
Monitoring, Security, and Dynamic Con�guration

with the dynamicTAO Reective ORB?

Fabio Kon??, Manuel Rom�an, Ping Liu, Jina Mao, Tomonori Yamane, Luiz
Claudio Magalh~aes, and Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign

{f-kon,mroman1,pingliu,jinamao,yamane,magalhae,rhc}@cs.uiuc.edu

http://choices.cs.uiuc.edu/2K/dynamicTAO

Abstract. Conventional middleware systems fail to address important
issues related to dynamism. Modern computer systems have to deal
not only with heterogeneity in the underlying hardware and software
platforms but also with highly dynamic environments. Mobile and dis-
tributed applications are greatly a�ected by dynamic c hangesof the en-
vironment c haracteristicssuch as security constraints and resource avail-
ability. Existing middleware is not prepared to react to these c hanges.
In many cases, application developers know when adaptive c hanges in
communication and security strategies would improve system perfor-
mance. But often, they are not able to bene�t from it because the mid-
dleware lacks the mechanisms to support monitoring (to detect when
adaptation should take place) and on-the-y recon�guration.
dynamicTAO is a CORBA-compliant reective ORB that supports dy-
namic con�guration. It maintains an explicit representation of its own
internal structure and uses it to carry out runtime customization safely.

After describing dynamicTAO 's design and implementation, we discuss
our experience on the development of two systems bene�ting from the
reective nature of our ORB: a exible monitoring system for distributed
objects and a mechanism for enforcing access control based on dynamic
security policies.

There is nothing permanent except change.
Heraclitus of Ephesus (535-475 BC)

1 Introduction

One of the major motivations for the development of middleware is the high
degree of hardware and software heterogeneity encountered in existing systems.
Middleware systems like CORBA are able to hide the speci�cs of the underlying
platform and provide a uniform high-level interface for application developers.

? This research is supported by NSF grants 98-70736 and 99-70139.
?? Fabio Kon is supported in part by a grant from CAPES-Brazil, proc.#1405/95-2.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 121-143, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 

121


Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.



However, the diversity in modern computer systems is not limited to di�er-
ences in the underlying hardware and operating system. One must not forget
that even machines with the same hardware type and operating system may be
con�gured with extremely di�erent resources (e.g., Ethernet versus ATM net-
working, di�erent amounts of RAM and disk space) and with di�erent software
packages.

Besides this \diversity in space", we also �nd a huge \diversity in time", i.e.,
a single machine typically experience drastic variations in CPU, memory, disk,
and network availability. Mobile computers experience changes in connectivity,
bandwidth, and error patterns as they move from one area to another. Lap-
tops are subject to di�erent security policies as they are connected to di�erent
domains.

Existing middleware systems are not ready to deal with these two kinds of
diversity. They are usually optimized to a particular architecture and to a par-
ticular con�guration. But, computing environments are getting increasingly dy-
namic; if the next generation middleware is not capable of managing the dynamic
variations in the environment properly, a large amount of computing resources
will be wasted and application performance will be greatly a�ected.

In order to cope with these variations and still maintain a good performance
level, middleware and application components must be able to detect changes
in the environment and recon�gure themselves to optimize their performance
under the new conditions. We addressed this problem by adding support for
recon�guration and runtime extensibility within TAO, an open source CORBA
Object Request Broker (ORB).

2 dynamicTAO

In order to deal with the highly dynamic environments described in the previ-
ous section, our group is developing the 2K distributed operating system [16],
which is based on a dynamically con�gurable middleware layer compatible with
CORBA. Rather than implementing a new ORB from scratch, we realized that
it would be more productive to modify an existing ORB to add the dynamism
we needed.

After carefully studying existing ORBs, we came to the conclusion that the
TAO ORB [29] would be the best starting point for developing our infrastructure.
TAO is a portable, exible, extensible, and con�gurable ORB based on object-
oriented design patterns. It is written in C++ and uses the Strategy design
pattern [6] to separate di�erent aspects of the ORB internal engine. A con�gu-
ration �le is used to specify the strategies the ORB uses to implement aspects
like concurrency, request demultiplexing, scheduling, and connection manage-
ment. At ORB startup time, the con�guration �le is parsed and the selected
strategies are loaded.

TAO is primarily targeted for static hard real-time applications such as
Avionics systems. Thus, it assumes that, once the ORB is initially con�gured,

122



its strategies will remain in place until it completes its execution. There is very
little support for on-the-y recon�guration.

The 2K project, on the other hand, seeks to build a exible infrastructure
to support adaptive applications running on dynamic environments. On-the-y
adaptation is extremely important for a wide range of applications including
the ones dealing with multimedia, mobile computers, multiple security domains,
and other kinds of dynamically changing environments. We achieved the desired
level of con�gurability with dynamicTAO , our extension of TAO that enables
on-the-y recon�guration of its strategies.

2.1 A Reective ORB

dynamicTAO is our �rst complete implementation of a CORBA reective ORB.
As pointed out in [31, 32], a reective system is a system that gives a program
access to its de�nition and evaluation rules, and de�nes an interface for altering
them. In an ORB, client requests represent the \program" to be evaluated by
the system. The ORB implementation represents the \evaluator", and \evalua-
tion" is simply remote method invocation. A reective ORB makes it possible
to rede�ne its evaluation semantics.

dynamicTAO is a reective ORB because it allows inspection and recon-
�guration of its internal engine. It achieves that by exporting an interface for
(1) transferring components across the distributed system, (2) loading and un-
loading modules into the ORB runtime, and (3) inspecting and modifying the
ORB con�guration state. The infrastructure can also be used for dynamic re-
con�guration of servants running on top of the ORB and even for recon�guring
non-CORBA applications.

Rei�cation in dynamicTAO is achieved through a collection of entities known
as component con�gurators [12, 13]. A component con�gurator holds the de-
pendencies between a certain component and other system components. Each
process running the dynamicTAO ORB contains a component con�gurator in-
stance called DomainConfigurator. It is responsible for maintaining references
to instances of the ORB and to servants running in that process. In addition,
each instance of the ORB contains a customized component con�gurator called
TAOConfigurator.

