that, to
support the same functionality, the combined version adds
a slight overhead. The refactored core performs better than
the original version. This is consistent with our previously
presented benchmarking results.

None Original All

L1 Instruction Misses 368869 380404 404187
L2 Miss Rate 3.25% 3.83% 4.4%

Table 8: Middleware Cache Measurements: L1 and
L2.

23http://www.fz-juelich.de/zam/PCL/
24L2 miss rate is calculate by number of cache misses divided
by the total number of load/store instructions in that epoch

http://www.fz-juelich.de/zam/PCL/


Figure 10: Data Sending Client to Server in microseconds. (1) Minimum Cost (2) Average Cost (3) Maximum
Cost.

Figure 11: Data Sending Server to Client in microseconds. (1) Minimum Cost (2) Average Cost (3) Maximum
Cost.

Figure 12: Dispatching to Multiple Servers in microseconds (1) Minimum Cost (2) Average Cost (3) Maximum
Cost.



6.2.7 Concluding Remarks
In conclusion, the benchmark data clearly indicates that,

for the primary ORB functionalities, ORBacus achieves good
performance gains with orthogonal features separated into
the aspect code. Although this improvement is not as dra-
matic as we previously anticipated, it validates that hori-
zontal decomposition principles are effective in separating
convoluted features from the middleware core without com-
promising its functionality. We expect to observe more dra-
matic improvements with continued refactoring efforts. Hor-
izontal decomposition is applicable to any middleware imple-
mentation, and more generally, any software system, yet we
are limited by the maturity of aspect oriented programming
languages available to date. Choosing AspectJ and “aspec-
tizing” applications running on virtual machines might be
another contributing factor for less dramatic speed-ups25.
We are not too concerned with the small overhead in some
of the results induced by combining aspects. This is because
negligible overhead is one of the most vital design objectives
of the AspectJ compiler. We expect research in more effi-
cient code generation and JIT techniques for AspectJ will
eventually amortize this cost. We defer the benchmark com-
parison for the aspectual functionality to future work since
the required benchmarking options are not available to us in
the benchmarking tool. Our past work, however, has shown
that features supported through aspects do not experience
significant runtime overhead using AspectJ [41].

7. RELATED WORK
There is a broad range of research related to horizontal

decomposition principles, or, more generally, improving the
configurability and the adaptability of software systems th-
rough the use of new modularization techniques. We present
the related research in three categories: existing aspect ori-
ented applications to middleware, adaptive and customiz-
able middleware, and feature oriented programming.

7.1 Existing Middleware Applications of AOP
A large number of current applications of aspect oriented

programming to middleware architectures focus on provid-
ing better modularization and support for QoS properties,
or, more broadly speaking, support for non-functional prop-
erties in general. The QuO project at BBN Technologies
constitutes a framework supporting the development of dis-
tributed applications with QoS requirements (see [26, 12],
for example). QuO uses quality description languages (QDL)
to specify client-side QoS needs, regions of possible level of
QoS, system conditions that need to be monitored, certain
behavior desired by clients, and QoS conditions. Loyall et
al. [26] interpret these different description languages as as-
pect languages that are processed by a code generator to
assembled a runtime environment supporting the desired
and expected quality of service by client and server in a
distributed application. The COMQUAD [16] project uses
a similar approach to addresses non-functional aspects in
component-based systems. CQML+ is an XML-based lan-
guage in COMQUAD for the description of “quality char-
acteristics”. This description is then interpreted and main-
tained by the component containers. The JBoss applica-

25A measure of raw socket performance on the same machine
shows a 90 microsecond roundtrip for sending 1K of data.

tion server26 provides interceptors to allow the hosted ap-
plications to handle crosscutting concerns. It also directly
supports common crosscutting concerns in J2EE application
servers such as persistence, security, and transaction. Colyer
and Clement [8] demonstrate how to apply aspect orienta-
tion techniques in an industrial setting to refactor a major
crosscutting concern from an application server. Hunleth
et al. [19], as well as its extended work, FACET27, take a
similar position as we do and aim at customizing middle-
ware with aspect oriented techniques. It is suggested that
aspects could be used for consistency checking, error han-
dling, and at the interface specification level. None of the
concepts suggested appears to be evaluated, so a compari-
son with our approach is difficult. Similarly, Jacobsen and
Krämer [20] have suggested to expose certain crosscutting
concerns at the interface level to make them pluggable on a
by-need basis.