TAOConfigurator contains hooks to which implementations of dynamicTAO
strategies are attached. Hooks work as \mounting points" where speci�c strategy
implementations are made available to the ORB. We currently support hooks
for di�erent kinds of strategies such as Concurrency, Security, Monitoring, and
the like. The association between hooks and component implementations can be
changed at any time, subject to safety constraints.

Figure 1 illustrates this rei�cation mechanism in a process containing a single
instance of the ORB. If necessary, individual strategies can use component con-
�gurators to store their dependencies upon ORB instances and other strategies.
These con�gurators may also store references to client connections that depend
on the strategies. With this information, it is possible to manage strategy recon-
�guration consistently as we explain in section 2.3.

123



TAOConfigurator

.

.

.

ConcurrencyStrategy

SchedulingStrategy

MonitoringStrategy

SecurityStrategy

Servant2ConfiguratorServant1Configurator

DomainConfigurator

Fig. 1. Reifying the dynamicTAO structure

Component implementations are shipped as dynamically loadable libraries,
so they can be linked to the ORB process at runtime. They are organized in
categories representing di�erent aspects of the ORB internal engine (which are
associated with dynamicTAO hooks) or di�erent types of servant components.
In future implementations, we intend to support category type-checking using
ANSI C++ runtime type information (RTTI).

The dynamicTAO architectural framework is depicted in �gure 2. The Per-
sistent Repository stores category implementations in the local �le system. It
o�ers methods for manipulating (e.g. browsing, creating, deleting) categories
and the implementations of each category. Once a component implementation
is stored in the local repository, it can be dynamically loaded into the process
runtime.

A Network Broker receives recon�guration requests from the network and
forwards them to the Dynamic Service Con�gurator. The latter contains the
DomainConfigurator (shown in �gure 1) and supplies common operations for
dynamic con�guration of components at runtime. It delegates some of its func-
tions to speci�c component con�gurators (e.g., TAOCon�gurator or a certain
ServantCon�gurator).

We minimized the changes to the standard ACE/TAO distribution by dele-
gating some of the basic con�guration tasks to components of the ACE frame-
work such as the ACE Service Config (used to process startup con�guration
�les and manage dynamic linking) and the ACE Service Repository (to man-
age loaded implementations) [9].

This architectural framework enables the development of di�erent kinds of
persistent repositories and network brokers to interact with the Dynamic Service
Con�gurator. Thus, it is possible to use di�erent naming schemes when storing
category implementations and di�erent communication protocols for remote con-
�guration as described below.

124



ACE_Service_Repository ACE_Service_Config

Local
File

System

Network Broker

Dynamic Service Configurator

data/command
flow

DomainConfigurator

Process boundary

co
nf
ig
ur
at
io
nF
il
e

Administration
Panel

Agents
Reconfiguration

Persistent Repository

Servant1Configurator

TAOConfigurator

Fig. 2. dynamicTAO Components

We built the dynamicTAO components using the ACE wrappers [5] for oper-
ating system services. Thus, dynamicTAO runs on the several di�erent platforms
to which ACE was ported.

2.2 Recon�guration Interface

dynamicTAO supports three distinct forms of recon�guration interfaces. In gen-
eral terms, they all provide the same functionality but each of them has charac-
teristics that makes it more or less appropriate for certain situations. A descrip-
tion of the interfaces follows.

1. The DCP Broker is a customized subclass of the Network Broker shown
in Figure 2. It listens on a TCP port, waiting for connection requests from
remote clients. Once a connection is established, a client can send inspection
and recon�guration commands using DCP, our Distributed Con�guration
Protocol [11]. This interface is particularly good for debugging and for fast
interaction with an ORB since the user can access the con�guration interface
simply by establishing a telnet connection to the DCP Broker.

2. The Recon�guration Agent Broker is also a customized subclass of the
Network Broker, it is useful for con�guring a distributed collection of ORBs
as we describe in section 2.4.

3. TheDynamicCon�gurator is a CORBA object that exports an IDL inter-
face with operations equivalent to the ones o�ered by the DCP protocol. It
is the most convenient of the three interfaces for programmatic interactions
since all the communication aspects are hidden by the CORBA middleware.

125



We now use the DynamicCon�gurator IDL speci�cation presented in �gure 3
to explain the functionality of the dynamicTAO recon�guration interfaces1.

interface DynamicConfigurator
{
typedef sequence<string> stringList;
typedef sequence<octet> implCode;

stringList list_categories ();
stringList list_implementations (in string categoryName);
stringList list_loaded_implementations ()
stringList list_domain_components ();
stringList list_hooks (in string componentName);
string get_impl_info (in string implName);
string get_comp_info (in string componentName);
string get_hooked_comp (in string componentName,

in string hookName);
string get_latest_version (in string categoryName);

long load_implementation (in string categoryName,
in string impName,
in string params
in Configuration::Factory factory,
out Configuration::ComponentConfigurator cc);

void hook_implementation (in string loadedImpName,
in string componentName,
in string hookName);

void suspend_implementation (in string loadedImpName);
void resume_implementation (in string loadedImpName);
void remove_implementation (in string loadedImpName);
void configure_implementation (in string loadedImpName,

in string message);

void upload_implementation (in string categoryName,
in string impName,
in implCode binCode);

void download_implementation (in string categoryName,
inout string impName,
out implCode binCode);

void delete_implementation (in string categoryName,
in string impName);

};

Fig. 3. The DynamicCon�gurator interface

The DynamicCon�gurator interface speci�es the operations that can be per-
formed on dynamicTAO abstractions, namely, categories, implementations, hooks,
and con�gurable components. The �rst nine operations in the interface are
used to inspect the dynamic structure of that domain and retrieve information
about the di�erent abstractions. A category represents the type of a compo-
nent; each category typically contains di�erent implementations, i.e., dynam-
ically loadable code stored in the Persistent Implementation Repository. For
example, a category called Concurrency contains the three threading models

1 To make �gure 3 more clear, we omitted the exceptions that each operation can
raise.

126



that dynamicTAO currently supports: Reactive Strategy, Thread Strategy,
and Thread Pool Strategy.

Once an implementation is loaded into the system runtime, it becomes a
loaded implementation and can be associated with a logical component in the
ORB domain. Finally, components have hooks that are used to represent inter-
component dependence; if a component A depends upon component B then this
dependence is represented by attaching B to a hook in A.

load implementation dynamically loads and starts an implementation from
the persistent repository. hook implementation attaches it to a hook in one of
the components in the domain.

The next four methods allow operations on loaded implementations. It is pos-
sible to suspend and resume their main threads, remove them from the process,
and send them component-speci�c recon�guration messages.

upload implementation allows an external entity to send an implementation
to be stored in the local Persistent Repository, so that it can be linked to a
running process and attached to a hook. Conversely, download implementation

allows a remote entity to retrieve an implementation from the local Persistent
Repository. Finally, delete implementation is used to delete implementations
stored at the ORB Persistent Repository.

Consider now the scenario in which a user wants to change the threading
model at runtime by using an implementation of the Concurrency strategy called
Thread Pool Strategy. Assuming that the user wants to start with a thread pool
of size 20, the required con�guration steps are the following.

1. Load the implementation into memory:
version = load implementation("Concurrency","Thread Pool Strategy","20",

0, cc)

2. Attach the implementation to the Concurrency hook in TAO:
hook implementation("Concurrency":version,"TAO","Concurrency Strategy")

After the new implementation is attached, the ORB starts using it. In section
2.3, we discuss what happens if a di�erent concurrency strategy is in use.

Figure 4 shows C++ code that uses the Dynamic Con�gurator to retrieve
and print some information about the ORB internal con�guration. The code
obtains a reference to the DynamicCon�gurator object through the ORB's re-
solve initial references() method.

To facilitate interactive con�guration, we developed Doctor , a Dynamic ORB
Con�guration Tool. As shown in �gure 5,Doctor is a Java graphical user interface
that lets users manipulate both the ORB persistent repository and the runtime
con�guration interactively. The tool establishes a connection to the ORB DCP
Broker and let users send DCP messages by using the mouse.

2.3 Consistency

Recon�guring a running ORB while it is servicing client requests is a diÆcult
task that requires careful consideration. There are two major classes of problems.

127



CORBA::Object_var dcObj;
DynamicConfigurator_var dynConf;
CORBA::ORB_var orb;

orb = CORBA::ORB_init (argc, argv);
dcObj = orb->resolve_initial_references ("DynamicConfigurator");
dynConf = DynamicConfigurator::_narrow (dcObj.in ());

stringList *list = dynConf->list_implementations ("Concurrency");

printf ("Available concurrency strategies:");
printStringList (list);

char *ret = dynConf->get_hooked_comp ("TAO", "Concurrency_Strategy");

printf ("Now, using the <%s> concurrency strategy.", ret);

Fig. 4. Inspecting the ORB internal state

Consider the case in which dynamicTAO receives a request for replacing one
of its strategies (Sold) by a new strategy (Snew). The �rst problem is that TAO
strategies are implemented as C++ objects that communicate through method
invocations; thus, before unloading Sold, the system must be sure that no one is
running Sold code and that no one is expecting to run Sold code in the future.
Otherwise, the system could crash. Thus, it is important to assure that Sold is
only unloaded after the system can guarantee that its code will not be called.

The second problem is that some strategies need to keep state information.
When a strategy Sold is being replaced by Snew, part of Sold's internal state may
need to be transfered to Snew. Both problems can be addressed with the help of
the TAOCon�gurator .

Consider, for example, the three concurrency strategies supported by dynam-
icTAO : single-threaded reactive, thread-per-connection, and thread-pool. If the
user switches from the reactive or thread-per-connection strategies to any other
concurrency strategy, nothing special needs to be done. dynamicTAO may sim-
ply load the new strategy, update the proper TAOCon�gurator hook, unload the
old strategy, and continue. Old client connections will complete with the concur-
rency policy dictated by the old strategy. New connections will utilize the new
policy.

However, if one switches from the thread-pool strategy to another one, we
must take special care. The thread-pool strategy we developed maintains a pool
of threads that is created when the strategy is initialized. The threads are shared
by all incoming connections to achieve a good level of concurrency without hav-
ing the runtime overhead of creating new threads. A problem arises when one
switches from this strategy to another strategy: the code of the strategy being re-
placed cannot be immediately unloaded. This happens because, since the threads
are reused, they return to the thread-pool strategy code each time a connection
�nishes. This problem can be solved by a ThreadPoolCon�gurator keeping infor-
mation about which threads are handling client connections and destroying them

128



Fig. 5. The Doctor con�guration tool

as the connections are closed. When the last thread is destroyed the thread-pool
strategy signals that it can be unloaded.

Another problem occurs when one replaces the thread-pool strategy by a new
one. There may be several incoming connections queued in the strategy waiting
for a thread to execute them. The solution is to use the Memento pattern [6]
to encapsulate the old strategy state in an object that is passed to the new
strategy. An object is used to encapsulate the queue of waiting connections. The
system simply passes this object to the new strategy which then takes care of
the queued connections.

2.4 Recon�guration Agents

After implementing the �rst version of dynamicTAO we noticed that a signif-
icant limitation it presented was that, in order to con�gure a particular ORB,
it required a point-to-point connection between the administration node (e.g.
running Doctor) and the ORB process. Thus, if a system administrator needed
to upgrade a certain component of an on-line service composed of ten replicas
located in di�erent countries, it was necessary to connect to each replica sepa-
rately, upload the new implementation of the component, and recon�gure the
replica. This process was extremely laborious and tiresome.