Our research differs from many of the above approaches
by focusing on the customizability of the middleware mech-
anism itself rather than modularizing its extrinsic proper-
ties. The crosscutting problems we attack are not limited to
non-functional concerns but more generally apply to any or-
thogonal functionality of the architecture. Moreover, unique
to our approach is that we introduce and evaluate a set of
principles to guide the aspect oriented design of systems and
the refactoring of such systems.

7.2 Adaptive Middleware
The discussion of separation of concerns for the design of

middleware platforms can be broadly classified into appro-
aches that provide customization of the middleware through
static or dynamic policy selection [1, 34], approaches that
adapt the operation of the middleware to changing runtime
conditions through the use of reflection [7, 25, 24, 5], and
approaches based on various forms of aspect definitions and
interpretations [26, 32, 19]. Many of these projects use sev-
eral of these techniques in combination. Below, we discuss
each category in turn and point out how our approach is dis-
tinguished. Upfront we can say that the key differentiator in
our approach is the focus on a methodology to design flex-
ible and customizable software systems in general and mid-
dleware in particular and the evaluation of this methodol-
ogy through extensive aspect oriented refactoring of a legacy
middleware platform. Our overall emphasize is re-designing
and re-structuring the system implementation based on the
emerging aspect oriented development paradigm. Astley
et al. [1] achieve middleware customization through tech-
niques based on separation of communication styles from
protocols and a framework for protocol composition. The
CompOSE—Q [34] project uses an actor-based model for
runtime adaptation. Both approaches do not employ aspect
orientation to isolated crosscutting design concerns from the
middleware implementation.

Several projects exploit reflective programming techniques
to allow the middleware platform to adapt itself dynamically
to changing runtime conditions [7, 25, 24, 5]. This includes
projects such as openORB [7], openCORBA [25], dynam-
icTAO [24], the OpenOrb project [5], and also the Com-
pOSE—Q project [34]. In these approaches, the reflective
middleware implementation observes and reacts to changing

26JBoss URL:http://www.jboss.org
27FACET URL: http://www.cs.wustl.edu/∼doc/RandD/
PCES/facet/

http://www.jboss.org
http://www.cs.wustl.edu/~doc/RandD/PCES/facet/
http://www.cs.wustl.edu/~doc/RandD/PCES/facet/


environmental conditions by selecting different implementa-
tion strategies. The platform adapts itself to the environ-
ment, but is not customized to domain or application re-
quirements. LegORB28, the Universally Interoperable Core
(UIC)29, and Jonathan30 are customizable middleware plat-
forms. Customization ranges from selecting the transport
protocol to method dispatching and marshalling routines.
While these approaches focus on customizing key platform
functions, they do not concern themselves with the actual
implementation and whether or not the function is indeed a
crosscutting concern. Moreover, the customization focuses
on a coarse level. In our approach, customization is much
finer-grained, allowing individual types to be separated from
the middleware implementation.

7.3 Feature Oriented Programming
Feature oriented programming [29] is an alternative pro-

gramming paradigm for increasing the flexibility of conven-
tional inheritance-based typing in object oriented systems.
In FOP, base objects, features which “crosscut” base ob-
jects, and the interactions between features and base objects
exit in separate modules. Hindsight shows some properties
of FOP can also be identified in our AOP implementation.
The concept of feature interaction bears similarities to the
implementation convolution problem. However, the former
is an intended engineering principle of FOP whereas the lat-
ter describes an unintended phenomenon in legacy imple-
mentations. Moreover, like AOP, guidelines are still needed
as how FOP can be applied to improve the middleware ar-
chitecture. The idea of separating the core from features can
also be found in research on telecommunication systems [40]
where the relationship is discussed at the level of system
functionality not at the architectural level.