129



Our group had experience with the deployment of a large-scale Multimedia
Distribution System to broadcast live video and audio through a network of
more than 30 multimedia servers spread across �ve continents. The system ran
24 hours per day for more than three months and delivered multimedia streams
to more than one million users in dozens of di�erent countries [14]. The diÆculty
in carrying out that experiment (managing more than 30 application nodes in
a wide-area network) exposed the extreme necessity of exible mechanisms for
eÆcient runtime recon�guration of long-running, large-scale systems. We believe
that this kind of application will become increasingly important and numerous
on the Internet in the next decade. Thus, a good infrastructure to support them
would be extremely useful.

As a �rst solution to the problem we considered implementing a management
front-end that would allow administrators to type sequences of DCP commands
that would be sent to a list of ORBs. Although this approach would simplify
the work of the administrator, it would not solve the problem of bandwidth
waste, i.e., sending large amounts of duplicated information across long-distance
Internet lines.

The solution we adopted was to allow administrators to organize the nodes
of their Internet systems in a hierarchical manner for recon�guration purposes.
The administrator speci�es the topology of the distributed application as a di-
rected graph and creates a mobile recon�guration agent which is injected into the
network. The recon�guration agent then visits the nodes of this graph of inter-
connected ORBs. In each ORB, the agents are received by the Recon�guration
Agent Broker. The broker �rst replicates and forwards the agent to neighbor-
ing nodes, then processes the DCP commands locally, and �nally, collects the
recon�guration results, sending them back to the neighboring agent source.

Using this approach, the administrator can organize the recon�guration hi-
erarchy to optimize the data ow between distant application nodes. The recon-
�guration commands are executed in parallel in the various nodes, improving
response time. If desired, the graph may contain di�erent levels of redundancy
so that the system can tolerate the failure of some of the nodes in the recon�g-
uration network.

Administrators use a Java graphical administrative front-end for specifying
recon�guration graphs and for assembling and sending recon�guration agents.
Given the large variations on Internet line speeds, administrators should have an
approximate idea of the available bandwidth in each edge of the recon�guration
graph. With this information it is possible to organize the graph to minimize
the transmission over low-bandwidth and congested Internet lines.

The administrator selects those ORBs that will be part of the recon�guration
graph (see �gure 6) and draws directed edges connecting the graph nodes (see
�gure 7). Each time a new ORB is selected from the list on the left-hand side of
�gure 6, a new node is added to the graph in �gure 7.

Once the recon�guration graph is de�ned, a new window assists the adminis-
trator to build a list of DCP commands that are codi�ed into a recon�guration
agent. Finally, the administrator instructs the graphical front-end to send the

130



Fig. 6. Selecting the nodes of the recon�guration graph

Fig. 7. De�ning the recon�guration topology

131



agent to an initial node in the graph. Figure 8 shows the composition of an agent
with three DCP commands: list categories, list loaded implementations,
and list implementations.

Fig. 8. Composing a recon�guration agent

Securing Dynamic Con�guration The initial implementation of dynamic-
TAO did not provide security either in the DCP Broker or in the Recon�guration
Agent Broker. In other words, if these interfaces were enabled, any user could
contact one of the brokers and inject inspection and recon�guration agents freely.
In order to solve this problem, we implemented a exible security architecture
described in section 4. It relies on a Reference Monitor that allows for very
�ne-grain control over the access to the DynamicCon�gurator operations.

We are also working on a security mechanism for both the DCP and the
Recon�guration Agent Brokers. We have a preliminary prototype supporting
encryption, authentication, and access control.

More details about the implementation and the issues related to recon�g-
uration agents can be found in [15]. In the following sections we describe how
the dynamicTAO infrastructure was used to implement Monitoring and Security
services.

3 Monitoring Object Interactions

To support the construction of e�ective adaptable applications and systems, the
middleware must provide a way to detect when adaptation should take place. In

132



the previous section, we showed how dynamicTAO could be used to adapt an
application. In this section, we show how an application can know when it is
time to adapt.

We built the 2K Monitoring Service [21] as a dynamically loadable compo-
nent that can be attached to and detached from dynamicTAO at any time by
using the con�guration interfaces described in the previous section. It is able to
collect and consolidate information about the interactions (i.e., method invoca-
tions) among CORBA objects in the distributed system. By using the Monitoring
Service in conjunction with the 2K Resource Manager (which provides dynamic
information about hardware resource availability), a program can be completely
aware of the dynamics of the environment in which it is inserted.

By knowing the nature and magnitude of the interactions between compo-
nents, a system can recon�gure itself in order to adapt to di�erent situations and
improve its performance. Moreover, if the information about component interac-
tion is exported to applications, they become capable of implementing their own
adaptation policies. Finally, exporting this information to system administrators
and users in a way that they can easily understand, might help them to identify
bottlenecks in their system. For example, by showing that applications spend
most of their time waiting to access the local �le system might indicate that the
administrator should install a faster hard disk or that the system should adopt
a more e�ective caching policy.

We developed this service following having two major goals in mind: mini-
mum performance degradation and minimum interference. First, the Monitoring
Service should not slow down any part of the system signi�cantly. Second, it
should not change the dependency relations among other system and applica-
tion components. That means that when the service is deactivated, it should be
as if the service did not exist. And when the service is activated, the system and
application components should not be aware of the service unless it needs to use
it.

3.1 Architecture

The Monitoring Service uses the reective ORB DynamicCon�gurator interface
for dynamically loading (and unloading) its modules. Once the service is loaded,
it is inserted into the invocation path by using a request-level interceptor2. Un-
loading it from memory or suspending its execution temporarily causes its re-
moval from the invocation path. When the service is not active, the overhead
for the interceptor is negligible (simply checking the nullity of a pointer).

Our architectural framework, shown in Figure 9, is composed of the Moni-
toring Interceptor, which collects information about selected client requests and
one or more Storage Servers, which are responsible for saving the data into a
persistent store and for processing queries about the stored data. In addition,
the dynamicTAO DynamicCon�gurator is used to dynamically con�gure the in-
terceptor behavior. The Monitoring Service user depicted in Figure 9 is either

2 The interceptor mechanism is de�ned in the CORBA speci�cation, chapter 18 [22].

133



a computer program responsible for detecting special conditions in the environ-
ment or a programmer or system administrator using a text-based or graphical
front-end.

Interceptor
Monitoring

ORB

Servant 1 Servant 2

Configurator
Dynamic

obj1

Storage
Server

obj2 obj3 obj4 . . .

process boundary

Client

query
user

configuration

Fig. 9. The Monitoring Service Architecture

Upon initialization, the interceptor contacts the Name Server to locate a
Storage Server in the network. Users can then con�gure the monitoring process
through the con�gure method of the dynamicTAO DynamicCon�gurator inter-
face. It is possible to specify (1) the name of the objects that should be mon-
itored, i.e., which objects should have their requests information sent to the
Storage Server, (2) which operations of each object should be monitored, and
(3) some interceptor internal parameters such as how often it sends the collected
information to the Storage Server.

Every time the interceptor detects a client request that should be sent for
storage, it creates a record containing �ve kinds of information about that re-
quest: client machine address, target object name, target operation name, times-
tamp, and server-side duration. The records are grouped in a local bu�er and a
di�erent thread sends them to the Storage Server periodically.

The Storage Server stores its data either in a �le system or in a database
management system and exports two interfaces. The �rst is used by the mon-
itoring interceptor to publish the collected information and the second is used
by users to send queries about the collected information. The query interface
provides support for a wide range of query types. Users can ask, for example,
\When was the last call to operation A on object X?", \What is the average
completion time for calls to operation A on object X from host P?", \How many
times did object X receive requests between time t0 and t1?", and so on.

134



3.2 Performance Measurements

We measured the latency on calls to a CORBA object in three di�erent stages.
In stage one, we measured the latency on each of the method calls without
using the Monitoring Service. In stage two, we measured the latency after the
Monitoring Service was loaded and attached to the interceptor, but without
having it monitoring this particular object. In the last stage, we measured the
latency when the object is being monitored by the Monitoring Service. For each
stage, we tested both local and remote method calls. Table 1 shows the average
of the results for 50 experiments ran between a Sun Ultra2 and Ultra60 machines
running Solaris 2.6 and connected by fast Ethernet. Each experiment consists of
measuring the round-trip time for a call on a getHello() operation that simply
returns a 12-character CORBA string to the client.

getHello Without Monitoring Monitoring
calls Monitoring Disabled Enabled

Local 0.781 0.803 0.941

Remote 1.252 1.277 1.379

Table 1. Monitoring Service overhead (in ms)

As can be seen from Table 1, the overhead of the Monitoring Service on an
object that was being monitored was 20% and 10% for local and remote calls,
respectively. The overhead was reduced to 2.8% and 2.0% when the Monitoring
Service was active but not monitoring that particular object.

We are certain that there are still opportunities for optimizations that would
make the overhead smaller. However, it is important to notice that the getHello
operation is almost the worst case scenario because it has no parameters and
its returned value is very small. In common cases, CORBA operations carry a
large number of arguments that must be marshalled and demarshalled. In those
cases, the relative overhead of the Monitoring Service would be much smaller.

4 Dynamic Security

The second service we implemented on top of the dynamicTAO infrastructure
was the Reference Monitor [17], a exible mechanism for enforcing access con-
trol based on dynamic security policies. This work consisted on deploying the
Cherubim security framework [2] in the dynamicTAO environment and adding
support for audit logging and caching of security decisions.

As we described in section 2.1, the TAOCon�gurator contains a hook to which
security strategies can be dynamically attached. When this happens, the new
security strategy has the opportunity to add message-level interceptors (to en-
crypt/decrypt the message contents and authenticate communication peers) and
request-level interceptors (to control the access to CORBA objects).

135



When using our Cherubim Security Strategy , applications are able to choose
from a large range of security models including Discretionary Access Control
(DAC), Double Discretionary Access Control (DDAC), and Mandatory Access
Control (MAC) [28]. Cherubim adopts the general CORBA Security Reference
Model and the OMG Security Service interfaces [23].

We are currently extending our implementation to support Role-Based Access
Control (RBAC) [26] and message-level authentication and encryption. The new
security system resulting from this e�ort will be the basis for security in the 2K
distributed environment.

4.1 Architecture

The Cherubim security framework supports access control by using Active Ca-
pabilities [2], pieces of Java bytecode that have the same role as conventional
capabilities but that carry objects instead of just data. Active Capabilities are
protected by digital signatures and encryption and are generated by an adminis-
trative tool that has access to a trusted secure store. All the information about
user (or principal) roles and privileges are maintained in a secure store object
called a credential. A single active capability can carry credentials for several ob-
jects and, since it contains interpretable code, it can support dynamic, exible
security policies, making decisions based on changing attributes such as location,
resource availability, and other situation-speci�c parameters.

When a principal wants to access an object, it must �rst present the active
capability and then send the desired requests. In our model, clients access secured
objects by �rst installing an active capability into the Reference Monitor and
then using the objects without having to worry about security. Alternatively, the
active capabilities may be installed by a third party like an administrative tool,
or fetched transparently by the Reference Monitor so that the application can be
totally unaware of security. In our experiments, we adopted the last approach,
which works with security-unaware applications.

Figure 10 shows the major components of our Reference Monitor architecture.
If the Cherubim Security Strategy is attached to the Server Security Strategy hook
in the TAOCon�gurator , then all client requests are intercepted and delivered to
the Reference Monitor module.

Before forwarding the call to the ORB, the Reference Monitor must check if
the principal associated to the client sending the request is allowed to call that
particular operation, on that particular object, with those particular arguments.
The Reference Monitor �rst checks whether that security decision is available in
the Authorization Cache. If the decision is cached, then it either forwards the
call to the ORB (if the security decision is to grant access) or throws a CORBA
NO PERMISSION exception.