8. CONCLUSION
Distributed applications are becoming more and more re-

liant on the middleware layer, which decouples them from
the complexity of distributed application development. The
increasing heterogeneity and versatility of application do-
mains requires middleware to support an unprecedented level
of configurability and adaptability. We believe this level
is difficult to achieve with vertical decomposition methods
alone, due to their inability in maintaining convolution-free
implementations. Hence, we propose the horizontal decom-
position principles and advocate the mixed-paradigm ar-
chitecture of middleware. This is based on using the con-
ventional hierarchically-decomposed architecture to support
core operations and aspect oriented decomposition for adding
orthogonal properties. In the horizontal decomposition, we
emphasize the relative nature of aspects and the importance
of defining the core decomposition as the basis of the AOP
decomposition. Through horizontal decomposition, we have
made two major improvements as compared to the conven-
tional architecture:

1. We have made considerable progress in factoring out
major middleware functionality as aspects and have
obtained a stripped-down version of the middleware
core. This core is 40% of its original size, and its

28http://choices.cs.uiuc.edu/2k/LegORB/
29http://www.ubi-core.com/
30http://www.objectweb.org/jonathan/jonathanHomePage.htm

performance has improved on all of the third-party
benchmarks. This is not at the cost of compromis-
ing overall functionality: the “stripped-out” properties
can be transparently brought into, or taken out of the
middleware on a by-need basis through the “weaving”
mechanism of AspectJ.

2. We have dramatically increased the degree of config-
urability and adaptability of the middleware by re-
solving the convolution among aspects and making
the architecture super-impositional. We have turned a
monolithic architecture into an architecture with over
60 possible combinations of features31. These combi-
nations are composed at the post-compilation stage at
which point no source code modification is required.

Although our primary experiments with horizontal de-
composition focus on middleware, we believe that our ap-
proach, of using multiple decomposition paradigms to un-
tangle and to separate the architectures of both core opera-
tions and orthogonal functionalities, is generally applicable
to any software architecture.

We suspect that horizontal decomposition principles are
best suitable for applications that serve multiple domains
and support a wide range of usage scenarios. The successful
application of horizontal decomposition is based on discern-
ing the most common functionality, i.e., the core, from a
large and complex system. We are somewhat blessed in that
the requirements and the functionalities of most middleware
technologies, such as CORBA, are well-studied. Software
architecture in other areas might not have this advantage.
Another issue, which is out of the scope of this paper but
cannot be neglected, is the question of how to ensure con-
sistency across aspects. That is to ensure that functionality
in one aspect does not negate or indirectly change the se-
mantics of another aspect. We had not encountered this
problem due to the refactoring of an existing application.
However, this becomes a serious issue when developing new
applications or adding new aspects. Besides intuition and
heuristics, this problem could be addressed, either at the
requirements engineering level, or through the use of model
checking. It is also a challenge to manage various config-
urations, since the possibilities of combinations of aspects
to form new product versions grows exponentially with the
number of aspects. An effective configuration tool must ac-
company the architecture to assist the customization pro-
cess.

In our future work, we will continue to accumulate more
experience in applying the horizontal design principles to im-
prove the modularity of middleware. We will continue our
refactoring work to separate out more horizontal design con-
cerns from the middleware core. For example, we can further
decompose primitive IDL data types as aspects. The inter-
face compiler, such as the IDL compiler in CORBA, is often
an integral part of the middleware functionality. We have
started studying the interface compiler support for horizon-
tal decomposition. We will also explore the application of
the horizontal decomposition method more extensively by
experimenting with other middleware types such as J2EE
application servers. This will greatly assist us in designing

31A rough calculation: the number of combinations of 6 as-
pects: interceptor support, DII, DSI, local invocation, wide
characters, conversion support is 26=64.

http://choices.cs.uiuc.edu/2k/LegORB/


a fully aspect oriented middleware platform, which is our
long term objective.