If the security decision is not available in the Cache, the Reference Monitor
contacts the Active Capability Evaluator. If necessary, the Active Capability
Evaluator contacts the Policy Server to fetch the active capability from the
Secure Store. After the active capability is evaluated, the security decision is
stored in the Authorization Cache for future use. If any credential in an active

136



Servant

ORB

Reference
Monitor

Cache
Authorization

Client

Policy
Server

Secure
Store

Active Capability
Evaluator

Audit Log

process boundary

Fig. 10. The Reference Monitor Architecture

capability is revoked, the Policy Server contacts the Authorization Cache to
update its list of security decisions.

If desired, security decisions can be stored in the Audit Log. The log can be
used as a record of all security-sensitive operations performed in the system,
assisting in the detection of attempted security violations.

The possibilities for dynamically con�guring the security subsystem that dy-
namicTAO provides are very useful for a wide range of applications in several
situations. As an example, consider a mobile computer moving from a corporate
intranet towards a wireless satellite network. It may be acceptable to use light-
weight encryption and soft access control in the intranet but it may be required
to apply strong encryption and very tight access control policies when switching
to the wireless network.

Each rectangle in �gure 10 is a separate component that may be running
on a separate machine. Thus, the system is subject to network partitions and
to failures in individual components. Our current implementation requires that
all the components be available, otherwise, it denies the access by throwing a
security exception. The service could be extended to support di�erent behaviors
in the presence of network outages such as relying on a local versions of the
policy server with limited functionality, and logging the events locally while the
remote Audit Log is unreachable.

137



5 Componentizing the ORB

After our experience in developing applications with both open source and com-
mercial ORBs, we came to the conclusion that typical applications utilize just
a very small fraction of the services and functionalities provided by common
ORBs. Besides, one of the criticism that CORBA often receives is that it is
too big and heavy-weighted to be used in small devices and embedded systems.
Although dynamicTAO can be con�gured dynamically, its memory footprint is
never less than a Megabyte. It would be extremely diÆcult, if not impossible,
to run it on a PDA such as the PalmPilot III. This motivated us to develop
LegORB , which can be customized dynamically to adapt to resource availability
and to accommodate the requirements of di�erent applications and devices at
di�erent moments.

Mies van der Rohe's dictum \Less is more" is LegORB 's major tenet. It is
a component-based ORB that can be con�gured at runtime so that it loads
just enough components to provide the middleware services required by each
application. Applications can select from a range of di�erent implementations
for each ORB component category and, as in dynamicTAO , replace components
on-the-y. To achieve minimal code size and high performance, we are writing the
whole ORB source code from scratch, having small devices and componentization
as our fundamental goals.

Unlike dynamicTAO , LegORB was designed having componentization and
dynamic recon�guration as a fundamental premise. We had embedded systems
and PDAs in mind since the very beginning, which allowed us to achieve surpris-
ing results in terms of code size. A minimal con�guration of LegORB containing
just the basic infrastructure and a simple IIOP client engine that is able to
send CORBA requests to standard ORBs occupies only around 6Kbytes on the
PalmOS operating system for the PalmPilot. The server side includes extra func-
tionality to receive and process client requests. Still, its size can be limited to
around 10 to 20Kbytes. These LegORB instances are able to interoperate with
traditional ORBs such as Orbix, ORBacus, and Washington University's TAO.

LegORB has a basic skeleton with a set of hooks to which infrastructure
components are attached. These components then collaborate to o�er ORB func-
tionality. The set of hooks can be extended to accommodate situation speci�c
functionality like real-time processing. Even though the categories are already
de�ned, each category has di�erent implementations. Combining di�erent kinds
of categories leads to di�erent ORB behaviors.

The current implementation of the client side of the LegORB de�nes seven
di�erent categories: Invocation Interface, Connector, GIOP, IIOP, MIOP, Mar-
shaler, and Demarshaler. Each category de�nes a standard interface that imple-
mentations of that category must provide. In addition to that, each implementa-
tion can add more functionality by o�ering a more detailed interface to be used
by components that are aware of it.

One of the scenarios in which we are applying 2K is in the context of active
spaces such as smart rooms. These rooms contain computers, printers, video
cameras, projectors, microphones, digital white boards, as well as other kinds

138



of electric and electronic devices. In our preliminary experiments, we \COR-
BArized" some devices by implementing IDL interfaces that control video cam-
eras, light switches, and even a microwave oven. By using well-de�ned interfaces
and CORBA as a common communication substrate, we were able to integrate
all these highly heterogeneous devices into the distributed system and interact
with them not only by using powerful workstations running full CORBA im-
plementations but also by using hand-held PalmPilot computers running our
minimal ORB.

6 Related Work

Recent research in middleware have identi�ed limitations on existing CORBA
implementations, which led to ORB extensions for dealing with speci�c aspects
such as real-time [7], group communication [20], and fault-tolerance [19]. Our
goal, on the other hand, is to provide a generic infrastructure in which di�erent
kinds of customizations can be performed using reection [18].

Other research groups have addressed the problem of middleware customiza-
tion by using di�erent approaches. The Operating Systems group at the Friedrich-
Alexander University of Erlangen-N�urnberg is developing AspectIX [8], a con�g-
urable middleware architecture based on the fragmented object model. AspectIX
clients would interact with a fragment of the global object (the fragment imple-
mentation) by using an interface (the fragment interface). The global object
could be con�gured by using \pro�les" which in turn specify \aspects" that
must be supported by the fragment implementations. AspectIX Aspects can be
compared to dynamicTAO category implementations with the di�erence that
dynamicTAO implementations can be added on-the-y. The AspectIX group
plans to implement a prototype of their model where each object running within
a single ORB would be able to specify its own policies and protocols. In dynam-
icTAO , a similar e�ect could be achieved by using di�erent ORBs inside a single
process and con�guring each of the ORBs in a di�erent way. In the LegORB
model, on the other hand, the ORB can be con�gured to support any of the two
approaches.