Acknowledgments
This research has been supported in part by an NSERC
grant and in part by an IBM CAS fellowship for the first
author. The authors are very grateful for this support.

9. REFERENCES
[1] M. Astley, D.C. Sturman, and G. A. Agha.

Customizable Middleware for Modular Software. ACM
Communications, May 2001.

[2] Luca Benini and Giovanni De Micheli. System-Level
Power Optimization: Techniques and Tools. ACM
Transactions on Design Automation of Electronic
Systems, 5(2):115–192, 2000. p173.

[3] G. D. Bergland. Structured Design Methodologies. In
Proceedings of the No 15 Design Automation
Conference on Design Automation, pages 475–493.
IEEE Press, 1978.

[4] L. Bergmans and M. Aksit. Aspects and crosscutting
in layered middleware systems. Reflective Middleware
(RM 2000) workshop held in conjunction with the
IFIP/ACM Intl. Conf. on Distributed System
Platforms and Open Distributed Processing
(Middleware 2000)., April 2000.

[5] Gordon S. Blair, Geoff Coulson, Anders Andersen,
Lynne Blair, Michael Clarke, Fabio Costa, Hector
Duran-Limon, Tom Fitzpatrick, Lee Johnston, Rui
Moreira, Nikos Parlavantzas, and Katia Saikoski. The
design and implementation of Open ORB 2. IEEE
Distributed Systems Online Journal 2(6), 2001.

[6] Joey Caron, Scott Herscher, and Ann Marie
O’Connor. CORBA in the palm of your hand
whitepaper. Vertel Corporation.

[7] M. Clarke, G. Blair, G. Coulson G., and
N. Parlavantzas. An efficient component model for the
construction of adaptive middleware. In IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware’2001), November 2001.

[8] Adrian Colyer and Andrew Clement. Large-scale
AOSD for middleware. In 3rd International
Conference on Aspect-oriented Software Development
(AOSD’04), pages 56 – 65, Lancaster, UK, 2004.

[9] Geoff Coulson, Gordon S. Blair, Michael Clarke, and
Nikos Parlavantzas. The design of a configurable and
reconfigurable middleware platform. Distributed
Computing, 15(2):109–126, 2002.

[10] Edsger W. Dijkstra. The humble programmer.
Commun. ACM, 15(10):859–866, 1972.

[11] Louis DiPalma and Robert Kelly. Applying CORBA
in a contemporary embedded military combat system.
OMG’s Second Workshop on Real-time and
Embedded Distributed Object Computing, June 2001.

[12] Gary Duzan, Joseph Loyall, Richard Schantz, Richard
Shapiro, and John Zinky. Building adaptive
distributed applications with middleware and aspects.
In Proceedings of the 3rd international conference on
aspect oriented software development. ACM, 2004.

[13] Robert Filman. Achieving ilities. URL:
http://ic.arc.nasa.gov/∼filman/text/oif/
wcsa-achieving-ilities.pdf, 1999.

[14] Martin Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Addison-Wesley,
1995.

[16] Steffen Gobel, Christoph Pohl, Simone Rottger, and
Steffen Zschaler. The COMQUAD Component Model:

Enabling Dynamic Selection of Implementations by
Weaving Non-functional Aspects. In Proceedings of
the 3rd International Conference on Aspect Oriented
Software Development. ACM, 2004.

[17] Object Management Group. The Common Object
Request Broker: Architecture and Specification.
Technical report, December 2001.

[18] Jan Hannemann and Gregor Kiczales. Design Pattern
Implementation in Java and AspectJ. In Proceedings
of the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 161–173. ACM Press, 2002.

[19] Frank Hunleth, Ron Cytron, and Christopher Gill.
Building customizable middleware using aspect
oriented programming. In Workshop at OOPSLA,
2001.

[20] H.-A. Jacobsen and B. J. Krämer. A design pattern
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