The Distributed Multimedia Research Group at the Lancaster University has
proposed a reective architecture for next generation middleware [1, 4]. They
developed a prototype using the Python interpreted language in which the pro-
grammer is able to inspect and change the implementation at runtime. The level
of reection is much higher than in dynamicTAO since, in their Python system,
it is possible to add or remove methods from objects and classes dynamically
and even change the the class of an object at runtime. Their research has empha-
sized dynamic con�gurability through a well-de�ned open binding model which
allows multiple reective levels. In contrast, our research concentrates on a sim-
pler reective model, focusing on high performance. In our model, the reective
mechanisms are not included in the normal ow of control, they are only invoked
when needed.

139



The Distributed Adaptive Run-Time (DART) [25] provides a framework
where applications can modify their internal behavior as well as the behavior
of services that they are using. It distinguishes between internal application
adaptation (Adaptive Methods) and adaptation of the application's environment
(Reective Methods). In the case of Adaptive Methods, applications o�er several
implementations of each method. A special entity called selector chooses the
most e�ective one at each invocation. In its turn, reective methods allow adap-
tation of the runtime environment. When calling a reective method, the call is
redirected to a set of meta-level objects that manage run-time services. A DART
manager (which can be compared to the dynamicTAO DomainConfigurator)
stores adaptation information and references to applications and policies. Re-
con�guration is triggered and controlled by using events that are also used to
maintain consistency. Entities known as policies have the knowledge required to
recon�gure applications. Policies use the DART manager to access applications
as well as the meta-objects associated with them.

COMERA [34] (COM Extensible Remote Architecture) provides a frame-
work based on Microsoft COM that allows users to modify several aspects of
the communication middleware at run-time. It relies on the Custom Marshaler
interface exported by COM, as well as the componentized architecture design
that allows the use of user-speci�ed components. By using COMERA, system
developers can customize the middleware according to application requirements.

Previous work in system instrumentation and monitoring developed signi�-
cant contributions that could be applied in the context of CORBA. The Pablo
research group at the University of Illinois has developed a powerful framework
for performance analysis and visualization [27]. In this framework, raw perfor-
mance data is processed by performance visualization, correlation, evaluation,
and interaction tools. Data is then correlated with appropriate network and
computation components, both hardware and software, in order to highlight
performance problems in meaningful ways.

The Distributed Object Visualization Environment (DOVE) [10] supports
monitoring and visualization of applications and services in heterogeneous dis-
tributed systems. DOVE implements a exible framework where DOVE-enabled
applications use application proxies to send collected information to DOVE
agents, which monitor and publish the information to DOVE-enabled browsers.

Unfortunately, most of the existing tools require that the applications be
modi�ed to include calls to the instrumentation libraries or monitoring agents.
In our reective approach, the monitoring system can be dynamically loaded
into dynamicTAO and start to collect information selectively according to the
user needs. There is absolutely no change required either in the application code
or in the Monitoring Service code.

Our work on security builds on previous and ongoing work in standards for
encryption, authentication, and access control [28, 26, 33]. Commercial products
providing security for CORBA systems are starting to appear. However, to the
best of our knowledge, no other implementation of the CORBA Security Service

140



provides the degree of exibility and dynamic con�gurability that our security
architecture provides.

7 Future Work

We are currently developing new components for LegORB . Our long-term goal is
to support full CORBA functionality through a component-based ORB. Fortu-
nately, the LegORB architecture allows us to have working versions of the ORB
from its early stages. Now, our work is to add new components incrementally un-
til we achieve the complete functionality we desire. We are currently working on
LegORB components supporting quality of service for multimedia applications
[35] and fault-tolerance in real-time systems [30].

Our Monitoring Service currently does not provide support for visualizing
the data that it captures. We will investigate the possibility of utilizing existing
tools, like some of the DOVE components, to provide an interactive graphical
interface to visualize the data and to con�gure the monitoring process without
loosing the bene�ts of our system, namely, transparency, exibility, and dynamic
con�gurability.

Finally, we are extending the security architecture to add support for encryp-
tion and role-based access control for the 2K distributed system by using UIUC
Sesame [3] and scalable, dynamic security mechanisms [24].

8 Conclusions

Computing devices tend to become more and more pervasive in our society. Users
will no longer tolerate having to adapt to di�erent environments each time they
interact with a computer. On the contrary, users expect the computer software
to adapt itself to provide the service they need.

These highly dynamic environments with mobile computers, mobile software,
and mobile users require a new paradigm for software development and deploy-
ment. Heraclitus argued change is the only constant. Middleware systems must
be ready to adapt to change.

The ideas and architecture introduced by dynamicTAO provide a solid base
for supporting safe dynamic recon�guration of scalable, high-performance dis-
tributed systems. We are convinced that our reective approach to middleware
design provides the agility that modern applications require. Even though we
are still far from having a complete solution for every aspect of the problem,
preliminary results indicate that we are moving in the right direction.

The complete source code for dynamicTAO can be obtained from the 2K
web site at http://choices.cs.uiuc.edu/2k/dynamicTAO.

References

1. Gordon Blair, Geo� Coulson, Philippe Robin, and Michael Papathomas. An Archi-
tecture for Next Generation Middleware. In Proceedings of Middleware '98, Lake
District, England, November 1998.

141



2. Roy Campbell and Tin Qian. Dynamic Agent-based Security Architecture for Mo-
bile Computers. In Proceedings of the Second International Conference on Parallel
and Distributed Computing and Networks (PDCN'98), pages 291{299, Australia,
December 1998.

3. Monika Chandak. Implementation of Sesame in Java. Master's thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign, 1999.

4. Fabio Costa and Gordon Blair. A Reective Architecture for Middleware: Design
and Implementation. In Proceedings of the ECOOP'99 Workshop for PhD Students
in Object Oriented Systems, Lisbon, June 1999.

5. Schmidt Douglas C. The ADAPTIVE Communication Environment. In Proceed-
ings of the Sun User Group Conference, San Jose, California, December 1993.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of
Object-Oriented Software. Addison-Wesley, 1995.

7. Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design and
Performance of a Real-time CORBA Object Event Service. In Proceedings of the
OOPSLA. ACM, October 1997.

8. F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and M. Steckmeier. Aspec-
tIX: A Middleware for Aspect-Oriented Programming. In Object-Oriented Technol-
ogy, ECOOP'98 Workshop Reader, LNCS 1543, pages 426{427. Springer-Verlag,
1998.

9. Prashant Jain and Douglas C. Schmidt. Dynamically Con�guring Communication
Services with the Service Con�guration Pattern. C++ Report, 9(6), June 1997.

10. Michael Kircher and Douglas C. Schmidt. DOVE: A Distributed Object Visual-
ization Environment. C++ Report, 11(3):42{51, March 1999.

11. Fabio Kon. Distributed Con�guration Protocol. Project home page: http://

choices.cs.uiuc.edu/2k/DCP, June 1998.
12. Fabio Kon and Roy H. Campbell. Supporting Automatic Con�guration of

Component-Based Distributed Systems. In Proc. 5th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS'99), pages 175{187, San
Diego, CA, May 1999.

13. Fabio Kon and Roy H. Campbell. Dependence Management in Component-Based
Distributed Systems. IEEE Concurrency, 2000. To appear.

14. Fabio Kon, Roy H. Campbell, See-Mong Tan, Miguel Valdez, Zhigang Chen, and
Jim Wong. A Component-Based Architecture for Scalable Distributed Multime-
dia. In Proceedings of the 14th International Conference on Advanced Science and
Technology (ICAST'98), pages 121{135, Lucent Technologies, Naperville, April
1998.

15. Fabio Kon, Binny Gill, Roy H. Campbell, and M. Dennis Mickunas. Secure Dy-
namic Recon�guration of Scalable CORBA Systems with Mobile Agents. Technical
Report UIUCDCS-R-99-2131, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, December 1999.

16. Fabio Kon, Ashish Singhai, Roy H. Campbell, Dulcineia Carvalho, Robert Moore,
and Francisco J. Ballesteros. 2K: A Reective, Component-Based Operating Sys-
tem for Rapidly Changing Environments. In ECOOP'98 Workshop on Reective
Object-Oriented Programming and Systems, Brussels, Belgium, July 1998.

17. Ping Liu. The Design and Implementation of a Reference Monitor for the 2K
Operating System. Master's thesis, Department of Computer Science, University
of Illinois at Urbana-Champaign, July 1999.

18. P. Maes and D. Nardi, editors. Meta-Level Architectures and Reection. North-
Holland, 1987.

142



19. Silvano Ma�eis. Adding Group Communication and Fault-Tolerance to CORBA.
In Proceedings of the 1995 USENIX Conference on Object-Oriented Technologies.
The USENIX Association, June 1995.

20. Silvano Ma�eis and Douglas C. Schmidt. Constructing reliable distributed commu-
nication systems with CORBA. IEEE Communications Magazine, 14(2), February
1997.

21. Jina Mao. Monitoring and Analyzing Method Invocations in the 2K Operating
System. Master's thesis, Department of Computer Science, University of Illinois
at Urbana-Champaign, May 1999.

22. OMG. CORBA v2.2 Speci�cation. Object Management Group, Framingham, MA,
February 1998. OMG Document 98-07-01.

23. OMG. Security Service Speci�cation (revision 1.2). Technical Report ptc/98-01-02,
The Object Management Group, November 1998.

24. Tin Qian. Dynamic Authorization Support in Large Distributed Systems. PhD the-
sis, Department of Computer Science, University of Illinois at Urbana-Champaign,
November 1999.

25. P.-G. Raverdy and R. Lea. DART: A Distributed Adaptive Run-Time. In Work-
in-progress presented at the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware'98), September 1998.

26. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Chlarles E. Youman.
Role-based Access Control Models. IEEE Computer, 29(2):38{47, February 1996.

27. Daniel A. Reed and Randy L. Ribler. Performance Analysis and Visualization,
chapter in the book \Computational Grids: State of the Art and Future Directions
in High-Performance Distributed Computing". Morgan-Kaufman Publishers, Au-
gust 1998.

28. Ravi S. Sandu and Pierangela Samarati. Access Control: Principles and Practice.
IEEE Communications Magazine, 32(9):40{48, September 1994.

29. Douglas C. Schmidt and Chris Cleeland. Applying Patterns to Develop Extensi-
ble ORB Middleware. IEEE Communications Magazine Special Issue on Design
Patterns, 1999.

30. Lui Sha, R. Rajkumar, and M. Gagliardi. Evolving Dependable Real Time Systems.
In Proceedings of the IEEE Aerospace Applications Conference, pages 335{346,
Aspen, CO, February 1996. IEEE Computer Society Press.

31. Ashish Singhai, Aamod Sane, and Roy Campbell. Reective ORBs: Supporting
Robust Time-Critical Distribution. In Proceedings of the ECOOP'97 Workshop on
Reective Real-Time Object-Oriented Systems, pages 55{61, Finland, June 1997.
ECOOP'97 Workshop Reader, LNCS 1357.

32. Ashish Singhai, Aamod Sane, and Roy Campbell. Quarterware for Middleware. In
Proc. 18th International Conference on Distributed Computing Systems (ICDCS),
pages 192{201. IEEE, May 1998.

33. M. Vandenwauver, R. Govaerts, and J. Vandewalle. Overview of Authentication
Protocols: Kerberos and SESAME. In Proceedings of the 31st Annual IEEE Car-
nahan Conference on Security Technology, pages 108{113, 1997.

34. Y. M. Wang and Woei-Jyh Lee. COMERA: COM extensible remoting architecture.
In Proceedings of the 4th Conference on Object-Oriented Technologies and Systems
(COOTS). Usenix, April 1998.

35. Dongyan Xu, Duangdao Wichadakul, and Klara Nahrstedt. Multimedia Ser-
vice Con�guration and Reservation in Heterogeneous Environments. In Pro-
ceedings of the 20th International Conference on Distributed Computing Systems
(ICDCS'2000), Taipei, Taiwan, April 2000.

143


